1
|
Liu WY, Yao CS, Li YW, Gao X, Guo LS, An LK. Design and synthesis of phenanthridinone and phenanthridine derivatives and their radiosensitizing activity. Bioorg Med Chem 2025; 123:118161. [PMID: 40120150 DOI: 10.1016/j.bmc.2025.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
To find novel radiosensitizers, a series of phenanthridinone and phenanthridine derivatives were designed and synthesized based on the structural simplification strategy from the natural product oxynitidine scaffold. Colony formation assays indicated that the phenanthridine derivative B9 showed strong radiosensitizing activity in colorectal cancer HCT116 cells in a concentration- and dose-dependent manner. Further investigations revealed that B9 could increase intracellular ionizing radiation-induced ROS levels and DNA damage, and induce cancer cell apoptosis and cycle arrest at G2/M phase. These results suggest that phenanthridine chemotype is a novel scaffold for the discovery of radiosensitizers.
Collapse
Affiliation(s)
- Wen-Ya Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan-Sheng Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue-Wen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Shuang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|
2
|
Gong Y, Cheng Y, Zeng F, Liu X, Yang Y, Zhang F, Wen C, Yang F, Li H, He Y, Ni B, Xu Y, Xiao L, Zhang Q, Zhou L, Zheng J, Chen W. A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse. Biomaterials 2025; 317:123068. [PMID: 39813968 DOI: 10.1016/j.biomaterials.2024.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse. Coincidently, mounting evidence shows that radiotherapy (RT) can trigger NK cell anti-tumor immunity, though its mechanisms have never been completely elucidated. Herein, we uncover that RT can induce immunogenic cell death and activate cGAS-STING pathway in HCC cells to elicit NK cell anti-tumor immunity. However, RT is also revealed to enhance autophagy and CD73 expression in HCC cells, as well as neutrophil extracellular traps (NETs) formation, which largely limits RT-induced activation of NK cell anti-tumor immunity. Therefore, a cocktail of autophagy inhibitor 3-methyladenine, CD73 inhibitor ARL 67156 trisodium and NETs lyase DNase I may sensitize RT to reinvigorate NK cell anti-tumor immunity and thus prevent HCC relapse postresection. To minimize therapy-related side effects, a nanocomposite powder encapsulating such a triple-drug cocktail is developed. This powder can rapidly form adhesive hydrogel in situ after applied to surgical margin, consequently fulfilling liver-localized sustained drug delivery. Importantly, it can sensitize RT to reinstate NK cell anti-tumor immunity to combat postoperative HCC relapse in Heap1-6-HCC murine model. Besides, this powder can also generate rapid hemostasis in rat and porcine models. Altogether, this work provides an innovative strategy to thwart postoperative HCC relapse and bleeding.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Cheng
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fan Yang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yizhan He
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Beibei Ni
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Xu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lan Xiao
- Department of Gynecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wenjie Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Zeng Y, Wang X, Hu J, Tian C, Liu R, Chen X, Huang L, Liang X, Wang X, Fan H, Zhang H, Lu Y. LZTS3 represses tumorigenesis and radioresistance via CK1δ and β-TrCP-mediated ubiquitination pathway in lung cancer. Cell Signal 2025; 129:111655. [PMID: 39956246 DOI: 10.1016/j.cellsig.2025.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Radioresistance is one of the main causes for local treatment failure in lung cancer. Nevertheless, the potential mechanisms of radioresistance in lung cancer have not been elucidated completely. Here, we discover a carcinoma-inhibiting protein called leucine zipper tumor suppressor 3 (LZTS3), which is low-expressed and related to adverse outcome in lung cancer. Moreover, our studies demonstrate that LZTS3 restrains cell proliferation and radioresistance in vitro and in vivo. Mechanistically, protein kinase CK1δ interacts with LZTS3, resulting in E3 ubiquitin ligase β-TrCP recognizes and binds to LZTS3. Thus, LZTS3 is degraded by the ubiquitin-proteasome pathway. We also identify two conserved degrons (DSGRNS and DSGRAS) are essential for the ubiquitinated degradation of LZTS3 by CK1δ and β-TrCP. More importantly, we detect that the CK1δ and β-TrCP-mediated degradation of LZTS3 facilitate the cell growth, proliferation and radioresistance in lung cancer. Collectivelly, our results suggest that LZTS3 regulates tumorigenesis and radioresistance in lung cancer depend on a CK1δ and β-TrCP-mediated ubiquitin-proteasome pathway. LZTS3 may be a new molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology,Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of medical oncology, Sir run run shaw hospital, School of medicine, Zhejiang university, China
| | - Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoyan Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of medical oncology, Sir run run shaw hospital, School of medicine, Zhejiang university, China
| | - Hongjie Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hu Bei 430022, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Li Y, Yang G, Li Q, Zhang Y, Zhang S, Zhou T, Wang X, Liu F, Miao Z, Qi Y, Zhang L, Liu Y, Su H. Guiqi Baizhu decoction enhances radiosensitivity in non-small cell lung cancer by inhibiting the HIF-1α/DNA-PKcs axis-mediated DNA repair. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156591. [PMID: 40054178 DOI: 10.1016/j.phymed.2025.156591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Radiotherapy is one of the main treatments for non-small cell lung cancer (NSCLC), and radiosensitivity is a determinant of its efficacy. Therefore, enhancing the radiosensitivity is of great significance to improve the clinical efficacy of non-small cell lung cancer (NSCLC). PURPOSE This study intended to investigate the radiosensitisation effect and mechanism of Guiqi Baizhu decoction (GQBZD) on non-small cell lung cancer (NSCLC) and the role of hypoxia-inducible factor-1 alpha (HIF-1α)/DNA-dependent protein kinase catalytic subunit (DNA-PKcs) axis-mediated DNA non-homologous end joining (NHEJ) repair in NSCLC radiotherapy. STUDY DESIGN In vivo experimental model was Lewis subcutaneous transplantation tumor model of in C57 black 6 (C57BL/6) mice, and in vitro experimental models were A549, H1299 and H460 cells. METHODS In vivo experimental model was Lewis subcutaneous transplantation tumor model of in C57 black 6 (C57BL/6) mice. After the model was successfully established, the tumor was irradiated locally with 4 Gy X-ray, and 10.465 g/kg Guiqi Baizhu Decoction (GQBZD) was administered by gavage on the second day after irradiation for a total of 10 days. The morphological changes in tumour tissues were observed by HE staining, Ki67 levels in tumour tissues were detected by immunohistochemistry, the apoptosis in tumour cells were detected by Tunel staining. In vitro experimental models were different NSCLC cells (A549, H1299 and H460), irradiated by 2 Gy X-rays and then intervened with 5%, 10% and 20% Guiqi Baizhu Decoction (GQBZD)-containing serum for 24 h. A549 stably-transformed cell lines knocking down and overexpressing HIF-1α were also constructed by lentiviral transfection. The cell proliferation was detected by CCK-8 and clone formation, the apoptosis and cell cycle was detected by flow cytometry. Network pharmacology and transcriptomics to investigate key targets and pathways of GQBZD effects on NSCLC irradiation, further validated by immunofluorescence and Western blot. RESULTS In vivo experiments confirmed that GQBZD combined with irradiation could inhibit the growth of Lewis subcutaneous transplantation tumor, reduce the expression of Ki67 and promote the apoptosis of tumour cells. In vitro experiments confirmed that GQBZD combined with irradiation inhibited the proliferation of different NSCLC cells, promoted NSCLC cell apoptosis and G2/M-phase arrest, and induced the expression of phosphorylated histone H2AX (γ-H2AX) in NSCLC cells, which showed a good radiosensitisation effect. Mechanistically, GQBZD exerts its radiosensitisation effect on NSCLC mainly through the HIF-1α signalling pathway. Meanwhile, under irradiation conditions, the expression of HIF-1α and DNA-PKcs were positively correlated, and HIF-1α had a regulatory effect on DNA-PKcs, promoting DNA-PKcs-dependent non-homologous end joining (NHEJ) repair. In addition, GQBZD combined irradiation down-regulated the expression of HIF-1α, DNA-PKcs, and NHEJ repair-related proteins in NSCLC cells, while reversing the expression of HIF-1α, DNA-PKcs, and NHEJ repair-related proteins in overexpressing HIF-1α A549 cell, thereby enhancing radiosensitivity in NSCLC. CONCLUSION This study provides an in-depth exploration of the radiosensitisation effect of GQBZD and provides an important experimental basis for the study of Chinese medicine in the field of cancer radiosensitisation, and further extends the extensibility of GQBZD on the basis of the previous study.
Collapse
Affiliation(s)
- Yangyang Li
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Gengqiang Yang
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Qiyang Li
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Yiming Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Shangzu Zhang
- Hubei University of Chinese Medicine,Wuhan 430065, PR China
| | - Ting Zhou
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Xin Wang
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Fuxian Liu
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Zhiming Miao
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Yafeng Qi
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China
| | - Liying Zhang
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China.
| | - Yongqi Liu
- Gansu University of Chinese Medicine, Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Lanzhou 730000, PR China; Key Laboratory of Dunhuang Medicine and Translational Education Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China.
| | - Haixiang Su
- Gansu Provincial Cancer Hospital, Gansu Provincial Institute of Medical Sciences, Lanzhou, 730050,PR China.
| |
Collapse
|
5
|
Li J, Tan C, Yang J, Xiang Z, Wang Y, Shen M, Zhu S, He T, Liang X, Shao B, Li H, Li Z, Liu L, Gong C. Radiotherapy-immunomodulated nanoplatform triggers both hypoxic and normoxic tumor associated antigens generation for robust abscopal effect and sustained immune memory. Biomaterials 2025; 316:123005. [PMID: 39700533 DOI: 10.1016/j.biomaterials.2024.123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Radiotherapy (RT) induced abscopal effect has garnered substantial attention, nevertheless, it is rarely observed in clinics, due to the tumor hypoxia-related radioresistance, inadequate immune stimulation, and immunosuppressive tumor microenvironment. Herein, we construct a radiotherapy-immunomodulated nanoplatform (THUNDER), which synergizes with RT and greatly triggers the generation of both hypoxic and normoxic tumor cells-derived tumor-associated antigens (TAAs), resulting in robust abscopal effect and sustained immune memory. THUNDER exhibits prolonged blood circulation and high tumor retention capacity. When combined with RT, THUNDER effectively destructs both hypoxic and normoxic tumor cells, facilitating the substantial release of TAAs from both cell types, which further promotes the maturation of dendritic cells (DCs), thus forming powerful immune stimulation and initiating systemic anti-tumor immunity. In murine models, the combination of THUNDER and RT efficiently suppresses the growth of triple-negative breast cancer. In addition, the further combination with PD-L1 blockade yields noteworthy suppression of distant metastasis and tumor recurrence, resulting in a 5.2-fold augmentation in CD8+ T lymphocytes within distant tumors and a 2.8-fold increase in effector memory T cells in the spleen. In conclusion, the radiotherapy-immunomodulated nanoplatform presents an effective strategy for combating tumor metastases and recurrence by eliciting both hypoxic and normoxic TAAs, offering a significant avenue for radioimmunotherapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Head and Neck Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Chenfeng Tan
- Department of Head and Neck Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiling Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shunyao Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuqi Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haijun Li
- Department of Head and Neck Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhike Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Liu
- Department of Head and Neck Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Yang XX, Luo H, Zhang JJ, Ge H, Ge L. Clinical translation of ultra-high dose rate flash radiotherapy: Opportunities, challenges, and prospects. World J Radiol 2025; 17:105722. [DOI: 10.4329/wjr.v17.i4.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Ultra-high dose rate flash radiotherapy (FLASH-RT) has attracted wide attention in the field of radiotherapy in recent years. For FLASH-RT, radiation is delivered at a very high dose rate [usually thousands of times compared with conventional radiotherapy (CONV-RT)] in an extremely short time. This novel irradiation technique shows a protective effect on normal tissues, also known as the flash effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor-killing efficacy. As basic research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the future translation of this technology in clinic.
