1
|
Chen S, Shen C, Zeng X, Sun L, Luo F, Wan R, Zhang Y, Chen X, Hou Y, Wang W, Zheng Q, Li Y. Energy metabolism and the intestinal barrier: implications for understanding and managing intestinal diseases. Front Microbiol 2025; 16:1515364. [PMID: 39959156 PMCID: PMC11826063 DOI: 10.3389/fmicb.2025.1515364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
The interplay between energy metabolism and the gut barrier is crucial for maintaining intestinal physiological homeostasis. Energy metabolism and the intestinal barrier perform distinct yet complementary roles that uphold intestinal ecological equilibrium. Disruptions in energy metabolism can compromise the integrity of the intestinal barrier; for example, inactivation of the AMPK pathway may lead to reduced expression of proteins associated with tight junctions. Conversely, impairment of the intestinal barrier can result in metabolic dysregulation, such as alterations in the gut microbiota that impede the production of short-chain fatty acids (SCFAs), which are essential substrates for energy metabolism. This disruption can affect energy production and modify the gut's hypoxic environment. Imbalances in these systems have been associated with the onset of various intestinal diseases. Research indicates that dietary interventions, such as a low FODMAP diet, can enhance the colonization of probiotics and improve the fermentation metabolism of SCFAs. Pharmacological strategies to elevate SCFA levels can activate the AMPK pathway and rectify abnormalities in energy metabolism. This review provides a comprehensive summary of recent advancements in elucidating the interactions between energy metabolism and the intestinal barrier.
Collapse
Affiliation(s)
- Shuai Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caifei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaorui Zeng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luqiang Sun
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fangli Luo
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Renhong Wan
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yupeng Zhang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyun Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yujun Hou
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Wang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qianhua Zheng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li J, Xu Y, Han Y, Yang A, Qian M, Wang B. Role of the SOX family in cancer immune evasion: Emerging player and promising therapeutic opportunities. Medicine (Baltimore) 2025; 104:e41393. [PMID: 39889187 PMCID: PMC11789896 DOI: 10.1097/md.0000000000041393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 02/02/2025] Open
Abstract
Cancer immune evasion is one of the important mechanisms for cancer development, which is essential to developing novel immunotherapeutic strategies. The SOX (SRY-related HMG-box) family of transcription factors plays a crucial role in normal physiology as well as in a variety of human diseases especially cancer. It has been shown that SOX is involved in cancer immune evasion processes. This mini-review aimed to summarize how SOX family members induce cancer immune evasion by regulating antigen presentation, shaping the tumor immunosuppressive milieu, and controlling regulatory immune checkpoint inhibitors like programmed death ligand 1. Thorough exploration of SOX family will help uncover the mechanism of cancer immune evasion, and provide new ideas and targets for the development of immunotherapy strategies.
Collapse
Affiliation(s)
- Jinke Li
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Yawen Xu
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Yunying Han
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Aifu Yang
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Miaoshan Qian
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Bo Wang
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| |
Collapse
|
3
|
Wang Z, Jiang L, Bai X, Guo M, Zhou R, Zhou Q, Yang H, Qian J. Vitamin D receptor regulates methyltransferase like 14 to mitigate colitis-associated colorectal cancer. J Genet Genomics 2025:S1673-8527(25)00002-5. [PMID: 39778713 DOI: 10.1016/j.jgg.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Colitis-associated colorectal cancer (CAC), a serious complication of ulcerative colitis (UC), is associated with a poor prognosis. The vitamin D receptor (VDR) is recognized for its protective role in UC and CAC through the maintenance of intestinal barrier integrity and the regulation of inflammation. This study demonstrates a significant reduction in m6A-related genes, particularly methyltransferase like 14 (METTL14), in UC and CAC patients and identifies an association between METTL14 and VDR. In the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced mouse model, vitamin D treatment increases METTL14 expression and reduces tumor burden, while Vdr-knockout mice exhibit lower METTL14 levels and increased tumorigenesis. In vitro, the VDR agonist calcipotriol upregulates METTL14 in NCM460 cells, with this effect attenuated by VDR knockdown. VDR knockdown in DLD-1 colon cancer cells decreases METTL14 expression and promotes proliferation, which is reversed by METTL14 overexpression. Mechanistic studies reveal that VDR regulates METTL14 expression via promoter binding, modulating key target genes such as SOX4, DROSH, and PHLPP2. This study highlights the role of the VDR-METTL14 axis as a protective mechanism in CAC and suggests its potential as a therapeutic target for preventing and treating CAC.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lingjuan Jiang
- Biomarker Discovery and Validation Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Mingyue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Runing Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qingyang Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
4
|
Lin JF, Liu ZX, Chen DL, Huang RZ, Cao F, Yu K, Li T, Mo HY, Sheng H, Liang ZB, Liao K, Han Y, Li SS, Zeng ZL, Gao S, Ju HQ, Xu RH. Nucleus-translocated GCLM promotes chemoresistance in colorectal cancer through a moonlighting function. Nat Commun 2025; 16:263. [PMID: 39747101 PMCID: PMC11696352 DOI: 10.1038/s41467-024-55568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic enzymes perform moonlighting functions during tumor progression, including the modulation of chemoresistance. However, the underlying mechanisms of these functions remain elusive. Here, utilizing a metabolic clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout library screen, we observe that the loss of glutamate-cysteine ligase modifier subunit (GCLM), a rate-limiting enzyme in glutathione biosynthesis, noticeably increases the sensitivity of colorectal cancer (CRC) cells to platinum-based chemotherapy. Mechanistically, we unveil a noncanonical mechanism through which nuclear GCLM competitively interacts with NF-kappa-B (NF-κB)-repressing factor (NKRF), to promote NF-κB activity and facilitate chemoresistance. In response to platinum drug treatment, GCLM is phosphorylated by P38 MAPK at T17, resulting in its recognition by importin a5 and subsequent nuclear translocation. Furthermore, elevated expression of nuclear GCLM and phospho-GCLM correlate with an unfavorable prognosis and poor benefit from standard chemotherapy. Overall, our work highlights the essential nonmetabolic role and posttranslational regulatory mechanism of GCLM in enhancing NF-κB activity and subsequent chemoresistance.
Collapse
Affiliation(s)
- Jin-Fei Lin
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Ze-Xian Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Dong-Liang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ren-Ze Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Fen Cao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Li
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Hai-Yu Mo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Hui Sheng
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhi-Bing Liang
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China
| | - Kun Liao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yi Han
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shan-Shan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China
| | - Zhao-Lei Zeng
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Song Gao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Huai-Qiang Ju
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China.
