1
|
Ouyang L, Lei G, Gong Y. Immunogenicity of COVID-19 vaccines in patients with cirrhosis: A meta-analysis. Hum Vaccin Immunother 2024; 20:2326316. [PMID: 38466197 PMCID: PMC10936597 DOI: 10.1080/21645515.2024.2326316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The immunogenicity of COVID-19 vaccines in patients with liver cirrhosis remains largely unknown. The purpose of this meta-analysis was to investigate the immunogenicity of COVID-19 vaccines in patients with cirrhosis and compare the humoral and cellular immune responses following complete COVID-19 vaccination between cirrhosis patients and healthy controls. A systematic literature search was conducted in PubMed, EMBASE, and Web of Science from 1 January 2020 to 22 August 2023. Sixteen studies with 2127 cirrhosis patients were included. The pooled seroconversion rate in patients with cirrhosis following complete COVID-19 vaccination was 92.4% (95% CI, 86.2%-96%, I2 = 90%) with significant between-study heterogeneity. Moreover, COVID-19 vaccination elicited a higher humoral immune response in patients of compensated cirrhosis as compared with decompensated cirrhosis (RR = 1.069, 95% CI, 1.011-1.131, I2 = 17%, p = .019). Additionally, 10 studies were included for comparison analysis of seroconversion rate between cirrhosis patients and healthy controls. The results showed that the seroconversion rate in patients with cirrhosis was slightly lower compared with healthy controls (RR = 0.972, 95% CI, 0.955-0.989, I2 = 66%, p = .001). Meanwhile, the pooled RR of cellular immune response rate for cirrhosis patients vs. healthy controls was 0.678 (95% CI, 0.563-0.817, I2 = 0, p < .0001). Our meta-analysis demonstrated that COVID-19 vaccination elicited diminished humoral and cellular immune responses in patients of cirrhosis. Patients with cirrhosis particularly decompensated cirrhosis who have completed full-doses of COVID-19 vaccination should receive continuous attention and preemptive measures.
Collapse
Affiliation(s)
- Lichen Ouyang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Gang Lei
- Department of Obstetric, Centre Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Yeli Gong
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
2
|
Xiao G, He T, Zhang B, Yang Z, Ling N, Chen M, Zhang D, Hu P, Zhang G, Peng M, Cai D, Ren H. Safety and Efficacy of SARS-CoV-2 Vaccines in Patients With Chronic Liver Diseases: A Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1605295. [PMID: 39640843 PMCID: PMC11617177 DOI: 10.3389/ijph.2024.1605295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives This review aimed to assess the safety and efficacy of SARS-CoV-2 vaccines in patients with chronic liver disease (CLD). Methods Cochrane Central Register of Controlled Trials, PubMed, Embase, and Web of Science were searched from 2020 to 2024. Data was extracted following Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. The random-effects model (when I2 ≥ 50%) or fixed effect model (I2 < 50%) was used. Results 29 studies were included in this review. Compared to healthy controls (HCs), patients with CLD had a higher incidence of mild adverse events (RR = 1.60, p < 0.001), while the incidence of severe adverse events was similar (RR = 1.08, p = 0.92). Seropositivity rates of three antibodies in patients were lower than in HCs [neutralizing antibody (RR = 0.86, p = 0.002), anti-spike antibody (RR = 0.97, p = 0.06) and anti-receptor binding domain antibody (RR = 0.95, p = 0.04)]. Compared to unvaccinated patients, vaccinated patients had lower rates of SARS-CoV-2 infection, hospitalization and death (p ≤ 0.05). Conclusion SARS-CoV-2 vaccines showed good safety and efficacy in CLD patients, but antibody response appeared to be decreased. Therefore, SARS-CoV-2 vaccines and booster doses should be given priority in this vulnerable population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Lam LK, Tan JT, Ooi PH, Zhang R, Chan KH, Mao X, Hung IFN, Seto WK, Yuen MF, Cheung KS. Effect of metabolic dysfunction-associated steatotic liver disease on BNT162b2 immunogenicity against the severe acute respiratory syndrome coronavirus 2 omicron variant. J Gastroenterol Hepatol 2024; 39:2386-2393. [PMID: 39152762 PMCID: PMC11618226 DOI: 10.1111/jgh.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND AIM We aimed to investigate the effect of metabolic dysfunction-associated steatotic liver disease (MASLD) on three-dose BNT162b2 immunogenicity to the omicron variant. METHODS Adult recipients of three doses of BNT162b2 were prospectively recruited between May and December 2021. The serology of the neutralizing antibody by live virus microneutralization (vMN) to the omicron variant was measured at baseline, day 180, and day 360 after the first dose. The primary outcome was seroconversion (vMN titer ≥ 10) at day 360. Exposure of interest was MASLD, defined as hepatic steatosis (controlled attenuation parameter ≥ 248 dB/m on transient elastography) plus at least one of five cardiometabolic risk factors. Subjects with prior COVID-19 were excluded. A multivariable logistic regression model was used to derive the adjusted odds ratio of seroconversion with MASLD by adjusting for age, sex, antibiotic use, and proton pump inhibitor use. RESULTS One hundred forty-eight BNT162b2 recipients (male: 48 [32.4%]; median age: 51.0 years [interquartile range, IQR: 44.5-57.3]) were recruited. The median time from the first dose to the third dose was 8.5 months (IQR: 7.9-8.9). MASLD subjects had a lower seroconversion rate than non-MASLD ones (89.6% vs 99.0%; P = 0.007). MASLD was the only independent risk factor for seroconversion (adjusted odds ratio: 0.051, 95% confidence interval: 0.002-0.440). Subgroup analysis of immunogenicity at 4 months after the third dose shows significantly lower vMN titer (13.06 [IQR: 7.69-22.20] vs 33.49 [IQR: 24.05-46.53]; P = 0.004) and seroconversion rate (76.9% vs 97.4%; P = 0.016) in MASLD than non-MASLD subjects, but not within 4 months from the third dose (vMN titer: 46.87 [IQR: 33.12-66.02] vs 41.86 [IQR: 34.47-50.91], P = 0.240; seroconversion rate: 94.3% vs 100%, P = 0.131). CONCLUSION Metabolic dysfunction-associated steatotic liver disease was a risk factor for poorer immunogenicity to the omicron variant, with a more pronounced waning effect compared among three-dose BNT162b2 recipients.