Collapse
Affiliation(s)
- Xiang-Xiang Yang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou 450003, Henan Province, China
| | - Jia-Jun Zhang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Heng Ge
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liang Ge
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
7
|
Thomas R, Zhang D, Cronkite CA, Thomas R, Singh SK, Bronk LF, Morales RF, Duman JG, Grosshans DR. Subcellular functions of tau mediate repair response and synaptic homeostasis in injury. Mol Psychiatry 2025:10.1038/s41380-025-03029-6. [PMID: 40269186 DOI: 10.1038/s41380-025-03029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Injury responses in terminally differentiated cells such as neurons are tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces an increase in phosphorylated tau in the nucleus where it directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX phosphorylation after irradiation, indicating that tau may play an important role in the neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels, a positive regulator of protein translation after irradiation. This initial response cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Downstream, the novel object recognition test showed a decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity contained increased delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau's previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within neurons. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.
Collapse
Affiliation(s)
- Riya Thomas
- MD Anderson-UT Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Die Zhang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A Cronkite
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rintu Thomas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence F Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo F Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA). Universidad Bernardo O'Higgins, Santiago, Chile
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Xie D, Yan X, Shang W, Ren H, Wen W, Tang BZ, Su H. Organic Radiosensitizer with Aggregation-Induced Emission Characteristics for Tumor Ablation through Synergistic Apoptosis and Immunogenic Cell Death. ACS NANO 2025; 19:14972-14986. [PMID: 40201936 DOI: 10.1021/acsnano.5c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Inspired by the clinical application of thermotherapy to promote the efficacy of radiotherapy, this study demonstrates the multimodal diagnostic application of pure organic nanoparticles in the combined treatment of tumors through imaging and photothermal properties. The nanoparticles developed in this study demonstrated unique properties and multiple functionalities, including excellent photostability and thermostability, strong fluorescence emission in the near-infrared-II (NIR-II) region, extremely high photothermal conversion efficiency, good biocompatibility, significant radiosensitizing properties, and effective tumor site accumulation. In vitro and in vivo evaluations demonstrated that these nanoparticles are ideal candidates for synergistic photothermal radiotherapy guided by NIR-II fluorescence, NIR-I photoacoustic, and photothermal trimodal imaging. They act as radiosensitizers by alleviating the hypoxic tumor microenvironment, modulating the cell cycle, and inducing apoptosis and immunogenic cell death during radiotherapy, which may provide a potential approach for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Dalu Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhao Shang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hao Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei Wen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
He S, Huang Y, Liu J, Liu H, Chen Y, Zou T, Sun J, Wang W, Wei H, Yu CY. A Metformin-Based Multifunctional Nanoplatform as a DNA Damage Amplifier for Maximized Radio-Immunotherapy to Overcome Radiotherapy Resistance. ACS NANO 2025; 19:14848-14864. [PMID: 40207668 DOI: 10.1021/acsnano.4c18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Radiotherapy (RT) has been highlighted to be an effective strategy for antitumor immunity activation by causing direct DNA damages, but it generally suffers from low response rates due to the compromised cytosolic DNA (cDNA) recognition by cyclic GMP-AMP synthase (cGAS). Simultaneous DNA repair and clearance system regulation for enhanced cDNA accumulation is a useful approach to improve immune response rates, which remains seldom reported to our knowledge. Here, we report the construction of a metformin (MET)-based multifunctional nanocomplex, CS-MET/siTREX1 (CSMT), consisting of biguanide-decorated CS (CS-MET) as the vector and 3'-5' DNA exonuclease TREX1 siRNA (siTREX1) as the therapeutic gene for RT-induced antitumor immunity enhancement by amplifying the initial DNA damage signals. The uniqueness of this study is the development of CSMT as a specific DNA damage amplifier to promote cDNA accumulation for maximizing radio-immunotherapy and circumventing RT resistance. Specifically, the CSMT nanocomplexes show not only enhanced gene transfection efficiency by MET modification but also synergistic therapeutic effects including MET's inhibition on DNA repair and siTREX1's attenuation on cDNA clearance, which leads to the greatest inhibitory effect in a Hepa1-6 proximal/distal tumor model with a high tumor growth inhibition (TGI) value of 99.1% for the primary tumor and significantly compromised distal tumor growth by inducing immunogenic cell death (ICD), promoting tumor-associated neutrophil (TAN) polarization, and stimulating tumor-specific memory T-cell generation. Overall, the CSMT nanocomplexes developed herein hold great translatable promises for overcoming RT resistance in clinics.
Collapse
Affiliation(s)
- Shuangyan He
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun Huang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongdu Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yalan Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting Zou
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jian Sun
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - WuZhou Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hua Wei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cui-Yun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
10
|
Zhao H, Gao S, Han Y, Xie D, Xuan L, Huang X, Luo J, Ran Q, Li G, Guo H, Hu W, Jia J, Liu X, Liu Y, Tan J, Bai C, Gu Y, Ma T, Li Z, Guan H, Huang R, Zhou PK. Conversion of Ku80 K568 crotonylation to SUMOylation facilitates DNA non-homologous end joining and cancer radioresistance. Signal Transduct Target Ther 2025; 10:127. [PMID: 40254688 PMCID: PMC12009988 DOI: 10.1038/s41392-025-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Chemo-/radioresistance of malignant tumors hampers cancer control and increases patient mortality. Efficient repair of damaged DNA is critical for the maintenance of genomic integrity and fidelity of genetic information. In reverse, increased DNA repair capability in cancer cells contributes to chemo-/radioresistance of malignant tumors. DNA double-strand break (DSB) is the most serious DNA damage and is also the principal molecular basis of radiotherapy. Upon DNA damage, the Ku80 is recruited and forms a critical DNA-PK complex at the DSB sites with Ku70 and the catalytic subunit (DNA-PKcs) to initiate DNA repair. How DNA-PK is assembled and activated is not fully understood. Based on the identification of radiation-reduced Ku80 K568 crotonylation through quantitative global lysine crotonylome analysis, we reveal that Ku80 K568 is crotonylated by p300-CBP-associated factor (PCAF). Upon DNA damage, the K568cr is decrotonylated by HDAC8 (Histone deacetylase 8). Decrotonylation of K568cr empties this site for the subsequent SUMOylation of Ku80 by CBX4. The conversion of Ku80 from K568 crotonylation to SUMOylation facilitates the assembly of DNA-PK complex and autophosphorylation of DNA-PKcs S2056, consequently activating the DSB repair. Moreover, mutation disrupting the post-translational modification (PTM) of Ku80 K568 site sensitizes cancer cells to radiotherapy in tumor-bearing nude mice models. This study elucidates the conversion model between two different forms of PTMs in the regulation of DNA-PK complex assembly and DSB repair, highlighting this model's potential in controlling chemo-/radioresistance of malignant tumors, as well as expands the atlas of therapeutic targets.
Collapse
Affiliation(s)
- Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lihui Xuan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Xin Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jinhua Luo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Gang Li
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- School of Public Health, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Hejiang Guo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weixiang Hu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- School of Public Health, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Xiaochang Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuhao Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jinpeng Tan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- School of Public Health, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yongqing Gu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital/Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
- School of Public Health, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China.
| |
Collapse
|
11
|
Iwata S, Noguchi R, Osaki J, Adachi Y, Shiota Y, Osaki S, Nishino S, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-PS2-C1: a novel cell line of high-grade pleomorphic spindle cell sarcoma, most consistent with myxofibrosarcoma. Hum Cell 2025; 38:93. [PMID: 40253665 DOI: 10.1007/s13577-025-01217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Pleomorphic sarcoma (PS) is a heterogeneous group of malignant mesenchymal tumors that lack specific histological differentiation. PS is characterized by genetic instability and diversity and unique histological features such as pronounced morphologic pleomorphism. PS is one of the most common soft tissue sarcomas. Complete surgical resection remains the only curative treatment and is often combined with neoadjuvant radiotherapy. Effective systemic chemotherapy is yet to be established, and PS frequently recurs locally and metastasizes to the lungs. Patient-derived cancer cell lines are invaluable tools for basic and preclinical research for developing novel chemotherapies. Herein, we report a high-grade pleomorphic spindle cell sarcoma, most consistent with myxofibrosarcoma cell line, NCC-PS2-C1, which was derived from a primary tumor specimen. NCC-PS2-C1 cells exhibited a range of copy number alterations. This cell line demonstrated consistent proliferation, spheroid formation, and invasive capabilities in vitro. Drug screening using NCC-PS2-C1 cells revealed that cobimetinib, crenolanib, and ixazomib were effective against PS. In conclusion, we established NCC-PS2-C1 cells from primary tumors of PS. This cell line is a valuable resource for developing novel chemotherapies.
Collapse
Affiliation(s)
- Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1 - 8- 1 Inohana, Chuo-ku, Chiba-Shi, 260 - 0856, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Yomogi Shiota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Shuhei Osaki
- Division of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Shogo Nishino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1 - 8- 1 Inohana, Chuo-ku, Chiba-Shi, 260 - 0856, Japan
| | - Akira Kawai
- Division of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5 - 1- 1 Tsukiji, Chuo-ku, Tokyo, 104 - 0045, Japan.
| |
Collapse
|
12
|
Zhang Z, Li L, Ge Y, Chen A, Diao S, Yang Y, Chen Q, Zhou Y, Shao J, Meng F, Yu L, Tian M, Qian X, Lin Z, Xie C, Liu B, Li R. Verteporfin-Mediated In Situ Nanovaccine Based on Local Conventional-Dose Hypofractionated Radiotherapy Enhances Antitumor and Immunomodulatory Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413387. [PMID: 40231790 DOI: 10.1002/advs.202413387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Indexed: 04/16/2025]
Abstract
In situ radiotherapy is the most successful cytotoxic therapy available for the treatment of solid tumors, while high-dose radiotherapy per fraction is not yet widely and reliably used. To some extent, the major considerations of the disappointing results are on the risk of high-dose irradiation-induced damage to the surrounding normal tissues and the difficulty in distant metastasis control. To break these restraints, a gelatinase-responsive amphiphilic methoxypolyethyleneglycol-PVGLIG-polycaprolactone (mPEG-PVGLIG-PCL) nanoparticles' loading verteporfin (N@VP), a special photosensitizer that can also be excited by X-rays to produce cytotoxic singlet oxygen and greatly enhance radiotherapy efficacy, is prepared in this study. Herein, it is shown that the formed N@VP combined with conventional-dose radiation therapy (RT, 2 Gy (gray, a radiation dose unit)) can realize an antitumor effect no less than high-dose RT (8 Gy) and minimize radiation dose necessary to achieve local tumor control. Moreover, this radiosensitive nanosystem can exert excellent systemic antitumor immunity and abscopal effect, providing a preferable "in situ vaccine" strategy based on conventional-dose RT to achieve efficient systemic management of distant tumor metastasis. When combined with immunotherapy, this novel strategy for radiosensitization results in better immunotherapy sensitivity by stimulating significant immunogenic tumor cell death and synergistic antitumor immune responses.