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| |
Collapse
|
5
|
Zhou M, Niu H, Huang G, Zhou M, Cui D, Li H, Wen H, Zhang H, Liang F, Chen R. Biomimetic Nano-delivery of Small-Molecule Piceatannol Modulates Tumor Stemness and Suppresses Colorectal Cancer Metastasis via Hippo/YAP1/SOX9 Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407191. [PMID: 39523731 PMCID: PMC11735875 DOI: 10.1002/smll.202407191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Suppressing tumor metastasis is a crucial strategy for improving survival rates in patients with colorectal cancer (CRC), with cancer stem cells (CSCs) being the primary drivers of metastasis. Current therapeutic approaches targeting CSCs are limited, and their molecular mechanisms remain unclear. To address this challenge, a biomimetic nanoparticle delivery system, CMD-BHQ3-PTL/DOX@RBCM is developed, to deliver the stem cell regulator, piceatannol (PTL). This system used carboxymethyl dextran (CMD) and Black Hole Quencher 3 (BHQ3) to encapsulate PTL and the cytotoxic drug doxorubicin (DOX) within a red blood cell membrane (RBCm), enhancing stability and biocompatibility while allowing gradual drug release under hypoxic conditions. The effects of PTL are investigated on CSCs using molecular biology experiments, plasmid construction, and high-throughput sequencing and elucidated the molecular mechanisms underlying this biomimetic nanoparticle delivery system. The therapeutic efficacy of PTL is validated at the tissue level using subcutaneous and metastatic tumor models in human and murine systems. The results demonstrated that CMD-BHQ3-PTL/DOX@RBCM effectively addressed the challenges of specificity and biocompatibility in vivo, significantly inhibiting CSC-related tumor metastasis. This inhibitory effect is closely associated with the Hippo/YAP1/SOX9 pathway. This study highlights the effectiveness of the pH-responsive biomimetic nanoparticle system CMD-BHQ3-PTL/DOX@RBCm in delivering PTL to tumor sites, with SOX9 and its upstream Hippo/YAP1 pathway playing a critical role in the underlying mechanism.
Collapse
Affiliation(s)
- Minfeng Zhou
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Huifang Niu
- Jianghan University School of Medicine8 Triangle Lake RoadWuhan430056China
- Jianghan University Institute of Acupuncture and Moxibustion8 Triangle Lake RoadWuhan430056China
| | - Guoquan Huang
- Hubei Selenium and Human Health InstituteThe Central Hospital of Enshi Tujia and Miao Autonomous Prefecture. No.158 Wuyang AvenueEnshiHubei Province445000China
- Department of Colorectal and Anal SurgeryCentral Hospital of Enshi Tujia and Miao Autonomous Prefecture. No.158 Wuyang AvenueEnshiHubei Province445000China
| | - Minquan Zhou
- School of Pharmacy and NursingHubei University of MedicineShiyan442000China
| | - Dandan Cui
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Huarong Li
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Han Wen
- The Second Affiliated Hospital of Shenyang Medical College64 West Qishan RoadShengyang110036China
| | - Hongxing Zhang
- Jianghan University School of Medicine8 Triangle Lake RoadWuhan430056China
- Jianghan University Institute of Acupuncture and Moxibustion8 Triangle Lake RoadWuhan430056China
| | - Fengxia Liang
- School of Acupuncture and Bone InjuryHubei University of Traditional Chinese MedicineWuhan430065China
| | - Rui Chen
- Department of Integrative Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
6
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Li J, Hou Y, Ding H, Wang P, Li B. 1α,25-hydroxyvitamin D/VDR suppresses stem-like properties of ovarian cancer cells by restraining nuclear translocation of β-catenin. Steroids 2024; 211:109488. [PMID: 39151767 DOI: 10.1016/j.steroids.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Several studies have indicated that 1α,25-hydroxyvitamin D [1α,25(OH)2D3] inhibits the proliferation and metastasis of cancer cells through suppressing epithelial-mesenchymal transition. However, its influence on the translocation of β-catenin remains unclear. In the present study, ovarian cancer stem-like cells (CSCs), including side population (SP) and CD44+/CD117+, were isolated from mouse ovarian surface epithelial (MOSE) cells with malignant transformation. The findings revealed that 1α,25(OH)2D3 obviously reduced the sphere-forming ability, as well as Notch1 and Klf levels. Moreover, the limiting dilution assay demonstrated that 1α,25(OH)2D3 effectively hindered the tumorigenesis of ovarian CSCs in vitro. Notably, treatment with 1α,25(OH)2D3 led to a substantial increase in the cell population of CD44+/CD117+ forming one tumor from ≤ 100 to 445 in orthotopic transplanted model, indicating a pronounced suppression of stemness of ovarian CSCs. Additionally, 1α,25(OH)2D3 robustly promoted the translocation of β-catenin from the nuclear to the cytoplasm through directly binding to VDR, which resulted in decreased levels of c-Myc and CyclinD1 within late MOSE cells. Taken together, these results strongly supported the role of 1α,25(OH)2D3 in inhibiting stem-like properties in ovarian cancer cells by restraining nuclear translocation of β-catenin, thereby offering a promising target for cancer therapeutics.
Collapse
Affiliation(s)
- Jie Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yongfeng Hou
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing 100037, China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215123, China.
| | - Ping Wang
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Rolver MG, Severin M, Pedersen SF. Regulation of cancer cell lipid metabolism and oxidative phosphorylation by microenvironmental acidosis. Am J Physiol Cell Physiol 2024; 327:C869-C883. [PMID: 39099426 DOI: 10.1152/ajpcell.00429.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The expansion of cancer cell mass in solid tumors generates a harsh environment characterized by dynamically varying levels of acidosis, hypoxia, and nutrient deprivation. Because acidosis inhibits glycolytic metabolism and hypoxia inhibits oxidative phosphorylation, cancer cells that survive and grow in these environments must rewire their metabolism and develop a high degree of metabolic plasticity to meet their energetic and biosynthetic demands. Cancer cells frequently upregulate pathways enabling the uptake and utilization of lipids and other nutrients derived from dead or recruited stromal cells, and in particular lipid uptake is strongly enhanced in acidic microenvironments. The resulting lipid accumulation and increased reliance on β-oxidation and mitochondrial metabolism increase susceptibility to oxidative stress, lipotoxicity, and ferroptosis, in turn driving changes that may mitigate such risks. The spatially and temporally heterogeneous tumor microenvironment thus selects for invasive, metabolically flexible, and resilient cancer cells capable of exploiting their local conditions and of seeking out more favorable surroundings. This phenotype relies on the interplay between metabolism, acidosis, and oncogenic mutations, driving metabolic signaling pathways such as peroxisome proliferator-activated receptors (PPARs). Understanding the particular vulnerabilities of such cells may uncover novel therapeutic liabilities of the most aggressive cancer cells.
