1
|
Machado RS, Tenfen L, Joaquim L, Lanzzarin EVR, Bernardes GC, Bonfante SR, Mathias K, Biehl E, Bagio É, Stork SDS, Denicol T, de Oliveira MP, da Silva MR, Danielski LG, de Quadros RW, Rezin GT, Terra SR, Balsini JN, Gava FF, Petronilho F. Hyperoxia by short-term promotes oxidative damage and mitochondrial dysfunction in rat brain. Respir Physiol Neurobiol 2022; 306:103963. [PMID: 36041716 DOI: 10.1016/j.resp.2022.103963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Oxygen (O2) therapy is used as a therapeutic protocol to prevent or treat hypoxia. However, a high inspired fraction of O2 (FIO2) promotes hyperoxia, a harmful condition for the central nervous system (CNS). The present study evaluated parameters of oxidative stress and mitochondrial dysfunction in the brain of rats exposed to different FIO2. Male Wistar rats were exposed to hyperoxia (FIO2 40 % and 60 %) compared to the control group (FIO2 21 %) for 2 h. Oxidative stress, neutrophilic infiltration, and mitochondrial respiratory chain enzymes were determined in the hippocampus, striatum, cerebellum, cortex, and prefrontal cortex after O2 exposure. The animals exposed to hyperoxia showed increased lipid peroxidation, formation of carbonyl proteins, N/N concentration, and neutrophilic infiltration in some brain regions, like hippocampus, striatum, and cerebellum being the most affected. Furthermore, CAT activity and activity of mitochondrial enzyme complexes were also altered after exposure to hyperoxia. Rats exposed to hyperoxia showed increase in oxidative stress parameters and mitochondrial dysfunction in brain structures.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leonardo Tenfen
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Everton Venicius Rosa Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Costa Bernardes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Regina Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Érick Bagio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Solange de Souza Stork
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tais Denicol
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Silvia Resende Terra
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Nunes Balsini
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
2
|
Impaired Cognitive Performance in Mice Exposed to Prolonged Hyperoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:69-73. [PMID: 36527616 DOI: 10.1007/978-3-031-14190-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplementation of oxygen at concentrations significantly above environmental level for prolonged periods may lead to hyperoxia and tissue toxicity. The mammalian brain undergoes structural and functional changes during adaptation to hypoxia and hyperoxia. In this study we investigated the effect of prolonged hyperoxic exposure on cognitive and motor performance in mice. Two-month-old male mice were placed in either hyperoxic (50% O2) or normoxic conditions for 3 weeks. Cognitive function was measured using the Y-maze test. High alteration rate between the three arms of the maze is indicative of sustained memory and cognitive function. Motor function was measured using the grip strength and rotarod tests. In the rotarod test high speed and long latency are indicative of coordination and resistance. After 3 weeks of exposure, hematocrit levels were significantly decreased in the hyperoxia group compared to normoxic control littermates (%, mean ± SD, 37.8 ± 1.3, n = 15 vs. 49.9 ± 5.1, n = 15, p < 0.05). In the Y-maze test, chronic hyperoxic exposure resulted in a statistically significant decrease in alteration rate compared to normoxic control (%, mean ± SD, 53.4 ± 9.9, n = 30 vs. 61.2 ± 9.5, n = 15, p < 0.05). The rotarod and grip strength tests did not show statistically significant changes between the two groups. Our data suggest that chronic hyperoxia may lead to decreased cognitive performance in adult mice, which may be secondary to structural and functional changes in the brain.
Collapse
|