Collapse
Affiliation(s)
- Zhifan Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuchen Ge
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Anni Chen
- Nanjing International Hospital, Medical School of Nanjing University, Nanjing, 210019, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yueling Yang
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Qianyue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Yingling Zhou
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jie Shao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Manman Tian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Rutian Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
13
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025:10.1038/s41388-025-03408-x. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Gou P, Fang C, Xu M, Zhang D, Wu X, Zhang L, Li X, Li M, Gan L, Luo J, Cui H, Liang P. The dual HDAC/PI3K inhibitor CUDC-907 inhibits the growth and proliferation of MYC-driven Group 3 medulloblastoma. Cell Death Discov 2025; 11:172. [PMID: 40229260 PMCID: PMC11997184 DOI: 10.1038/s41420-025-02470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
Metastatic Group 3 medulloblastoma (G3 MB) have been shown in several studies to be very high risk, particularly those harboring MYC amplification. More effective therapies are especially important for these patients. CUDC-907, a novel dual inhibitor targeting the MYC upstream pathway (HDAC/PI3K), shows significant antitumor efficacy across multiple cancer types. However, the antitumor effects and underlying mechanisms of CUDC-907 in MB, particularly in very high-risk MB, remain unexplored. In this study, we showed that MYC amplified G3 MB cells, patient-derived organoids and xenograft models were sensitive to CUDC-907. CUDC-907 inhibited MYC expression through the HDAC and PI3K pathways, and then induced G0/G1 phase arrest through the MYC-P21/P27-CDKs/cyclins axis. Furthermore, when CUDC-907 was combined with chemotherapeutic drug cisplatin, G0/G1 phase blocking effect was further enhanced. CUDC-907 in combination with radiotherapy (RT) inhibited DNA damage repair and increased DNA damage. These findings indicate that CUDC-907, either as a monotherapy or in combination with chemoradiotherapy, represents a promising therapeutic strategy for MYC amplified G3 MB, potentially influencing future clinical trials targeting this patient population.
Collapse
Affiliation(s)
- Pan Gou
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Chencheng Fang
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Man Xu
- Jinfeng Laboratory, Chongqing, China
| | - Dandan Zhang
- Jinfeng Laboratory, Chongqing, China
- Medical Research Institute, State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuanxuan Wu
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Li Zhang
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Xiao Li
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Man Li
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Lu Gan
- Jinfeng Laboratory, Chongqing, China
| | - Jinjin Luo
- Jinfeng Laboratory, Chongqing, China
- Medical Research Institute, State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongjuan Cui
- Jinfeng Laboratory, Chongqing, China.
- Medical Research Institute, State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
| | - Ping Liang
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China.
| |
Collapse
|
15
|
Ali I, Xu F, Peng Q, Qiu J. The dilemma of nuclear mechanical forces in DNA damage and repair. Biochem Biophys Res Commun 2025; 758:151639. [PMID: 40121966 DOI: 10.1016/j.bbrc.2025.151639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Genomic stability, encompassing DNA damage and repair mechanisms, plays a pivotal role in the onset of diseases and the aging process. The stability of DNA is intricately linked to the chemical and mechanical forces exerted on chromatin, particularly within lamina-associated domains (LADs). Mechanical stress can induce DNA damage through the deformation and rupture of the nuclear envelope, leading to DNA bending and cleavage. However, DNA can evade such mechanical stress-induced damage by relocating away from the nuclear membrane, a process facilitated by the depletion of H3K9me3-marked heterochromatin and its cleavage from the lamina. When DNA double-stranded breaks occur, they prompt the rapid recruitment of Lamin B1 and the deposition of H3K9me3. Despite these insights, the precise mechanisms underlying DNA damage and repair under mechanical stress remain unclear. In this review, we explore the interplay between mechanical forces and the nuclear envelope in the context of DNA damage, elucidate the molecular pathways through which DNA escapes force-induced damage, and discuss the corresponding repair strategies involving the nuclear cytoskeleton. By summarizing the mechanisms of force-induced DNA damage and repair, we aim to underscore the potential for developing targeted therapeutic strategies to bolster genomic stability and alleviate the impacts of aging and disease.
Collapse
Affiliation(s)
- Iqra Ali
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Fangning Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
16
|
Andel D, Nouwens AJ, Klaassen S, Laoukili J, Viergever B, Verheem A, Intven MPW, Zandvliet M, Hagendoorn J, Borel Rinkes IHM, Kranenburg O. Rational design of alternative treatment options for radioresistant rectal cancer using patient-derived organoids. Br J Cancer 2025:10.1038/s41416-025-02989-4. [PMID: 40204947 DOI: 10.1038/s41416-025-02989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Resistance to radiation therapy is a common challenge in the field of oncology. Cancer cells with an increased ability to effectively repair DNA or cells with higher levels of antioxidants are more resistant to radiation. As cancer cells rely on these traits for survival, they may offer vulnerabilities that could be exploited. METHODS In the current study, rectal cancer organoids that showed different responses to radiation treatment were identified. RNA sequencing was used to compare radioresistant and radiosensitive organoids. In vitro combination drug screens were performed. The selection of drugs was guided by the RNA sequencing results. RESULTS Radioresistant organoids exhibited superior transcriptional adaptability and activated more DNA repair pathways when irradiated. Additionally, radioresistant organoids displayed enhanced antioxidant metabolism, including pathways related to the detoxification of reactive oxygen species and the synthesis of glutathione. Combinatorial drug screens identified the combination of RRx-001 (an inducer of oxidative stress) with GCLC inhibitor BSO as a highly effective and synergistic drug combination in killing radioresistant organoids. CRISPR-CAS-mediated knockout of GCLC sensitised organoids to RRx-001. CONCLUSION Combining RRx-001 with the inhibition of GCLC may be a promising alternative treatment strategy in radioresistant rectal cancer.
Collapse
Affiliation(s)
- D Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - A J Nouwens
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - S Klaassen
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - J Laoukili
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - B Viergever
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - A Verheem
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - M P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - M Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - I H M Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
| | - O Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Aishwarya J, Das RP, Barik A, Kunwar A. Synthetic selenomelanin nanoparticles radio-sensitize non-melanocytic lung cancer (A549) cells by promoting G2/M arrest. Colloids Surf B Biointerfaces 2025; 252:114680. [PMID: 40245569 DOI: 10.1016/j.colsurfb.2025.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Recent studies have postulated the natural existence of selenomelanin and its role in the radio-protection of healthy cells. The present study aimed to understand its radio-modulatory activity in non-melanocytic cancerous (A549) cells of lung origin. Briefly, selenomelanin was synthesized under laboratory conditions following the previously reported methodology. The various spectroscopic (electron paramagnetic resonance, X-ray photoelectron spectroscopy, atomic absorption spectroscopy, transmission electron microscopy and dynamic light scattering) analyses confirmed the formation of selenomelanin nanoparticles. The short-term (72 h) and long-term (14 days) toxicity profiling of selenomelanin by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and clonogenic assays respectively revealed its half maximal inhibitory concentrations (IC50) of 72.03 ± 7.13 μg/ml and 0.85 ± 0.16 μg/ml respectively in A549 cells and of 81.56 ± 1.63 μg/ml and > 5 μg/ml respectively in healthy lung fibroblast (WI26) cells. Further, pre-treatment of selenomelanin (at concentrations non-toxic for WI26 cells) selectively augmented the radiosensitivity of A549 cells. Finally, mechanistic investigations in A549 cells revealed that selenomelanin increased the levels of reactive oxygen species, DNA damage and modulated the phospho-levels of CHK1 and CHK2 (effectors of cell cycle arrest) in the irradiated cells to favour G2/M arrest followed by cleavage of caspase 3 (effector of apoptosis). Together, the present study proposes the novel application of selenomelanin as a radiosensitizer to enhance the efficacy of radiotherapy in cancerous cells of lung origin.
Collapse
Affiliation(s)
- J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay 400085, India; Homi Bhabha National Institute, Anushaktinagar 400094, India
| | - Ram Pada Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay 400085, India
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay 400085, India; Homi Bhabha National Institute, Anushaktinagar 400094, India.
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay 400085, India; Homi Bhabha National Institute, Anushaktinagar 400094, India.