Collapse
Affiliation(s)
- Michala G Rolver
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T, Guan L. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Int Immunopharmacol 2024; 138:112571. [PMID: 38941674 DOI: 10.1016/j.intimp.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
T cells suffer from long-term antigen stimulation and insufficient energy supply, leading to a decline in their effector functions, memory capabilities, and proliferative capacity, ultimately resulting in T cell exhaustion and an inability to perform normal immune functions in the tumor microenvironment. Therefore, exploring how to restore these exhausted T cells to a state with effector functions is of great significance. Exhausted T cells exhibit a spectrum of molecular alterations, such as heightened expression of inhibitory receptors, shifts in transcription factor profiles, and modifications across epigenetic, metabolic, and transcriptional landscapes. This review provides a comprehensive overview of various strategies to reverse T cell exhaustion, including immune checkpoint blockade, and explores the potential synergistic effects of combining multiple approaches to reverse T cell exhaustion. It offers new insights and methods for achieving more durable and effective reversal of T cell exhaustion.
Collapse
Affiliation(s)
- Yang Hu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Fenfen Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruihan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiayu Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
10
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
11
|
Li H, Ruan Y, Liu C, Fan X, Yao Y, Dai Y, Song Y, Jiang D, Sun N, Jiao G, Chen Z, Fan S, Meng F, Yang H, Zhang Y, Li Z. VDR promotes pancreatic cancer progression in vivo by activating CCL20-mediated M2 polarization of tumor associated macrophage. Cell Commun Signal 2024; 22:224. [PMID: 38600588 PMCID: PMC11005177 DOI: 10.1186/s12964-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.
Collapse
Affiliation(s)
- Hengzhen Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
| | - Xiaona Fan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
- Heilongjiang Province Key Laboratory of molecular Oncology, Harbin, China
| | - Yisheng Dai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Jiang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangtao Jiao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiheng Fan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Fanfei Meng
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China.
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
12
|
Liu L, He Z, Jiang Z, Liu Z, Zhuang X. Acidity-induced ITGB6 promote migration and invasion of lung cancer cells by epithelial-mesenchymal transition and focal adhesion. Exp Cell Res 2024; 436:113962. [PMID: 38316250 DOI: 10.1016/j.yexcr.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent tumor and acidic tumor microenvironment provides an energy source driving tumor progression. We previously demonstrated significantly upregulated Integrin β6 (ITGB6) in NSCLC cells. This study was designed to investigate the role of ITGB6 in NSCLC metastasis and explore the potential mechanisms. The expression of ITGB6 was evaluated in patients with NSCLC. Migration and invasion assays were utilized to investigate the role of ITGB6, and ChIP-qPCR and dual-luciferase reporter experiments preliminarily analyzed the relationship between ETS proto-oncogene 1 (ETS1) and ITGB6. Bioinformatics analysis and rescue models were performed to explore the underlying mechanisms. The results demonstrated that ITGB6 was upregulated in NSCLC patients and the difference was even more pronounced in patients with poor prognosis. Functionally, acidity-induced ITGB6 promoted migration and invasion of NSCLC cells in vitro, and epithelial-mesenchymal transition (EMT) and focal adhesion were the important mechanisms responsible for ITGB6-involved metastasis. Mechanistically, we revealed ETS1 enriched in the ITGB6 promoter region and promoted transcription to triggered the activation of subsequent signaling pathways. Moreover, ChIP-qPCR and dual-luciferase reporter experiments demonstrated that ETS1 played an important role in directly mediating ITGB6 expression. Furthermore, we found ITGB6 was responsible for the acidic microenvironment-mediated migration and invasion processes in NSCLC by performing rescue experiments with ITGB6 knockdown. Our findings indicated acidic microenvironment directly induced ETS1 to regulate the expression of ITGB6, and then the highly expressed ITGB6 further mediate EMT and activates the downstream focal adhesion pathways, eventually promotes the invasion and migration in NSCLC progression and metastasis.
Collapse
Affiliation(s)
- Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuoru He
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangyu Jiang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Wu Z, Zhou S, Liang D, Mu L. GPX2 acts as an oncogene and cudraflavone C has an anti-tumor effect by suppressing GPX2-dependent Wnt/β-catenin pathway in colorectal cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1115-1125. [PMID: 37610461 DOI: 10.1007/s00210-023-02668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Colorectal carcinoma (CRC) is a common cancer associated with poor prognosis, and cudraflavone C (Cud C) is a natural flavonol with reported anti-CRC capacity. However, the precise mechanisms underlying the anti-CRC effect require further demonstration. The aim of present study was to evaluate the impact of Cud C on the cell viability and apoptosis of CRC cells and to determine the underlying mechanisms. The Human Protein Atlas (THPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to analyze the expression status of glutathione peroxidase 2 (GPX2) in CRC. Cell viability was examined using cell counting kit-8 (CCK-8) assay. Flow cytometry was utilized to evaluate apoptosis. The levels of gene transcription and protein expression of GPX2, caspase-3, cleaved caspase-3), β-catenin, and c-Myc were determined by RT-qPCR and Western blotting. Our results showed that GPX2 was overexpressed in CRC as compared to normal tissue and the extent of GPX2 overexpression is greatest in CRC when compared with other cancers according to GEPIA and THPA databases. GPX2 knockdown significantly suppressed the cell viability, induced apoptosis of CRC cell lines, and restrained the activity of Wnt/β-catenin pathway. Cud C treatment decreased cell viability, induced apoptosis in CRC cell lines, and diminished the expression level of GPX2-dependent activation of Wnt/β-catenin pathway, while such effects can be abolished by GPX2 overexpression. In conclusion, Cud C suppressed GPX2-dependent Wnt/β-catenin pathway to exert anti-CRC function.
Collapse
Affiliation(s)
- Zhuo Wu
- Uutpatient Department, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Su Zhou
- Department of Drug Management, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Dan Liang
- Department of Otolaryngology, the First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, People's Republic of China
| | - Lan Mu
- Department of Otolaryngology, the First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, People's Republic of China.
| |
Collapse
|
15
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
16
|
Li X, Fan QL, Ma TK, Liu C, Shi H, Sun YY, Wang Y, Ding DX, Tang A, Qin Y, Yang Q, Ding H, Li HY, Fu WN. MYCT1 attenuates renal fibrosis and tubular injury in diabetic kidney disease. iScience 2023; 26:107609. [PMID: 37664593 PMCID: PMC10470386 DOI: 10.1016/j.isci.2023.107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/22/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Tubulointerstitial abnormalities contribute to the progression of diabetic kidney disease (DKD). However, the underlying mechanism of the pathobiology of tubulointerstitial disease is largely unknown. Here, we showed that MYCT1 expression was downregulated in in vitro and in vivo DKD models. Adeno-associated virus (AAV)-Myct1 significantly attenuated renal dysfunction and tubulointerstitial fibrosis in diabetic db/db mice and downregulated Sp1 transcription and TGF-β1/SMAD3 pathway activation. In human proximal tubular epithelial cells, high glucose-induced high expression of SP1 and TGF-β1/SMAD3 pathway activation as well as overaccumulation of extracellular matrix (ECM) were abrogated by MYCT1 overexpression. Mechanistically, the binding of VDR to the MYCT1 promoter was predicted and confirmed using dual-luciferase reporter and ChIP analysis. VDR transcriptionally upregulates MYCT1. Our data reveal MYCT1 as a new and potential therapeutic target in treating DKD.
Collapse
Affiliation(s)
- Xin Li
- Department of Medical Genetics, China Medical University, Shenyang, China
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Kui Ma
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Cong Liu
- Department of General Surgery, First Hospital of Harbin Medical University, Harbin, China
| | - Hang Shi
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yue Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Dong-Xue Ding
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Ao Tang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yu Qin
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hang-Yu Li
- Department of General Surgery, Fourth Hospital of China Medical University, Shenyang, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Liu F, Wei X, Chen Z, Chen Y, Hu P, Jin Y. PFKFB2 is a favorable prognostic biomarker for colorectal cancer by suppressing metastasis and tumor glycolysis. J Cancer Res Clin Oncol 2023; 149:10737-10752. [PMID: 37311985 DOI: 10.1007/s00432-023-04946-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE This study was to investigate the biological effect of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) in colorectal cancer (CRC). METHODS PFKFB2 was selected by metabolism polymerase chain reaction (PCR) array from CRC cells under alkaline culture medium (pH 7.4) and acidic culture medium (pH 6.8). The expression of PFKFB2 mRNA and protein was detected by quantitative real-time PCR and immunohistochemistry in 70 paired fresh and 268 paired paraffin-embedded human CRC tissues, respectively, and then the prognostic value of PFKFB2 was investigated. The effects of PFKFB2 on CRC cells were also verified in vitro, which were through detecting the change of migration, invasion, sphere formation, proliferation, colony formation, and extracellular acidification rate of CRC cells after PFKFB2 knockdown in alkaline culture medium (pH 7.4) and overexpression in acidic culture medium (pH 6.8). RESULTS PFKFB2 expression was downregulated in acidic culture medium (pH 6.8). In addition, we found PFKFB2 expression decreased in human CRC tissues compared with the adjacent normal tissues. Furthermore, the OS and DFS rate of CRC patients with low PFKFB2 expression was significantly shorter than those of patients with high PFKFB2 expression. Multivariate analysis indicated that low PFKFB2 expression was an independent prognostic factor for both OS and DFS in CRC patients. Moreover, the abilities of migration, invasion, spheroidizing ability, proliferation, and colony formation of CRC cells were significantly increased after depletion of PFKFB2 in alkaline culture medium (pH 7.4) and decreased after overexpression of PFKFB2 in acidic culture medium (pH 6.8) in vitro. Epithelial-mesenchymal transition (EMT) pathway was found and verified involved in the PFKFB2-mediated regulation of metastatic function in CRC cells. Further, glycolysis of CRC cells was significantly elevated after knockdown of PFKFB2 in alkaline culture medium (pH 7.4) and decreased after overexpression of PFKFB2 in acidic culture medium (pH 6.8). CONCLUSION PFKFB2 expression is downregulated in CRC tissues and associated with worse survival for CRC patients. PFKFB2 could inhibit metastasis and the malignant progression of CRC cells by suppressing EMT and glycolysis.
Collapse
Affiliation(s)
- Furong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Zhanhong Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Peishan Hu
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Yu J, Sun Q, Hui Y, Xu J, Shi P, Chen Y, Chen Y. Vitamin D receptor prevents tumour development by regulating the Wnt/β-catenin signalling pathway in human colorectal cancer. BMC Cancer 2023; 23:336. [PMID: 37046222 PMCID: PMC10091620 DOI: 10.1186/s12885-023-10690-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common disease threatening human lives worldwide, and vitamin D receptor (VDR) contributes protective roles in this disease. However, the molecular mechanisms underlying VDR protection in CRC progression require further investigation. METHODS In this study, we statistically analyzed the relationship between VDR expression and CRC development in patients and detected invasion and apoptosis in CRC cells with VDR overexpression and interference. We also detected the expression of key genes involved in Wnt/β-catenin signalling (β-catenin, lymphoid enhancer factor (LEF)-1 and cyclin D1) in SW480 cells and nude mice injected with VDR-overexpressing SW480 cells and observed tumour development. Additionally, we performed Co-immunoprecipitation (Co-IP) and glutathione-S-transferase (GST) pull-down assays to identify the protein interactions of VDR with β-catenin, dual luciferase (LUC) and chromatin immunoprecipitation (ChIP) to detect the activation of LEF-1 by VDR. RESULTS The VDR level was closely related to the development and prognosis of CRC patients. VDR overexpression inhibited invasion but promoted apoptosis in cancer cells. β-catenin shRNA contributed oppositely to cancer cell activity with VDR shRNA. Additionally, VDR interacted with β-catenin at the protein level and blocked its nuclear accumulation. VDR regulated the expression of β-catenin, cyclin D1 and LEF-1 and directly activated LEF-1 transcription in vitro. Furthermore, nude mice injected with VDR-overexpressing SW480 cells revealed suppression of tumour growth and decreased expression of β-catenin, cyclin D1 and LEF-1. CONCLUSIONS This study indicated that VDR protected against CRC disease in humans by inhibiting Wnt/β-catenin signalling to control cancer cell invasion and apoptosis, providing new evidence to explore VDR biomarkers or agonists for CRC patient diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi Hui
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Jinping Xu
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Pancheng Shi
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Yu Chen
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Yunzhao Chen
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China.