| |
Collapse
|
18
|
Yang J, Cui T, Zhang Y, Chen G, Wang X, Sun J, Zhang A, Li G. Breaking barriers: harnessing hypofractionated radiotherapy to transform outcomes in low tumor mutation burden stage III non-small cell lung cancer - a retrospective study. Front Immunol 2025; 16:1557154. [PMID: 40270970 PMCID: PMC12014550 DOI: 10.3389/fimmu.2025.1557154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Background Non-Small Cell Lung Cancer (NSCLC) patients with low tumor mutational burden (TMB) showed low sensitive to conventional fractionated radiotherapy in our previous study. This study aimed to evaluate the efficacy and safety of hypofractionated radiotherapy (HFRT) in locally advanced NSCLC patients with low-TMB compared to conventional fractionated radiotherapy (CFRT). Methods We retrospectively analyzed clinical outcomes of 74 locally advanced NSCLC patients with low-TMB undergoing definitive radiotherapy from January 2017 to July 2023, with 31 patients received HFRT (received radiation doses of >2Gy and ≤5 Gy per fraction) and 43 received CFRT (received radiation doses of 1.8-2 Gy per fraction). Progression-free survival (PFS), overall survival (OS) and objective response rate (ORR) to radiotherapy was analyzed in the two groups. Univariate analysis was performed to assess the impact of clinical characteristics on PFS. We also analyzed PFS in subgroups receiving HFRT or CFRT combined with immunotherapy and chemotherapy. Results Survival analysis revealed the median PFS of 13 months in the HFRT group was significantly better than the 10 months in the CFRT group (p = 0.024). The 6-month and 12-month PFS rates were 80.6% and 61.3% for the HFRT group, versus 81.4% and 39.5% for the CFRT group, respectively. Median OS was 27 months in the HFRT group and 20 months in the CFRT group (p = 0.079). There were no statistically significant differences in major adverse events between the HFRT and CFRT groups (all p>0.05). In the subgroup receiving combined immunotherapy and chemotherapy, the median PFS was 10 months in the HFRT group and 9 months in the CFRT group (p = 0.092). Conclusion HFRT was superior to CFRT in prolonging PFS for patients with low-TMB locally advanced NSCLC. It was a safely and effective approach for these patients and was worth further prospective studies with larger sample sizes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anmei Zhang
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical
University), Chongqing, China
| | - Guanghui Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical
University), Chongqing, China
| |
Collapse
|
19
|
Gong L, Liu Y, Wang J, Zhao Z, Duan W, Xiao Y, Peng H, Zhao L, Khouchani M, Abdelmajid T, Aittahssaint N, He T, Jiang Z, Li J. miR-208a-3p Targets PPP6C to Regulate the Progression of Radiation-Induced Pneumonia. Antioxid Redox Signal 2025. [PMID: 40197027 DOI: 10.1089/ars.2023.0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Aims: Radiation-induced pneumonia (RP) is a common complication after radiotherapy for clinical thoracic tumors, and increasing evidence suggests that miRNAs have potential value in regulating radiation-induced lung injury. However, the potential mechanism is still obscure. Here, we evaluated the miRNAs-dependent mechanism involved in the progression of RP. Results: Our data showed that mmu-miR-208a-3p was consistently highly expressed in the lung tissue of irradiated mice. In vitro studies demonstrated that the expression of miR-208a-3p in cells was significantly increased after X-ray irradiation. Further mechanism studies indicated that radiation-induced upregulation of miR-208a-3p promoted inflammatory responses by suppressing the expression of protein phosphatase 6C (PPP6C) and activating the cyclic GMP-AMP synthase/stimulator of interferon genes protein pathway. Overexpression of PPP6C can alleviate radiation-induced DNA damage and excessive accumulation of ROS. It was also observed that PPP6C inhibited ionizing RP in vivo. Innovation and Conclusion: miR-208a-3p/PPP6C represents a potential therapeutic target for RP which needs to be verified by future clinical studies. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Yi Liu
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Jinyu Wang
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Zhe Zhao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Wenfang Duan
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Yu Xiao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Haibo Peng
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Mouna Khouchani
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Takoui Abdelmajid
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Nadia Aittahssaint
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Tao He
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhiqiang Jiang
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
20
|
Xu C, Chen L, Liu G, Xu J, Lv W, Gao X, Xu P, Tang M, Wang Y, Zhao X, Nie G, Cheng K, Liu F. Tailoring an intravenously injectable oncolytic virus for augmenting radiotherapy. Cell Rep Med 2025:102078. [PMID: 40233744 DOI: 10.1016/j.xcrm.2025.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Oncolytic viruses (OVs) combined with radiotherapy (RT) show promise but are limited by challenges such as poor intravenous delivery and insufficient RT-induced DNA damage. In this study, an oncolytic adenovirus (AD) formulation, RadioOnco (AD@PSSP), is developed to improve delivery, infectivity, immune response, and RT efficacy. The multifunctional polyethylenimine (PEI)-selenium-polyethylene glycol (PEG) (PSSP) enhances intravenous delivery, shields the virus from rapid clearance, and enables targeted delivery to tumor sites after RT. The exposed PEI enhances the infectivity of AD through electrostatic interactions, thereby increasing DNA damage after RT by inhibiting the expression of DNA repair proteins, such as CHEK1 and CDK1. Furthermore, AD-PEI captures and delivers RT-induced tumor-released antigens to lymph nodes, activating robust anti-tumor immune responses. Animal model data demonstrate that RadioOnco overcomes RT resistance, targets distant metastases, and promotes long-term immunity, addressing metastasis and recurrence. In summary, this intravenously injectable OV enhances RT synergy through surface modification with multifunctional materials.
Collapse
Affiliation(s)
- Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang 110102, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang 110102, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peijun Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang 110102, China.
| |
Collapse
|
21
|
Cheng B, Ding Z, Hong Y, Wang Y, Zhou Y, Chen J, Peng X, Zeng C. Research progress in DNA damage response (DDR)-targeting modulators: From hits to clinical candidates. Eur J Med Chem 2025; 287:117347. [PMID: 39908794 DOI: 10.1016/j.ejmech.2025.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
In recent years, synthetic lethality has been regarded as a sound example of cancer treatment. Identifying a growing number of synthetic lethality targets has led to a substantial broadening of the application of synthetic lethality, well beyond the PAPR inhibitors employed for treating tumors with BRCA1/2 deficiencies. Especially, molecular targets within the DDR have furnished inhibitor sources and have rapidly advanced to clinical trials. In this review, we summarize the DDR-associated synthetic lethality targets such as WRN, USP1, PARP, ATR, DNA-PK, PRMT5, POLQ, and WEE1. These targets allow for the development of targeted modulators like inhibitors and degraders. Additionally, we emphasize the rational design, advantages, and potential limitations. Furthermore, we outline the promising future of DDR-targeted drug development.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yimeng Hong
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yaping Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yingxing Zhou
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Chunlai Zeng
- Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
22
|
Wang J, Guo Q, He L, Song R, Du J, Zhou H, Hao Y, Yang X, Wang F, Li K, Li M, Yang Z, Sun L, Liu Z. A Nanoradiosensitizer Potentiates Tumor Radiotherapy through JFK Inhibition and Hypoxia Alleviation. NANO LETTERS 2025; 25:5435-5443. [PMID: 40125668 DOI: 10.1021/acs.nanolett.5c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Radiotherapy (RT) is a primary treatment for breast cancer, but its effectiveness is often compromised by hypoxia and intrinsic resistance mechanisms. The F-box protein JFK is overexpressed in breast cancer and is associated with reduced radiosensitivity, but specific JFK inhibitors are currently unavailable. Herein, we developed spherical nanoparticles (SNP-JC) designed to co-deliver small interfering RNA targeting JFK and catalase to the tumor, aiming to silence JFK and alleviate hypoxia to overcome RT resistance. Positron emission tomography imaging demonstrated that SNP-JC efficiently accumulated in the tumors. SNP-JC significantly increased DNA damage in tumor cells after RT and promoted the immunogenic cell death. The combination of SNP-JC and RT activated CD8+ T cells and elicited a robust antitumor immunity, resulting in suppressed primary tumor growth and reduced lung metastasis. Our findings demonstrate that a nanoplatform capable of simultaneously silencing JFK and mitigating hypoxia can enhance tumor radiosensitivity, improve antitumor efficacy, and prevent metastasis.
Collapse
Affiliation(s)
- Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Qianrui Guo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Rui Song
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Yameng Hao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Xiujie Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Feng Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhi Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Luyang Sun
- Department of Biochemistry, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital and Institute, Beijing 100142, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Nuclear Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
23
|
Hu H, Zhang Y, Yu Y, Liu D, Dong Z, Chen G. Phosphoproteomic analysis of X-ray-irradiated planarians provides novel insights into the DNA damage response. Int J Biol Macromol 2025; 299:140129. [PMID: 39842578 DOI: 10.1016/j.ijbiomac.2025.140129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified. In the sub-lethal dose irradiation group, 1695 phosphoproteins with 3483 phosphorylation sites exhibited significant changes, while exposure to lethal doses of radiation led to significant changes in 2308 phosphoproteins with 6112 phosphorylation sites, including many kinases, transcription factors, and cytoskeletal proteins. Functional enrichment analysis revealed that the altered phosphoproteins were primarily involved in transcription, RNA biosynthesis, mRNA processing regulation, and spliceosomal complex assembly. Functional validation of five differentially phosphorylated proteins revealed that their depletion impaired stem cell regeneration after irradiation by disrupting DNA repair, suggesting that these proteins are critical to planarian biology and their radiation response. By identifying the phosphorylation state and specific sites of planarian proteins, our study lays the foundation for further research on protein phosphorylation in the radiation-induced DNA damage response. In addition, our findings provide preliminary insights into the role of calnexin, a protein involved in interacting with newly synthesized N-linked glycoproteins, in planarians.
Collapse
Affiliation(s)
- Huanhuan Hu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China; Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yibing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China
| | - Yanan Yu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China.
| |
Collapse
|
24
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
25
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3373-3408. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Ma R, Yang Z, Miao X, Hu J, Zhang T, Ma LT, Lin JY, Zhao LN. Dual-Mode Radiosensitization of Esophageal Squamous Cell Carcinoma via SOCS6-Loaded Virus-Inspired Manganese-Bismuth Bimetallic Oxide Nanoparticles. Adv Healthc Mater 2025:e2404737. [PMID: 40159874 DOI: 10.1002/adhm.202404737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Radioresistance poses a significant obstacle to controlling the recurrence of esophageal squamous cell carcinoma (ESCC) during radiotherapy. It is urgent to develop innovative radiosensitization strategies to improve the prognosis of patients with ESCC. Here, a novel dual-mode radiosensitizer: a virus-inspired hollow mesoporous manganese-bismuth bimetallic oxide nanoparticles (vHMMn-Bi) encapsulating the radiosensitizing plasmids (suppressor of cytokine signaling 6, SOCS6) is developed, designed to significantly amplify ESCC radiotherapy under hypoxic conditions. After intravenous injection, the SOCS6@vHMMn-Bi nanoparticles can be efficiently delivered to the tumor site and rapidly invade tumor cells by virus-like surface-assisted adhesion. Under X-ray irradiation, the nanoparticles exhibits a unique dual-mode sensitization effect, encompassing exogenous and endogenous mechanisms, thereby significantly augmenting the ESCC radiotherapeutic effectiveness. First, the Bi2O3 within the shell can enhance the radiosensitivity owing to its robust X-ray attenuation characteristics. Second, the SOCS6 released from the interior can inhibit both HIF-1α and JAK2/STAT3 signaling pathways, triggering ROS upregulation and intensifying radiation-mediated DNA damage inside ESCC cells. Furthermore, the shell employs MnO2 to catalyze the decomposition of endogenous H2O2 to increase oxygen generation, alleviating hypoxia within the tumor microenvironment. These nanoparticles demonstrates considerable potential as dual-mode radiosensitizers with no systemic toxicity and low immunogenicity for amplifying radiotherapeutic efficacy in ESCC.
Collapse
Affiliation(s)
- Rui Ma
- Department of Radiation Oncology, Xi Jing Hospital, The Fourth Military Medical University, No. 127 West Chang Le Road, Xi'an, 710000, P. R. China
| | - Zhi Yang
- Department of Radiation Oncology, Xi Jing Hospital, The Fourth Military Medical University, No. 127 West Chang Le Road, Xi'an, 710000, P. R. China
| | - Xia Miao
- Department of Radiation Medicine, The Faculty of Preventive Medicine, The Fourth Military Medical University, Xi'an, 710000, P. R. China
| | - Jing Hu
- Department of Radiation Oncology, Xi Jing Hospital, The Fourth Military Medical University, No. 127 West Chang Le Road, Xi'an, 710000, P. R. China
| | - Te Zhang
- Department of Radiation Oncology, Xi Jing Hospital, The Fourth Military Medical University, No. 127 West Chang Le Road, Xi'an, 710000, P. R. China
| | - Li-Tian Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, P. R. China
| | - Jin-Yan Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Li-Na Zhao
- Department of Radiation Oncology, Xi Jing Hospital, The Fourth Military Medical University, No. 127 West Chang Le Road, Xi'an, 710000, P. R. China
| |
Collapse
|
28
|
Wang S, Wang L, Zhao Y. ALDH1A3 Regulates Cellular Senescence and Senescence-Associated Secretome in Prostate Cancer. Cancers (Basel) 2025; 17:1184. [PMID: 40227735 PMCID: PMC11987895 DOI: 10.3390/cancers17071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Radiotherapy is a key treatment for cancer, effectively controlling local tumor growth through DNA damage that induces senescence or apoptosis in cancer cells. However, radiotherapy can trigger complex cellular reactions, such as cell senescence, which is characterized by irreversible cell cycle arrest and the secretion of pro-inflammatory factors known as the senescent-associated secretory phenotype (SASP). Methods: This study investigates the regulatory role of ALDH1A3, a key enzyme implicated in cancer cell metabolism and radiotherapy resistance, in the induction of senescence and SASP. Using in vitro models, we demonstrate that ALDH1A3 knockdown accelerates cellular senescent-like phenotype while regulating the SASP through the cGAS-STING immune response pathway. Results: Our results indicate that while ALDH1A3 knockdown promotes senescence, it reduces the secretion of pro-inflammatory factors via inhibition of the cGAS-STING pathway, potentially mitigating SASP-related tumor progression. Conclusions: These findings provide insights into the molecular mechanisms underlying prostate cancer cell senescence and suggest that ALDH1A3 could be a potential therapeutic target to enhance the efficacy of radiotherapy while controlling the adverse effects of SASP.
Collapse
Affiliation(s)
- Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
| | - Lin Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China;
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
| |
Collapse
|
29
|
Shimizu N, Izawa K, Washif M, Morozumi R, Hirota K, Tsuda M. Role of TDP2 in the repair of DNA damage induced by the radiomimetic drug Bleomycin. Genes Environ 2025; 47:7. [PMID: 40155951 PMCID: PMC11954286 DOI: 10.1186/s41021-025-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Bleomycin (Bleo) is a glycopeptide with potent antitumor activity that induces DNA double-strand breaks (DSBs) through free radical generation, similar to ionizing radiation (IR). Therefore, Bleo is considered a radiomimetic drug. However, differences in DNA repair mechanisms between IR- and Bleo-induced DNA damage have not been fully elucidated. Therefore, in the present study, we examined a panel of repair-deficient human TK6 cell lines to elucidate the relative contributions of individual repair factors. RESULTS Our comprehensive profiling indicated that both non-homologous end joining (NHEJ) and homologous recombination (HR) contributed to DSB repair induced by X-rays and Bleo. Furthermore, tyrosyl-DNA phosphodiesterase (TDP)-related repair was a significant factor for cellular sensitivity to Bleo treatment. TDP1-/-/TDP2-/- cells exhibited greater sensitivity to Bleo than TDP1-/- or TDP2-/- cells, but not to X-rays. In addition, we determined whether TDP2 is involved in the repair of Bleo-induced DSBs using a neutral comet assay. In TDP1-deficient cells, knockout of TDP2 resulted in a significant delay in the repair kinetics of DSBs induced by Bleo, but not by X-rays. CONCLUSIONS The contribution of the TDP-related pathway to DSB repair significantly differed between IR and radiomimetic drugs. The discovery of this novel TDP2-dependent repair of DSBs resulting from radiomimetic drug exposure indicates that TDP1 and TDP2 inhibition in combination with radiomimetic drugs represents a strategy for cancer treatment.
Collapse
Affiliation(s)
- Naoto Shimizu
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Present address: Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kazuki Izawa
- Division of Genome Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Mubasshir Washif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Ryosuke Morozumi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Division of Genome Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masataka Tsuda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
- Division of Genome Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
30
|
Wang X, Liu M, Zhang Y, Ma D, Wang L, Liu F. Wdr5-mediated H3K4 methylation facilitates HSPC development via maintenance of genomic stability in zebrafish. Proc Natl Acad Sci U S A 2025; 122:e2420534122. [PMID: 40112113 PMCID: PMC11962412 DOI: 10.1073/pnas.2420534122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
During fetal stage, hematopoietic stem and progenitor cells (HSPCs) undergo rapid proliferation with a tight control of genomic stability. Although histone H3 lysine 4 (H3K4) methylation has been reported to stabilize the genome in proliferating cells, its specific role in HSPC development remains elusive. In this study, we demonstrated that tryptophan-aspartic acid (WD) repeat protein 5 (Wdr5)-mediated H3K4 methylation is crucial for maintaining genomic stability of proliferating HSPCs in zebrafish embryos. Loss of wdr5 led to a severe reduction of HSPC pool in the caudal hematopoietic tissue, accompanied with attenuated H3K4 methylation level and evident p53-dependent apoptosis in the HSPCs. Mechanistically, Wdr5-mediated H3K4 methylation maintains genomic stability by inhibiting the formation of abnormal R-loops in the HSPCs, whereas accumulation of R-loops exacerbates DNA damage. Moreover, the absence of H3K4 trimethylation leads to an inactivated DNA damage response (DDR) pathway, which is deleterious to DNA damage repair and genomic stability. Subsequently, we found that DDR-associated genes, mutL homolog 1 and breast and ovarian cancer interacting helicase 1, are important to ensure HSPC survival, likely by stabilizing their genome. In summary, these findings reveal that Wdr5-mediated H3K4 methylation is essential for HSPC development through tight control of R-loop accumulation and DDR-associated program to ensure genomic stability and survival of proliferating HSPCs.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin300020, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao266237, China
| | - Dongyuan Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin300020, China
| | - Feng Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao266237, China
| |
Collapse
|
31
|
Lin J, Yang H, Huang R, Xu T. Discovery of a DNA repair-associated radiosensitivity index for predicting radiotherapy efficacy in breast cancer. Front Oncol 2025; 15:1439516. [PMID: 40201348 PMCID: PMC11975882 DOI: 10.3389/fonc.2025.1439516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Radiotherapy is a cornerstone of breast cancer (BRCA) treatment. Accurately predicting tumor radiosensitivity is critical for optimizing therapeutic outcomes and personalizing treatment strategies. DNA repair pathways are key determinants of radiotherapy response. Thus, we aimed to develop a novel DNA repair-related radiosensitivity model and to identify potential targets for enhancing radiotherapy efficacy. Methods A retrospective study was conducted using data from 942 BRCA patients from TCGA database. A radiosensitivity model, comprising a radiosensitivity index, was developed using LASSO regression analysis. Patients were stratified into radiosensitive (RS) and radioresistant (RR) groups based on their radiosensitivity index (RSI). Associations between the RSI, clinicopathological parameters, and PD-L1 status were analyzed. The CIBERSORT and ESTIMATE algorithms were employed to characterize the immune landscape of the tumor microenvironment. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and pRRophetic platform were used to predict treatment responses. Key genes identified in the radiosensitivity model were further validated using in vitro qRT-PCR experiments. Results We successfully constructed a radiosensitivity index incorporating 10 DNA repair-related genes. Patients in the RS group exhibited significantly better prognosis compared to the RR group, but this benefit was limited to those receiving radiotherapy. This survival benefit associated with the radiosensitivity signature was absent in patients who did not receive radiotherapy. The RS group displayed a distinct molecular profile characterized by enrichment of TGF-β signaling and protein secretion pathways, potentially contributing to enhanced radiosensitivity. Furthermore, the RS group exhibited increased infiltration of immune cells. Notably, the RS-PD-L1-high subgroup demonstrated the most favorable survival outcomes and highest immune cell infiltration, highlighting their potential responsiveness to immunotherapy. In addition, the RR group exhibited a distinct profile characterized by enrichment of DNA repair pathways and a heightened sensitivity to CDK and HER2 inhibitors. Conversely, this group displayed resistance to DNA-damaging drugs. These findings were supported by in vitro experiments using MCF-7 and radioresistant MCF-7/IR cell lines, confirming differential expression of key radiosensitivity index genes. Conclusion In conclusion, we established a radiosensitivity model for predicting radiotherapy benefit in breast cancer. Our study reveals a strong association between radiosensitivity, enhanced antitumor immunity, and potential immunotherapy benefit, particularly within the RS-PD-L1-high subgroup.
Collapse
Affiliation(s)
- Jianguang Lin
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongfu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
32
|
Jin M, Liu H, Zheng Z, Fang S, Xi Y, Liu K. CHI3L1 mediates radiation resistance in colorectal cancer by inhibiting ferroptosis via the p53/SLC7A11 pathway. J Transl Med 2025; 23:357. [PMID: 40119400 PMCID: PMC11929242 DOI: 10.1186/s12967-025-06378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Radiotherapy is a key treatment for colorectal cancer (CRC), particularly rectal cancer; however, many patients are resistant to radiation. While it has been shown that CHI3L1 is associated with CRC progression, its specific function and regulatory mechanisms in radiation resistance remain unclear. METHODS The levels of CHI3L1 in CRC and normal tissue samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. To assess the effects of CHI3L1 on CRC cell proliferative, migratory, and invasive capacities, Cell Counting Kit-8 (CCK-8) and Transwell assays were performed. Radiation resistance in CRC cells with varying CHI3L1 expression levels was evaluated through colony formation assay. Western blot and immunofluorescence analyses were conducted to explore the correlation between CHI3L1 and p53 expression levels. Ferroptosis was assessed by determining reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) concentrations in cells with different CHI3L1 expression levels, and a xenograft mouse model was used to identify the molecular mechanisms of ferroptosis in vivo. RESULTS Significant CHI3L1 upregulated was observed in CRC tissues and was associated with promotion of malignant cell behaviors. The number of colonies in CHI3L1-overexpressing groups was significantly greater than that in the control groups following radiation, indicating increased radiation resistance in the former group. Furthermore, CHI3L1 overexpression was associated with p53 downregulation and elevated p53 ubiquitination. Notably, CHI3L1 inhibited the ferroptosis of CRC cells by suppressing p53 expression through the p53/SLC7A11 signaling pathway. CONCLUSIONS CHI3L1 overexpression promotes the proliferation, migration, invasion, and radiation resistance of CRC cells. Elevated CHI3L1 expression is associated with increased p53 ubiquitination and SLC7A11 upregulation. CHI3L1 promotes radiation resistance by suppressing ferroptosis in CRC cells through the p53/SLC7A11 axis.