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, China.
| |
Collapse
|
19
|
Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB. SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 2023; 160:114336. [PMID: 36738502 DOI: 10.1016/j.biopha.2023.114336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
SOX2 is a transcription factor involved in multiple stages of embryonic development. In related reports, SOX2 was found to be abnormally expressed in tumor tissues and correlated with clinical features such as TNM staging, tumor grade, and prognosis in patients with various cancer types. In most cancer types, SOX2 is a tumor-promoting factor that regulates tumor progression and metastasis primarily by maintaining the stemness of cancer cells. In addition, SOX2 also regulates the proliferation, apoptosis, invasion, migration, ferroptosis and drug resistance of cancer cells. However, SOX2 acts as a tumor suppressor in some cases in certain cancer types, such as gastric and lung cancer. These key regulatory functions of SOX2 involve complex regulatory networks, including protein-protein and protein-nucleic acid interactions through signaling pathways and noncoding RNA interactions, modulating SOX2 expression may be a potential therapeutic strategy for clinical cancer patients. Therefore, we sorted out the phenotypes related to SOX2 in cancer, hoping to provide a basis for further clinical translation.
Collapse
Affiliation(s)
- L N Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Y Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Lei
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - H B Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Vitamin D Promotes Ferroptosis in Colorectal Cancer Stem Cells via SLC7A11 Downregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4772134. [PMID: 36846715 PMCID: PMC9950793 DOI: 10.1155/2023/4772134] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Colorectal cancer stem cells (CCSCs) play important roles in the prognosis, chemoresistance, and treatment failure of colorectal cancer (CRC). Ferroptosis is an effective treatment for CCSCs. Vitamin D (VD) reportedly inhibits colon cancer cell proliferation. However, information on the relationship between VD and ferroptosis in CCSCs is not well documented. In this study, we aimed to understand the effect of VD on ferroptosis in CCSCs. To this end, we treated CCSCs with different concentrations of VD and performed spheroid formation assay and transmission electron microscopy and determined cysteine (Cys), glutathione (GSH), and reactive oxygen species (ROS) levels. Furthermore, functional experiments, western blotting, and qRT-PCR were performed to explore the downstream molecular mechanisms of VD in vitro and in vivo. Results showed that VD treatment significantly inhibited the proliferation of CCSCs and reduced the number of tumour spheroids in vitro. Further evaluations showed that the VD-treated CCSCs exhibited significantly higher ROS levels and lower levels of Cys and GSH as well as thickened mitochondrial membranes. Furthermore, the mitochondria in CCSCs were narrowed and ruptured after VD treatment. These results indicated that VD treatment significantly induced ferroptosis in CCSCs. Further exploration showed that SLC7A11 overexpression significantly attenuated VD-induced ferroptosis in vitro and in vivo. Hence, we concluded that VD induces ferroptosis in CCSCs by downregulating SLC7A11 in vitro and in vivo. These results provide new evidence for the therapeutic use of VD in treating CRC and new insights into VD-induced ferroptosis in CCSCs.
Collapse
|
21
|
Zhao J, Zhou X, Chen B, Lu M, Wang G, Elumalai N, Tian C, Zhang J, Liu Y, Chen Z, Zhou X, Wu M, Li M, Prochownik EV, Tavassoli A, Jiang C, Li Y. p53 promotes peroxisomal fatty acid β-oxidation to repress purine biosynthesis and mediate tumor suppression. Cell Death Dis 2023; 14:87. [PMID: 36750554 PMCID: PMC9905075 DOI: 10.1038/s41419-023-05625-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
The metabolic pathways through which p53 functions as a potent tumor suppressor are incompletely understood. Here we report that, by associating with the Vitamin D receptor (VDR), p53 induces numerous genes encoding enzymes for peroxisomal fatty acid β-oxidation (FAO). This leads to increased cytosolic acetyl-CoA levels and acetylation of the enzyme 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC), which catalyzes the last two steps in the purine biosynthetic pathway. This acetylation step, mediated by lysine acetyltransferase 2B (KAT2B), occurs at ATIC Lys 266, dramatically inhibits ATIC activity, and inversely correlates with colorectal cancer (CRC) tumor growth in vitro and in vivo, and acetylation of ATIC is downregulated in human CRC samples. p53-deficient CRCs with high levels of ATIC is more susceptible to ATIC inhibition. Collectively, these findings link p53 to peroxisomal FAO, purine biosynthesis, and CRC pathogenesis in a manner that is regulated by the levels of ATIC acetylation.
Collapse
Affiliation(s)
- Jianhong Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Baoxiang Chen
- Department of colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, 430071, China
| | - Mingzhu Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Genxin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | | | - Chenhui Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jinmiao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yanliang Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhiqiang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xinyi Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mingzhi Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mengjiao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| | - Congqing Jiang
- Department of colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, 430071, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
22
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
23
|
Marigoudar JB, Sarkar D, Yuguda YM, Abutayeh RF, Kaur A, Pati A, Mitra D, Ghosh A, Banerjee D, Borah S, Barman K, Das B, Khairnar SJ, Šeherčehajić E, Kumar S. Role of vitamin D in targeting cancer and cancer stem cell populations and its therapeutic implications. Med Oncol 2022; 40:2. [PMID: 36308576 DOI: 10.1007/s12032-022-01855-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/17/2022] [Indexed: 01/17/2023]
Abstract
Cancer is recognized globally as the second-most dominating and leading cause of morbidities. Fighting the global health epidemic threat posed by cancer requires progress and improvements in imaging techniques, surgical techniques, radiotherapy, and chemotherapy. The existence of a small subpopulation of undifferentiated cells known as cancer stem cells has been supported by accumulating evidence and ongoing research. According to clinical data, cancer recurrence, tumor development, and metastasis are thought to be caused by CSCs. Nutritional or dietary supplements can help you to fight against cancer and cope with the treatment side effects. Vitamin D, sometimes known as the sunshine vitamin, is produced in the skin in reaction to sunlight. Vitamin D deficiency is hazardous to any degree, increasing the risk of diseases such as cancer and disorders like osteoporosis. Bioactive vitamin D, or calcitriol, regulates several biological pathways. Many modes of action of Vitamin D might be helpful in protecting somatic stem cells (e.g., DNA damage repair and oxidative stress protection) or restricting cancer stem cell growth (e.g., cell cycle arrest, cell apoptosis). Researchers have recently begun to investigate the inhibitory effects of dietary vitamin D on cancer stem cells. In this review, we investigated the therapeutic impact of vitamin D and its molecular processes to target cancer and cancer stem cells as well.