Collapse
Affiliation(s)
- Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hui Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
33
|
Chen L, Lin J, Wen Y, Guo ZQ, Lan B, Xiong J, Chen CB, Chen Y. DNA-PKcs Dysfunction Enhances the Antitumor Activity of Radioimmunotherapy by Activating the cGAS-STING Pathway in HNSCC. J Inflamm Res 2025; 18:4177-4193. [PMID: 40129873 PMCID: PMC11930847 DOI: 10.2147/jir.s497295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Combining radiotherapy (RT) with immunotherapy for head and neck squamous cell carcinoma (HNSCC) has limited effectiveness due to the DNA damage repair (DDR) pathway activated by ionizing radiation. DNA-PK, encoded by the PRKDC gene, plays a key role in this repair. The potential improvement of radioimmunotherapy by inhibiting the DDR pathway is still unclear. Methods The effectiveness of different treatments on tumor growth and survival was tested using the C3H/HeN mouse tumor model. Flow cytometry analyzed treatment-induced immunophenotypic changes. In vitro, Western blot and PCR confirmed the impact of combining immunotherapy with RT on the cGAS-STING pathway after DNA-PKcs dysfunction. Results The combination of a DNA-PK inhibitor (NU7441), radiation therapy, and a PD-1 checkpoint inhibitor showed improved antitumor effects and extended survival in mice. Adding NU7441 into the RT and immunotherapy regimen increased CD8+ T cell infiltration. PRKDC alterations or DNA-PKcs dysfunction increased IR-induced DNA breaks, activating the cGAS-STING pathway and boosting the anti-tumor immune response. Conclusion These findings suggest that targeting the DDR pathway may represent a promising therapeutic strategy and biomarker to improve the efficacy of radioimmunotherapy in HNSCC.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Yaoming Wen
- Department of Drug Research and Development, Fujian Institute of microbiology, Fuzhou, Fujian Province, People’s Republic of China
| | - Zeng-Qing Guo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Bin Lan
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Chuan-Ben Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
34
|
Gong S, Yang L, Xu M, Xiang M, Lang J, Zhang H, Shan Y. A combined gene signature model for predicting radiotherapy response and relapse-free survival in laryngeal squamous cell carcinoma. Cancer Cell Int 2025; 25:102. [PMID: 40102978 PMCID: PMC11916850 DOI: 10.1186/s12935-025-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/08/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Radioresistance is a major challenge in radiotherapy for laryngeal squamous cell carcinoma (LSCC), and there is currently no effective method to predict radiosensitivity in LSCC patients. This study aimed to establish a prediction model for radiotherapy response based on gene expression. METHODS The datasets of LSCC were obtained from the ENT department of Shanghai Ruijin Hospital and The Cancer Genome Atlas (TCGA). Lasso regression and Cox regression were used to establish the prediction model based on gene expression. Weighted gene coexpression network analysis (WGCNA) was used to analyze the correlation between gene expression and clinical characteristics. RT-qPCR was used to detect gene expression in tumor tissue to verify the accuracy of the prediction model. RESULTS Using a cohort of LSCC cases receiving radiotherapy collected in the TCGA database, the 3 protein-coding genes (PCGs) signature model was identified for the first time as the predictor of relapse-free survival and radiosensitivity in LSCC patients. And we explored the potential clinical value of 3 PCGs and screened out 2 long non-coding RNAs (lncRNAs) potential associated with 3 PCGs. More importantly, the LSCC cases collected by our department were used to preliminarily verify the predictive power of the 3 PCGs signature model for the radiosensitivity of LSCC, and the significant correlation between the expression levels of the 3 PCGs and the 2 lncRNAs. CONCLUSION We successfully establish a radiosensitivity prediction model based on the 3 PCGs Riskscore, which provides a theoretical basis for the decision-making of LSCC treatment options. Meantime, we preliminarily screen the potential associated lncRNAs of the 3 PCGs for further basic and clinical research.
Collapse
Affiliation(s)
- Shiqi Gong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Liyun Yang
- Department of Otolaryngology, Gongli Hospital of Pudong, Shanghai, 200135, China
| | - Meng Xu
- Department of Oncology, Changhai Hospital Affiliated to Navy Medical University, Shanghai, 200433, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Juntian Lang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yamin Shan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
35
|
Sheikh A, Curran MA. The influence of the microbiome on radiotherapy and DNA damage responses. Front Oncol 2025; 15:1552750. [PMID: 40165887 PMCID: PMC11955455 DOI: 10.3389/fonc.2025.1552750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers in terms of diagnosis and mortality. Radiotherapy (RT) remains a mainstay of CRC therapy. As RT relies on DNA damage to promote tumor cell death, the activity of cellular DNA damage repair pathways can modulate cancer sensitivity to therapy. The gut microbiome has been shown to influence intestinal health and is independently associated with CRC development, treatment responses and outcomes. The microbiome can also modulate responses to CRC RT through various mechanisms such as community structure, toxins and metabolites. In this review we explore the use of RT in the treatment of CRC and the molecular factors that influence treatment outcomes. We also discuss how the microbiome can promote radiosensitivity versus radioprotection to modulate RT outcomes in CRC. Understanding the molecular interaction between the microbiome and DNA repair pathways can assist with predicting responses to RT. Once described, these connections between the microbiome and RT response can also be used to identify actionable targets for therapeutic development.
Collapse
Affiliation(s)
- Aadil Sheikh
- Department of Medical Education, Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Yadav A, Sharma A, Moulick M, Ghatak S. Nanomanaging Chronic Wounds with Targeted Exosome Therapeutics. Pharmaceutics 2025; 17:366. [PMID: 40143030 PMCID: PMC11945274 DOI: 10.3390/pharmaceutics17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic wounds pose a significant healthcare challenge, impacting millions of patients worldwide and burdening healthcare systems substantially. These wounds often occur as comorbidities and are prone to infections. Such infections hinder the healing process, complicating clinical management and proving recalcitrant to therapy. The environment within the wound itself poses challenges such as lack of oxygen, restricted blood flow, oxidative stress, ongoing inflammation, and bacterial presence. Traditional systemic treatment for such chronic peripheral wounds may not be effective due to inadequate blood supply, resulting in unintended side effects. Furthermore, topical applications are often impervious to persistent biofilm infections. A growing clinical concern is the lack of effective therapeutic modalities for treating chronic wounds. Additionally, the chemically harsh wound microenvironment can reduce the effectiveness of treatments, highlighting the need for drug delivery systems that can deliver therapies precisely where needed with optimal dosages. Compared to cell-based therapies, exosome-based therapies offer distinct advantages as a cell-free approach for chronic wound treatment. Exosomes are of endosomal origin and enable cell-to-cell communications, and they possess benefits, including biocompatibility and decreased immunogenicity, making them ideal vehicles for efficient targeting and minimizing off-target damage. However, exosomes are rapidly cleared from the body, making it difficult to maintain optimal therapeutic concentrations at wound sites. The hydrogel-based approach and development of biocompatible scaffolds for exosome-based therapies can be beneficial for sustained release and prolong the presence of these therapeutic exosomes at chronic wound sites. Engineered exosomes have been shown to possess stability and effectiveness in promoting wound healing compared to their unmodified counterparts. Significant progress has been made in this field, but further research is essential to unlock their clinical potential. This review seeks to explore the benefits and opportunities of exosome-based therapies in chronic wounds, ensuring sustained efficacy and precise delivery despite the obstacles posed by the wound environment.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.Y.); (A.S.); (M.M.)
| |
Collapse
|
37
|
Wu P, Wen Z. ATM is associated with the prognosis of colorectal cancer: a systematic review. Front Oncol 2025; 15:1470939. [PMID: 40144209 PMCID: PMC11936800 DOI: 10.3389/fonc.2025.1470939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Chemosensitivity and radiosensitivity are associated with the prognosis of colorectal cancer, and the expression of the ataxia-telangiectasia mutated (ATM) protein plays an essential role in these processes. The present study examined the relationship between ATM expression and the survival outcomes of colorectal cancer patients and explored the underlying mechanism and promising therapeutic strategies. Method A search including medical subject headings (MeSH), free terms, and combined words was conducted using Pubmed, EMBASE, and Cochrane. Studies had to meet the inclusion criteria as well as include processes such as data extraction and quality evaluation. The survival outcomes were assessed using hazard ratio (HR) and 95% confidence interval (CI). Heterogeneity, and publication bias were analyzed, and a P value <0.05 was considered statistically significant. Results Nine studies with 2883 patients were included in the meta-analysis. Low ATM expression level was related to poor overall survival (HR=0.542, 95% CI=0.447-0.637; P=0.000). Disease-free, progression-free, and recurrence-free survival rates were lower in patients with low ATM expression than in those with high ATM expression. There was no significant difference between Stage I-II and Stage III-IV colorectal cancer patients [risk ratio (RR)=1.173, 95% CI=0.970-1.417, P=0.690]. Conclusions Low ATM expression level may be a marker of poor survival in colorectal cancer and contributes to resistance to therapy. Targeting related factors in these pathways to sensitize tumors to treatment is a potential therapeutic strategy, and monitoring ATM status could be a valuable guide independent of the immunotherapy or chemotherapy strategy used.
Collapse
Affiliation(s)
- Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Zhang Y, Gu W, Chen W, Zhu J, Fan L, Zhang L, Zhao L, Miao Q. A Dual-Targeted Molecule for Disease-Activatable Proteolysis Targeting Chimeras and Targeted Radionuclide Therapy of Cancer. J Am Chem Soc 2025; 147:7897-7907. [PMID: 39989465 DOI: 10.1021/jacs.4c18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a cutting-edge approach for targeted protein degradation in cancer therapy, yet they face challenges such as poor pharmacokinetics and specificity issues, leading to undesirable off-target effects and limited antitumor potency. To address these issues, we introduce dual-targeted unimolecular theranostic probes (e.g., radioactive 177Lu-P-A and its cold counterpart natLu-P-A) for disease-activatable PROTACs in combination with targeted radionuclide therapy (TRT) against prostate cancer with high specificity and effectiveness. The probes achieve a cathepsin B (CTSB)-activatable pro-PROTAC moiety for precise degradation of bromodomain-containing protein 4 (BRD4) and a prostate-specific membrane antigen (PSMA)-targeted 177Lu-based TRT. Owing to the favorable pharmacokinetics and PSMA-mediated excellent targeting efficiency, the probe possesses high tumor imaging specificity and accumulation capacity of therapeutic units for highly effective PROTACs and TRT. In contrast, the free PROTACs unit (e.g., ARV-771) shows no observable therapeutic effect due to its poor targeting ability. Importantly, the BRD4 proteolysis by PROTAC activation can downregulate radiosensitivity-associated RAD51AP1 expression, synergistically enhancing the TRT effect and promoting apoptosis after combined therapy compared to individual treatment regimes. Additionally, the probe demonstrates high renal clearance, underscoring its biosafety for potential clinical translation. This study presents a potential approach for precise PROTACs combined with TRT for effective tumor therapy.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Longfei Fan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liwen Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Sharaky M, El Kiki SM, Effat H, Mansour HH. Effect of palliative radiotherapy and cyclin-dependent kinase 4/6 inhibitor on breast cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03878-6. [PMID: 40035822 DOI: 10.1007/s00210-025-03878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
The most prevalent disease in the world and the main reason for women mortality from cancer is breast cancer. The recommended treatment for hormone receptor-positive metastatic breast cancer (MBC) is cyclin-dependent kinase 4/6 inhibitor (CDK4/6i), Abemaciclib. Radiotherapy (RT) is one of the main options to control breast cancer. This work intended to examine the impact of CDK 4/6i and palliative radiation on human breast cancer cell lines. Breast cancer cell lines (MCF7, MDA-MD-468, and MDA-MD-231) were treated with varying doses of Abemaciclib and left to incubate for 48 h. Different radiation doses were applied to the lines that had the best IC50. The intrinsic treatment objectives for MBC are presented in this study, along with the PI3K/AKT/mTOR pathway; CDK4, CDK6, and the NF-κβ/TGF-β pathway; BAX/BcL2, P53; caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9; cytokeratin 18 (CK18); cycloxygenase-2 (COX2); IL-6; IL1β; matrix metalloproteinases (MMP2 and MMP9); and oxidative stress markers. The biochemical assays revealed that abemaciclib hindered the progression of breast cancer cells MDA-MB-231 and MCF-7 and enhanced RT (10 Gy) by provoking cell cycle arrest throughout the restraint of CDK4 and CDK6 expression and increasing apoptosis, in addition to decreasing the PI3K/AKT/mTOR and NF-κβ/TGF-β pathway expression; inhibiting CK18 and COX2 activity; boosting the protein concentration of BAX and P53; and decreasing Bcl-2, IL-6, IL-1β, MMP2, and MMP9, modulating oxidative stress markers. These results implied potential effects of radiation and CDK4/6i abemaciclib on breast cancer cell lines.