Collapse
Affiliation(s)
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Haora, West Bengal, 711202, India
| | - Yakubu Magaji Yuguda
- Department of Science Laboratory Technology, Faculty of Sciences, Federal Polytechnic, Kaltungo, Gombe State, Nigeria
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, 11931, Jordan
| | - Avneet Kaur
- SGT College of Pharmacy SGT University, Gurgaon, Haryana, 122505, India
| | - Ankita Pati
- Department of Immunology and Rheumatology (IMS & SUM HOSPITAL), Siksha 'O' Anusandhan Deemed to be University, Jagamara, Bhubaneswar, Odisha, 751030, India
| | - Disha Mitra
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Calcutta, 700073, India
| | - Animikha Ghosh
- Department of Biotechnology School of Life Science and Biotechnology, Adamas University Barasat, Calcutta, 700126, India
| | - Debashis Banerjee
- Department of Biotechnology, Faculty of Science, Atmiya University, "Yogidham Gurukul", Kalawad Road, Rajkot, Gujarat, 360005, India
| | - Sudarshana Borah
- School of Pharmaceutical Sciences, University of Science and Technology, Baridua, Meghalaya, 793101, India
| | - Kamallochan Barman
- School of Pharmaceutical Sciences, University of Science and Technology, Baridua, Meghalaya, 793101, India
| | - Bhanita Das
- School of Pharmaceutical Sciences, University of Science and Technology, Baridua, Meghalaya, 793101, India
| | | | - Emir Šeherčehajić
- Faculty of Health Studies, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina
| | - Shivam Kumar
- School of Biological Science, University of Portsmouth, Portsmouth, PO1 2DY, England.
| |
Collapse
|
24
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
25
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022; 12:979154. [PMID: 36106097 PMCID: PMC9467452 DOI: 10.3389/fonc.2022.979154] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor acidity is one of the cancer hallmarks and is associated with metabolic reprogramming and the use of glycolysis, which results in a high intracellular lactic acid concentration. Cancer cells avoid acid stress major by the activation and expression of proton and lactate transporters and exchangers and have an inverted pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The shift in the tumor acid-base balance promotes proliferation, apoptosis avoidance, invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment resistance. For example, weak-base chemotherapeutic agents may have a substantially reduced cellular uptake capacity due to "ion trapping". Lactic acid negatively affects the functions of activated effector T cells, stimulates regulatory T cells, and promotes them to express programmed cell death receptor 1. On the other hand, the inversion of pH gradient could be a cancer weakness that will allow the development of new promising therapies, such as tumor-targeted pH-sensitive antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The regulation of tumor pH levels by pharmacological inhibition of pH-responsible proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor acidity. Buffering therapy does not counteract standard treatment methods and can be used in combination to increase effectiveness. However, the mechanisms of the anticancer effect of buffering therapy are still unclear, and more research is needed. We have attempted to summarize the basic knowledge about tumor acidity.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
27
|
Phycocyanin Ameliorates Colitis-Associated Colorectal Cancer by Regulating the Gut Microbiota and the IL-17 Signaling Pathway. Mar Drugs 2022; 20:md20040260. [PMID: 35447933 PMCID: PMC9030732 DOI: 10.3390/md20040260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Phycocyanin (PC) is a pigment-protein complex. It has been reported that PC exerts anti-colorectal cancer activities, although the underlying mechanism has not been fully elucidated. In the present study, azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice were orally administrated with PC, followed by microbiota and transcriptomic analyses to investigate the effects of PC on colitis-associated cancer (CAC). Our results indicated that PC ameliorated AOM/DSS induced inflammation. PC treatment significantly reduced the number of colorectal tumors and inhibited proliferation of epithelial cell in CAC mice. Moreover, PC reduced the relative abundance of Firmicutes, Deferribacteres, Proteobacteria and Epsilonbacteraeota at phylum level. Transcriptomic analysis showed that the expression of genes involved in the intestinal barrier were altered upon PC administration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the IL-17 signaling pathway was affected by PC treatment. The study demonstrated the protective therapeutic action of PC on CAC.
Collapse
|
28
|
Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, Wu QN, Li T, Meng Q, Lin JZ, Liu ZX, Pu HY, Ju HQ, Xu RH, Qiu MZ. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther 2022; 7:54. [PMID: 35221331 PMCID: PMC8882671 DOI: 10.1038/s41392-022-00889-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic enzymes have an indispensable role in metabolic reprogramming, and their aberrant expression or activity has been associated with chemosensitivity. Hence, targeting metabolic enzymes remains an attractive approach for treating tumors. However, the influence and regulation of cysteine desulfurase (NFS1), a rate-limiting enzyme in iron–sulfur (Fe–S) cluster biogenesis, in colorectal cancer (CRC) remain elusive. Here, using an in vivo metabolic enzyme gene-based clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library screen, we revealed that loss of NFS1 significantly enhanced the sensitivity of CRC cells to oxaliplatin. In vitro and in vivo results showed that NFS1 deficiency synergizing with oxaliplatin triggered PANoptosis (apoptosis, necroptosis, pyroptosis, and ferroptosis) by increasing the intracellular levels of reactive oxygen species (ROS). Furthermore, oxaliplatin-based oxidative stress enhanced the phosphorylation level of serine residues of NFS1, which prevented PANoptosis in an S293 phosphorylation-dependent manner during oxaliplatin treatment. In addition, high expression of NFS1, transcriptionally regulated by MYC, was found in tumor tissues and was associated with poor survival and hyposensitivity to chemotherapy in patients with CRC. Overall, the findings of this study provided insights into the underlying mechanisms of NFS1 in oxaliplatin sensitivity and identified NFS1 inhibition as a promising strategy for improving the outcome of platinum-based chemotherapy in the treatment of CRC.