Collapse
Affiliation(s)
- Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|
40
|
Arya BD, Mittal S, Joshi P, Pandey AK, Ramirez-Vick JE, Gupta G, Singh SP. Graphene oxide-chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:316-332. [PMID: 40041432 PMCID: PMC11878127 DOI: 10.3762/bjnano.16.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025]
Abstract
Autophagy is a highly regulated catabolic process by which unnecessary, dysfunctional, or damaged proteins and other cellular components are degraded and recycled to promote cellular differentiation, survival, and development. In response to endogenous or exogenous stresses, cancer cells use autophagy pathways for survival through activation of complex DNA damage repair (DDR) mechanisms. In the present study, we demonstrated the genotoxicity induced in A549 lung cancer cells by exposure to the GO-Chl nanoconjugate and elucidated the role of autophagy modulation in harnessing the DNA-damage response. GO-Chl causes loss of plasma membrane integrity, cell cycle arrest, and significant genotoxicity in A549 cells. Further, elevated expression of key autophagy proteins beclin-1, ATG-7, LC-3-I/II, and SQSTM1/p62 reveal that inhibition of autophagy plays a crucial role in regulating DDR capabilities of cancer cells. The results indicate that the interplay between DDR and autophagy pathways may open new paradigms for developing effective combinatorial nanoscale drug systems against multidrug-resistance cancers.
Collapse
Affiliation(s)
- Braham Dutt Arya
- CSIR-National Physical Laboratory, Dr K. S. Krishanan Marg, New Delhi-12, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi-20, India
- Department of Higher Education, Shiksha Sadan, Sector-5, Panchkula-134114, India
| | - Sandeep Mittal
- Academy of Scientific & Innovative Research (AcSIR), New Delhi-20, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow-226001, India
| | - Prachi Joshi
- CSIR-National Physical Laboratory, Dr K. S. Krishanan Marg, New Delhi-12, India
| | - Alok Kumar Pandey
- Academy of Scientific & Innovative Research (AcSIR), New Delhi-20, India
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Mahatma Gandhi Marg, Lucknow-226001, India
| | - Jaime E Ramirez-Vick
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, Ohio 45435, United States
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr K. S. Krishanan Marg, New Delhi-12, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi-20, India
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr K. S. Krishanan Marg, New Delhi-12, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi-20, India
| |
Collapse
|
41
|
Zhang S, Wang C, Zhu Y, Gao J, Yan Y, Chen M, Yan X, Liu Z, Feng L. DNA-Capturing Manganese-Coordinated Chitosan Microparticles Potentiate Radiotherapy via Activating the cGAS-STING Pathway and Maintaining Tumor-Infiltrating CD8 + T-Cell Stemness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418583. [PMID: 39955699 DOI: 10.1002/adma.202418583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 02/17/2025]
Abstract
The radiotherapy-induced release of DNA fragments can stimulate the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway to prime antitumor immunity, but this pathway is expected to be less potent because of the inefficient cytosolic delivery of negatively charged DNA fragments. In this study, manganese-coordinated chitosan (CS-Mn) microparticles with selective DNA-capturing capacity are concisely prepared via a coordination-directed one-pot synthesis process to potentiate the immunogenicity of radiotherapy. The obtained CS-Mn microparticles that undergo rapid disassembly under physiological conditions can selectively bind with DNA to form positively charged DNA-CS assemblies because of the strong electrostatic interaction between linear chitosan and DNA molecules. They thus enable efficient cytosolic delivery of DNA in the presence of serum to cooperate with Mn2+ to activate the cGAS-STING pathway in dendritic cells. Upon intratumoral injection, the CS-Mn microparticles markedly enhance the efficacy of radiotherapy against both irradiated and distal tumors in different tumor models via collectively promoting tumor-infiltrating CD8+ T-cell stemness and the activation of innate immunity. The radiosensitization effect of CS-Mn microparticles can be further augmented by concurrently applying anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. This work highlights an ingenious strategy to prepare Trojan horse-like DNA-capturing microparticles as cGAS-STING-activating radiosensitizers for effective radioimmunotherapy.
Collapse
Affiliation(s)
- Shuai Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Juxin Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yifan Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaoying Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
42
|
Principe MAV, Gokgoz N, Prochazka P, Coward VS, Saini S, MacParland S, Gladdy R, Ferguson P, Wunder JS, Andrulis IL, Chung P, Griffin AM, White LM, Dickson BC, Tsoi KM. Identification of Malignancy in Peritumoral Edema in Soft Tissue Sarcoma: A Novel Targeted Molecular Approach. Ann Surg Oncol 2025; 32:1511-1521. [PMID: 39556178 DOI: 10.1245/s10434-024-16521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Peritumoral edema on staging magnetic resonance imaging (MRI) is associated with higher local recurrence in soft tissue sarcoma (STS). This may relate to the presence of satellite malignant cells that are difficult to distinguish from benign atypia, leading to over- or undertreatment. This study evaluated a novel targeted molecular approach to identify malignancy in STS peritumoral planes as a means to improve personalized care. METHODS In the targeted molecular approach, whole-exome sequencing was employed to identify tumor-specific variants (TSVs), and peritumoral planes were assayed for malignancy, defined as two or more TSVs/plane, using droplet digital polymerase chain reaction (PCR). Feasibility was evaluated using a retrospective cohort (n = 8) in which planes with cellular atypia were tested. A prospective cohort (n = 8) then assayed all peritumoral planes with radiologic edema. RESULTS The targeted molecular approach identified malignancy in three of eight cases with cellular atypia of unknown significance (37.5%) and five of eight cases with peritumoral edema on staging MRI (62.5%). Peritumoral regions were heterogeneous; in none of the malignant cases did all sampled planes have evidence of tumor. Malignancy was also identified in regions without cellular atypia. Both cases with a local recurrence had molecular evidence of malignancy outside the main mass despite R0 margins. CONCLUSION This study describes a novel personalized approach to detect malignancy in peritumoral regions in STS and is the first to identify molecular evidence of tumor outside the main mass. While development of a clinical tool is underway, these findings support the current approach of treating all peritumoral edema as malignant.
Collapse
Affiliation(s)
- Miguel Alfonso V Principe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Patrick Prochazka
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Victoria S Coward
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sidharth Saini
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
| | - Sonya MacParland
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Rebecca Gladdy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter Ferguson
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter Chung
- Department of Radiation Oncology, Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Anthony M Griffin
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Lawrence M White
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Toronto Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
| | - Brendan C Dickson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kim M Tsoi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada.
| |
Collapse
|
43
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
44
|
Zeng G, Xu G, Gao L, Zheng X, Chi X, Shen Z, Cao Y, Xi J, Che J, Dong X, Shi Y, Ma J, Zhang C, Zeng L, Zhu H, Shao J, Zhou Y, Li J, Zhang J. Development of novel epoxyketone macrocyclic peptidyl proteasome inhibitors through OPA-mediated one-step cyclization of unprotected peptides. Bioorg Chem 2025; 156:108180. [PMID: 39855110 DOI: 10.1016/j.bioorg.2025.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Cyclization is a pivotal strategy for enhancing the drug-like characteristics of polypeptides. To develop potent and metabolically stable proteasome inhibitors, we generated a macrocyclic peptide skeleton using a straightforward and efficient cyclization strategy. Subsequent stability assessments confirmed the practicality of this approach. Leveraging this skeleton, we designed and synthesized a series of epoxyketone macrocyclic peptidyl proteasome inhibitors. Approximately half of these compounds showcased robust inhibitory potency, with IC50 values below 200 nM against chymotrypsin-like (ChT-L, β5) activity. Notably, compounds 6f, 6g, and 6m demonstrated pronounced anti-proliferative activities at low nanomolar concentrations against three hematoma cell lines (RPMI-8226, RS4;11, and MV-4-11) as well as the NCI-H1299 cell line. These findings highlight the potential of these cyclic peptides to bolster the stability of proteasome inhibitors, thereby providing valuable insights for the advancement of innovative proteasome inhibitor therapies.
Collapse
Affiliation(s)
- Gongruixue Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Gaoya Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lixin Gao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoli Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China
| | - Xinglong Chi
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023 Zhejiang Province, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023 Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Yaoli Shi
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China
| | - Jiayi Ma
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China.
| |
Collapse
|
45
|
Yu J, Ren L, Wu T, Hua L, Wang D, Wang Y, Xie Q, Deng J, Gong Y. Establishment and transcriptomic characteristics of radio-resistant meningioma cell lines. J Neurooncol 2025:10.1007/s11060-025-04966-6. [PMID: 40019713 DOI: 10.1007/s11060-025-04966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Radio-resistance poses a significant challenge in meningioma treatment. This study aimed to establish radio-resistant meningioma cell lines and uncover molecular mechanisms driving radio-resistance to identify potential biomarkers and therapeutic targets. METHODS Radio-resistant meningioma cell lines (IOMM-Lee-RR, CH157-RR) were developed using a progressive radiation dose (cumulative 90 Gy). Cell morphology, radiosensitivity, apoptosis, viability, migration, invasion, cell cycle, and DNA damage repair were analyzed via clonogenic assays, flow cytometry, and Western blotting. Transcriptome sequencing was performed to identify differentially expressed genes (DEGs), followed by KEGG and GO enrichment analyses. Protein-protein interaction (PPI) analysis was conducted to identify hub genes. TK1 expression was further validated in a cohort of 350 meningiomas and the GSE189672 dataset. RESULTS Radio-resistant meningioma cell lines exhibited enhanced survival, reduced apoptosis, increased cell viability, and superior migratory and invasive abilities compared to parental cells. Under radiation, these cells showed G0/G1 phase accumulation and reduced G2/M phase arrest, along with enhanced DNA repair capacity, as evidenced by lower γ-H2AX expression and fewer DNA damage foci. Transcriptome analysis revealed significant enrichment in metabolic pathways, DNA repair, and cell cycle regulation. Among 34 hub genes identified, TK1 emerged as a key gene, being highly expressed in recurrent and high-grade meningiomas and positively correlated with Ki67. Analysis of the GSE189672 dataset confirmed TK1 as a poor prognostic factor associated with tumor recurrence. CONCLUSION Radio-resistant meningioma cells exhibit enhanced DNA repair, migration, invasion, and altered cell cycle dynamics. TK1 was identified as a promising biomarker and therapeutic target for overcoming radio-resistance in meningiomas.