Collapse
|
29
|
Yang M, Liu Q, Dai M, Peng R, Li X, Zuo W, Gou J, Zhou F, Yu S, Liu H, Huang M. FOXQ1-mediated SIRT1 upregulation enhances stemness and radio-resistance of colorectal cancer cells and restores intestinal microbiota function by promoting β-catenin nuclear translocation. J Exp Clin Cancer Res 2022; 41:70. [PMID: 35183223 PMCID: PMC8857837 DOI: 10.1186/s13046-021-02239-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background Resistance of colorectal cancer (CRC) cells to radiotherapy considerably contributes to poor clinical outcomes of CRC patients. Microarray profiling in this study revealed the differentially expressed forkhead box Q1 (FOXQ1) in CRC, and thus we aimed to illustrate the role of FOXQ1 in CRC by modulating stemness and radio-resistance of CRC cells. Methods CRC and adjacent normal tissues were collected from CRC patients, and the correlation between FOXQ1 expression and CRC prognosis was analyzed. Subsequently, we determined the expression of FOXQ1, sirtuin 1 (SIRT1) and β-catenin in CRC tissues and cell lines. The binding affinity between FOXQ1 and SIRT1 and that between SIRT1 and β-catenin were validated with luciferase reporter gene, Co-IP and ChIP assays. Following a metagenomics analysis of CRC intestinal microbiota, the effects of the FOXQ1/SIRT1/β-catenin axis on CRC stem cell phenotypes and radio-resistance was evaluated in vitro and in vivo through manipulation of gene expression. Besides, mouse feces were collected to examine changes in intestinal microbiota. Results FOXQ1 was highly expressed in CRC tissues and cells and positively correlated with poor prognosis of CRC patients. FOXQ1 overexpression contributed to resistance of CRC cells to radiation. Knockdown of FOXQ1 inhibited the stemness of CRC cells and reversed their radio-resistance. FOXQ1 enhanced the transcriptional expression of SIRT1, and SIRT1 enhanced the expression and nuclear translocation of β-catenin. Knockdown of FOXQ1 repressed SIRT1 expression, thus reducing the stemness and radio-resistance of CRC cells. Moreover, FOXQ1 knockdown suppressed CRC xenograft formation in xenograft-bearing nude mice through inhibiting SIRT1 and β-catenin to reduce the content of pathological bacteria that were up-regulated in CRC. Conclusion FOXQ1-mediated SIRT1 upregulation augments expression and nuclear translocation of β-catenin and benefits CRC-related intestinal pathological bacterial, thereby enhancing the stemness and radio-resistance of CRC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02239-4.
Collapse
|
30
|
Liu Z, Xu H, Weng S, Ren Y, Han X. Stemness Refines the Classification of Colorectal Cancer With Stratified Prognosis, Multi-Omics Landscape, Potential Mechanisms, and Treatment Options. Front Immunol 2022; 13:828330. [PMID: 35154148 PMCID: PMC8828967 DOI: 10.3389/fimmu.2022.828330] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
Background Stemness refers to the capacities of self-renewal and repopulation, which contributes to the progression, relapse, and drug resistance of colorectal cancer (CRC). Mounting evidence has established the links between cancer stemness and intratumoral heterogeneity across cancer. Currently, the intertumoral heterogeneity of cancer stemness remains elusive in CRC. Methods This study enrolled four CRC datasets, two immunotherapy datasets, and a clinical in-house cohort. Non-negative matrix factorization (NMF) was performed to decipher the heterogeneity of cancer stemness. Multiple machine learning algorithms were applied to develop a nine-gene stemness cluster predictor. The clinical outcomes, multi-omics landscape, potential mechanisms, and immune features of the stemness clusters were further explored. Results Based on 26 published stemness signatures derived by alternative approaches, we decipher two heterogeneous clusters, low stemness cluster 1 (C1) and high stemness cluster 2 (C2). C2 possessed a higher proportion of advanced tumors and displayed worse overall survival and relapse-free survival compared with C1. The MSI-H and CMS1 tumors tended to enrich in C1, and the mesenchymal subtype CMS4 was the prevalent subtype of C2. Subsequently, we developed a nine-gene stemness cluster predictor, which robustly validated and reproduced our stemness clusters in three independent datasets and an in-house cohort. C1 also displayed a generally superior mutational burden, and C2 possessed a higher burden of copy number deletion. Further investigations suggested that C1 enriched numerous proliferation-related biological processes and abundant immune infiltration, while C2 was significantly associated with mesenchyme development and differentiation. Given results derived from three algorithms and two immunotherapeutic cohorts, we observed C1 could benefit more from immunotherapy. For patients with C2, we constructed a ridge regression model and further identified nine latent therapeutic agents, which might improve their clinical outcomes. Conclusions This study proposed two stemness clusters with stratified prognosis, multi-omics landscape, potential mechanisms, and treatment options. Current work not only provided new insights into the heterogeneity of cancer stemness, but also shed light on optimizing decision-making in immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
31
|
Yang Y, Meng WJ, Wang ZQ. Cancer Stem Cells and the Tumor Microenvironment in Gastric Cancer. Front Oncol 2022; 11:803974. [PMID: 35047411 PMCID: PMC8761735 DOI: 10.3389/fonc.2021.803974] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) remains one of the leading causes of cancer-related death worldwide. Cancer stem cells (CSCs) might be responsible for tumor initiation, relapse, metastasis and treatment resistance of GC. The tumor microenvironment (TME) comprises tumor cells, immune cells, stromal cells and other extracellular components, which plays a pivotal role in tumor progression and therapy resistance. The properties of CSCs are regulated by cells and extracellular matrix components of the TME in some unique manners. This review will summarize current literature regarding the effects of CSCs and TME on the progression and therapy resistance of GC, while emphasizing the potential for developing successful anti-tumor therapy based on targeting the TME and CSCs.
Collapse
Affiliation(s)
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
32
|
Zhu C, Wang Z, Cai J, Pan C, Lin S, Zhang Y, Chen Y, Leng M, He C, Zhou P, Wu C, Fang Y, Li Q, Li A, Liu S, Lai Q. VDR Signaling via the Enzyme NAT2 Inhibits Colorectal Cancer Progression. Front Pharmacol 2021; 12:727704. [PMID: 34867333 PMCID: PMC8635240 DOI: 10.3389/fphar.2021.727704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Recent epidemiological and preclinical evidence indicates that vitamin D3 inhibits colorectal cancer (CRC) progression, but the mechanism has not been completely elucidated. This study was designed to determine the protective effects of vitamin D3 and identify crucial targets and regulatory mechanisms in CRC. First, we confirmed that 1,25(OH)2D3, the active form of vitamin D3, suppressed the aggressive phenotype of CRC in vitro and in vivo. Based on a network pharmacological analysis, N-acetyltransferase 2 (NAT2) was identified as a potential target of vitamin D3 against CRC. Clinical data of CRC patients from our hospital and bioinformatics analysis by online databases indicated that NAT2 was downregulated in CRC specimens and that the lower expression of NAT2 was correlated with a higher metastasis risk and lower survival rate of CRC patients. Furthermore, we found that NAT2 suppressed the proliferation and migration capacity of CRC cells, and the JAK1/STAT3 signaling pathway might be the underlying mechanism. Moreover, Western blot and immunofluorescence staining assays demonstrated that 1,25(OH)2D3 promoted NAT2 expression, and the chromatin immunoprecipitation assay indicated that the vitamin D receptor (VDR) transcriptionally regulated NAT2. These findings expand the potential uses of vitamin D3 against CRC and introduce VDR signaling via the enzyme NAT2 as a potential diagnostic and therapeutic target for CRC.