Collapse
Affiliation(s)
- Jinxiu Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Leihao Ren
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Tianqi Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Yang Wang
- Department of Radiotherapy, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Neurosurgery, Department of Critical Care Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.
| |
Collapse
|
46
|
Luo L, Jiang C, Xie S. The mechanism of high mobility group box-1 in the proliferation and macrophage polarization in esophageal squamous cell carcinoma cells. Eur J Med Res 2025; 30:144. [PMID: 40022250 PMCID: PMC11869724 DOI: 10.1186/s40001-025-02390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Previous studies showed that high mobility group box-1 (HMGB1) facilitates the initiation and progression of esophageal squamous cell carcinoma (ESCC), and the current research investigated the detailed mechanisms implicated. METHODS The impact of HMGB1 and IGFBP3 levels on the survival of ESCC was examined by plotting Kaplan-Meier (KM) curves based on the data collected from The Cancer Genome Atlas (TCGA). Quantitative real-time PCR (qRT-PCR) was performed to detect the expressions of HMGB1 in both human esophageal epithelial cells (HEEC) and ESCC cells. After cell transfection, the proliferation of ESCC cells was measured, and the cell metastasis was determined based on the levels of cadherins (CDHs) and Vimentin (VIM). Macrophage polarization was determined by calculating the mean fluorescence intensity (MFI) of CD206 and CD86. In addition, co-immunoprecipitation and immunoblotting were applied to evaluate the interaction between insulin-like growth factor binding protein 3 (IGFBP3)/DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and HMGB1. RESULTS A high level of HMGB1 was predictive of an unfavorable prognosis of ESCC (p < 0.05). HMGB1 showed a higher expression in ESCC cells (p < 0.05), while knockdown of HMGB1 inhibited ESCC cell proliferation, downregulated the levels of CDH2 and VIM and upregulated the level of CDH1 (p < 0.05). In contrast, overexpressed HMGB1 showed the opposite effects (p < 0.05), suggesting the role of HMGB1 in the epithelial-mesenchymal transition (EMT) of ESCC. After the knockout of HMGB1, the MFI of CD86 was increased but that of CD206 was reduced, indicating the polarization towards M1 macrophages (p < 0.05). However, the results were reversed when HMGB1 was overexpressed (p < 0.05). Meanwhile, HMGB1 could interact with the IGFBP3/DNA-PKcs complex (p < 0.05). Low-expressed IGFBP3 was predictive of an unfavorable prognosis of ESCC, and IGFBP3 silencing promoted the proliferation of ESCC cells (p < 0.05). Besides, HMGB1 and IGFBP3 could act antagonistically in influencing the proliferation of ESCC cells and macrophage polarization. CONCLUSIONS Through in vitro experiments, this study found that HMGB1 was linked to the proliferation and polarization of macrophages in ESCC, providing novel evidence for the role of HMGB1 in ESCC development.
Collapse
Affiliation(s)
- Liling Luo
- Department of Radiation Oncology, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Chao Jiang
- Department of Radiation Oncology, The People's Hospital of Shenzhen Baoan District, the Second Affiliated Hospital of Shenzhen University, Shenzhen, 518100, China
| | - Songxi Xie
- Department of Radiation Oncology, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
47
|
Morillo-Huesca M, G López-Cepero I, Conesa-Bakkali R, Tomé M, Watts C, Huertas P, Moreno-Bueno G, Durán RV, Martínez-Fábregas J. Radiotherapy resistance driven by Asparagine endopeptidase through ATR pathway modulation in breast cancer. J Exp Clin Cancer Res 2025; 44:74. [PMID: 40012043 DOI: 10.1186/s13046-025-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tumor resistance represents a major challenge in the current oncology landscape. Asparagine endopeptidase (AEP) overexpression correlates with worse prognosis and reduced overall survival in most human solid tumors. However, the underlying mechanisms of the connection between AEP and reduced overall survival in cancer patients remain unclear. METHODS High-throughput proteomics, cellular and molecular biology approaches and clinical data from breast cancer (BC) patients were used to identify novel, biologically relevant AEP targets. Immunoblotting and qPCR analyses were used to quantify protein and mRNA levels. Flow cytometry, confocal microscopy, chemical inhibitors, siRNA- and shRNA-silencing and DNA repair assays were used as functional assays. In-silico analyses using the TCGA BC dataset and immunofluorescence assays in an independent cohort of invasive ductal (ID) BC patients were used to validate the clinical relevance of our findings. RESULTS Here we showed a dual role for AEP in genomic stability and radiotherapy resistance in BC patients by suppressing ATR and PPP1R10 levels. Reduced ATR and PPP1R10 levels were found in BC patients expressing high AEP levels and correlated with worst prognosis. Mechanistically, AEP suppresses ATR levels, reducing DNA damage-induced cell death, and PPP1R10 levels, promoting Chek1/P53 cell cycle checkpoint activation, allowing BC cells to efficiently repair DNA. Functional studies revealed AEP-deficiency results in genomic instability, increased DNA damage signaling, reduced Chek1/P53 activation, impaired DNA repair and cell death, with phosphatase inhibitors restoring the DNA damage response in AEP-deficient BC cells. Furthermore, AEP inhibition sensitized BC cells to the chemotherapeutic reagents cisplatin and etoposide. Immunofluorescence assays in an independent cohort of IDBC patients showed increased AEP levels in ductal cells. These analyses showed that higher AEP levels in radioresistant IDBC patients resulted in ATR nuclear eviction, revealing AEPhigh/ATRlow protein levels as an efficient predictive biomarker for the stratification of radioresistant patients. CONCLUSION The newly identified AEP/ATR/PPP1R10 axis plays a dual role in genomic stability and radiotherapy resistance in BC. Our work provides new clues to the underlying mechanisms of tumor resistance and strong evidence validating the AEP/ATR axis as a novel predictive biomarker and therapeutic target for the stratification and treatment of radioresistant BC patients.
Collapse
Affiliation(s)
- Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Ignacio G López-Cepero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain
| | - Gema Moreno-Bueno
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), C/ Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Fundación MD Anderson Internacional, C/ Gómez Hemans 1, Madrid, 28033, Spain
- Translational Cancer Research Group. Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain.
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain.
| |
Collapse
|
48
|
Kelley V, Baro M, Gasperi W, Ader N, Lea H, Lee H, Phoomak C, Kabeche L, King M, Contessa J. Loss of JAK1 Function Causes G2/M Cell Cycle Defects Vulnerable to Kif18a Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638911. [PMID: 40060568 PMCID: PMC11888196 DOI: 10.1101/2025.02.19.638911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
To gain insight into biological mechanisms that cause resistance to DNA damage, we performed parallel pooled genetic CRISPR-Cas9 screening for survival in high risk HNSCC subtypes. Surprisingly, and in addition to ATM, DNAPK, and NFKB signaling, JAK1 was identified as a driver of tumor cell radiosensitivity. Knockout of JAK1 in HNSCC increases cell survival by enhancing the DNA damage-induced G2 arrest, and both knockout and JAK1 inhibition with abrocitinib prevent subsequent formation of radiation-induced micronuclei. Loss of JAK1 function does not affect canonical CDK1 signaling but does reduce activation of PLK1 and AURKA, kinases that regulate both G2 and M phase progression. Correspondingly, JAK1 KO was found to cause mitotic defects using both EdU labeling and live cell imaging techniques. Given this insight, we evaluated Kif18a inhibition as an approach to exacerbate mitotic stress and enhance the efficacy of radiation. These studies establish Kif18a inhibition as a novel strategy to counteract therapeutic resistance to DNA damage mediated by G2 cell cycle arrest.
Collapse
Affiliation(s)
- Vanessa Kelley
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - William Gasperi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Nicholas Ader
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412 USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Hannah Lea
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Hojin Lee
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Chatchai Phoomak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Department of Biology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lilian Kabeche
- Department Molecular Biophysics and Biomedicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Megan King
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
49
|
Engelbrecht-Roberts M, Miles X, Vandevoorde C, de Kock M. An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities. Molecules 2025; 30:1038. [PMID: 40076263 PMCID: PMC11902069 DOI: 10.3390/molecules30051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Global disparities in cancer prevention, detection, and treatment demand a unified international effort to reduce the disease's burden and improve outcomes. Despite advances in chemotherapy and radiotherapy, many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers, enhancing the effectiveness of low-energy X-rays by emitting Auger electrons that cause localized cellular damage. In this study, spherical AuNPs of 5 nm and 10 nm were characterized and tested on various cell lines, including malignant breast cells (MCF-7), non-malignant cells (CHO-K1 and MCF-10A), and human lymphocytes. Cells were treated with AuNPs and irradiated with attenuated 6 megavoltage (MV) X-rays or p(66)/Be neutron radiation to assess DNA double-strand break (DSB) damage, cell viability, and cell cycle progression. The combination of AuNPs and neutron radiation induced higher levels of γ-H2AX foci and micronucleus formation compared to treatments with AuNPs or X-ray radiation alone. AuNPs alone reduced cellular kinetics and increased the accumulation of cells in the G2/M phase, suggesting a block of cell cycle progression. For cell proliferation, significant effects were only observed at the concentration of 50 μg/mL of AuNPs, while lower concentrations had no inhibitory effect. Further research is needed to quantify internalized AuNPs and correlate their concentration with the observed cellular effects to unravel the biological mechanisms of their radioenhancement.
Collapse
Affiliation(s)
- Monique Engelbrecht-Roberts
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Xanthene Miles
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Charlot Vandevoorde
- Space Radiation Biology, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - Maryna de Kock
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
50
|
Pasaol JC, Śmieszek A, Pawlak A. Exploring the Therapeutic Potential of BRCA1 and BRCA2 as Targets in Canine Oncology: A Comprehensive Review of Their Role in Cancer Development and Treatment. Int J Mol Sci 2025; 26:1768. [PMID: 40004231 PMCID: PMC11855874 DOI: 10.3390/ijms26041768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor diseases represent a significant global health challenge, impacting both humans and companion animals, notably dogs. The parallels observed in the pathophysiology of cancer between humans and dogs underscore the importance of advancing comparative oncology and translational research methodologies. Furthermore, dogs serve as valuable models for human cancer research due to shared environments, genetics, and treatment responses. In particular, breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2), which are critical in human cancer, also influence the development and progression of canine tumors. The role of BRCA1 and BRCA2 in canine cancers remains underexplored, but its potential significance as therapeutic targets is strongly considered. This systematic review aims to broaden the discussion of BRCA1 and BRCA2 beyond mammary tumors, exploring their implications in various canine cancers. By emphasizing the shared genetic underpinnings between species and advocating for a comparative approach, the review indicates the potential of BRCA genes as targets for innovative cancer therapies in dogs, contributing to advances in human and veterinary oncology.
Collapse
Affiliation(s)
| | | | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (J.C.P.); (A.Ś.)
| |
Collapse
|