Collapse
Affiliation(s)
- Chaojun Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunqiu Pan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengxin Leng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peirong Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Abstract
The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.
Collapse
|
35
|
Qiu L, Yang X, Wu J, Huang C, Miao Y, Fu Z. HIST2H2BF Potentiates the Propagation of Cancer Stem Cells via Notch Signaling to Promote Malignancy and Liver Metastasis in Colorectal Carcinoma. Front Oncol 2021; 11:677646. [PMID: 34476209 PMCID: PMC8406628 DOI: 10.3389/fonc.2021.677646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background Growing evidence demonstrates that the initiation and progression of colorectal carcinoma (CRC) is related to the presence of cancer stem cells (CSCs). However, the mechanism through which the stem cell features of CRC cells are maintained is poorly understood. In this study, we identified the oncogenic histone cluster 2 H2B family member F (HIST2H2BF) and aimed to investigate the function of upregulated HIST2H2BF expression in maintaining the stem cell features of CRC cells, which accelerate the progression of CRC. Methods HIST2H2BF expression was quantified using real-time polymerase chain reaction, immunohistochemistry, and western blotting. The correlation between CpG island methylation status and HIST2H2BF re-expression was assessed through bisulfite sequencing polymerase chain reaction, methylation-specific polymerase chain reaction, and 5-Aza-dC treatment. Functional assays were performed on CRC cells and mice to investigate the HIST2H2BF-induced stem cell-like and cancer properties of CRC. Using the Notch pathway inhibitor FLI-06, the regulatory effect of HIST2H2BF on downstream Notch signaling was confirmed. Results HIST2H2BF was highly expressed in CRC tissues and cell lines. The reactivation of HIST2H2BF in CRC stems at least in part from the hypomethylated CpG islands. CRC patients with high HIST2H2BF expression have poor survival outcomes. Functional studies have shown that HIST2H2BF promotes CSC phenotype, malignancy, and liver metastasis through the activation of Notch signaling in CRC. Blockage of the Notch pathway reduced the stem cell-like and cancer properties. Conclusion Our study suggests that HIST2H2BF upregulation enhances the CSC phenotype, malignancy, and liver metastasis through the activation of Notch signaling in CRC. These results identified a new perspective on the mechanism by which the stem cell features of CRC cells are maintained and highlighted the potential novel therapeutic targets for CRC.
Collapse
Affiliation(s)
- Lei Qiu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang Tumor Hospital, Lianyungang Hospital Affiliated to Bengbu Medical University, Lianyungang, China
| | - Xiuwei Yang
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang Tumor Hospital, Lianyungang Hospital Affiliated to Bengbu Medical University, Lianyungang, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongchang Miao
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang Tumor Hospital, Lianyungang Hospital Affiliated to Bengbu Medical University, Lianyungang, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers (Basel) 2021; 13:cancers13174414. [PMID: 34503224 PMCID: PMC8430780 DOI: 10.3390/cancers13174414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary NCOR1 is a scaffold protein that interacts with multiple partners to repress gene transcription. NCOR1 controls immunometabolic functions in several tissues and has been recently shown to protect against experimental colitis in mice. Our laboratory has observed a pro-proliferative role of NCOR1 in normal intestinal epithelial cells. However, it is unclear whether NCOR1 is functionally involved in colon cancer. This study demonstrated that NCOR1 is required for colorectal cancer cell growth. Depletion of NCOR1 caused these cells to become senescent. Transcriptomic signatures confirmed these observations but also predicted the potential for these cells to become pro-invasive. Thus, NCOR1 plays a novel role in preventing cancer-associated senescence and could represent a target for controlling colon cancer progression. Abstract NCOR1 is a corepressor that mediates transcriptional repression through its association with nuclear receptors and specific transcription factors. Some evidence supports a role for NCOR1 in neonatal intestinal epithelium maturation and the maintenance of epithelial integrity during experimental colitis in mice. We hypothesized that NCOR1 could control colorectal cancer cell proliferation and tumorigenicity. Conditional intestinal epithelial deletion of Ncor1 in ApcMin/+ mice resulted in a significant reduction in polyposis. RNAi targeting of NCOR1 in Caco-2/15 and HT-29 cell lines led to a reduction in cell growth, characterized by cellular senescence associated with a secretory phenotype. Tumor growth of HT-29 cells was reduced in the absence of NCOR1 in the mouse xenografts. RNA-seq transcriptome profiling of colon cancer cells confirmed the senescence phenotype in the absence of NCOR1 and predicted the occurrence of a pro-migration cellular signature in this context. SOX2, a transcription factor essential for pluripotency of embryonic stem cells, was induced under these conditions. In conclusion, depletion of NCOR1 reduced intestinal polyposis in mice and caused growth arrest, leading to senescence in human colorectal cell lines. The acquisition of a pro-metastasis signature in the absence of NCOR1 could indicate long-term potential adverse consequences of colon-cancer-induced senescence.
Collapse
|
37
|
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021; 9:641469. [PMID: 33732706 PMCID: PMC7957022 DOI: 10.3389/fcell.2021.641469] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a disease which frequently has a poor prognosis. Although multiple therapeutic strategies have been developed for various cancers, including chemotherapy, radiotherapy, and immunotherapy, resistance to these treatments frequently impedes the clinical outcomes. Besides the active resistance driven by genetic and epigenetic alterations in tumor cells, the tumor microenvironment (TME) has also been reported to be a crucial regulator in tumorigenesis, progression, and resistance. Here, we propose that the adaptive mechanisms of tumor resistance are closely connected with the TME rather than depending on non-cell-autonomous changes in response to clinical treatment. Although the comprehensive understanding of adaptive mechanisms driven by the TME need further investigation to fully elucidate the mechanisms of tumor therapeutic resistance, many clinical treatments targeting the TME have been successful. In this review, we report on recent advances concerning the molecular events and important factors involved in the TME, particularly focusing on the contributions of the TME to adaptive resistance, and provide insights into potential therapeutic methods or translational medicine targeting the TME to overcome resistance to therapy in clinical treatment.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|