Collapse
Affiliation(s)
- Lok Ka Lam
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Jing Tong Tan
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Poh Hwa Ooi
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Ruiqi Zhang
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Kwok Hung Chan
- Department of MicrobiologyThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Xianhua Mao
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Ivan F N Hung
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
| | - Wai Kay Seto
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
- Department of MedicineThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- State Key Laboratory of Liver ResearchThe University of Hong KongPok Fu LamHong Kong
| | - Man Fung Yuen
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongPok Fu LamHong Kong
| | - Ka Shing Cheung
- Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong
- Department of MedicineThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
4
|
Chen Z, Wang Y, He T, Li H, Ao L, Pan Q, Zhou Y, Zhu Q, Xiang D, Zhang G, Ling N, Chen M, Hu P, Peng M, Cai D, Zhang D, Ren H. Safety and Immunogenicity After Primary and Booster Inactivated SARS-Cov-2 Vaccination in Patients with Autoimmune Liver Diseases. J Clin Transl Hepatol 2024; 12:162-171. [PMID: 38343613 PMCID: PMC10851071 DOI: 10.14218/jcth.2023.00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND AND AIMS SARS-CoV-2 vaccines-associated autoimmune liver diseases have been reported in several case reports. However, the safety and immunogenicity after primary and booster inactivated SARS-CoV-2 vaccination in patients with autoimmune liver diseases (AILD) is still unknown. METHODS Eighty-four patients with AILD were prospectively followed up after the second dose (primary) of inactivated SARS-CoV-2 vaccine. Some of them received the third dose (booster) of inactivated vaccine. Adverse events (AEs), autoimmune activation, and liver inflammation exacerbation after primary and booster vaccination were recorded. Meanwhile, dynamics of antireceptor-binding-domain IgG (anti-RBD-IgG), neutralizing antibodies (NAbs) and RBD-specific B cells responses were evaluated. RESULTS The overall AEs in AILD patients after primary and booster vaccination were 26.2% and 13.3%, respectively. The decrease of C3 level and increase of immunoglobulin light chain κ and λ levels were observed in AILD patients after primary vaccination, however, liver inflammation was not exacerbated, even after booster vaccination. Both the seroprevalence and titers of anti-RBD-IgG and NAbs were decreased over time in AILD patients after primary vaccination. Notably, the antibody titers were significantly elevated after booster vaccination (10-fold in anti-RBD-IgG and 7.4-fold in NAbs, respectively), which was as high as in healthy controls. Unfortunately, the inferior antibody response was not enhanced after booster vaccination in patients with immunosuppressants. Changes of atypical memory B cells were inversely related to antibody levels, which indicate that the impaired immune memory was partially restored partly by the booster vaccination. CONCLUSIONS The well tolerability and enhanced humoral immune response of inactivated vaccine supports an additional booster vaccination in AILD patients without immunosuppressants.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Taiyu He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Ao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingbo Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dejuan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dazhi Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhu Q, Wang L, Hu X, Zhang Y, Huang T, He T, Chen Z, Zhang G, Peng M, Chen M, Cai D, Shi X, Ren H. Dynamic Humoral Immune Response to Primary and Booster Inactivated SARS-CoV-2 Vaccination in Patients with Cirrhosis. J Clin Transl Hepatol 2023; 11:1476-1484. [PMID: 38161494 PMCID: PMC10752809 DOI: 10.14218/jcth.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 01/03/2024] Open
Abstract
Background and Aims Our aim was to determine the immune efficacy of a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) booster vaccination in cirrhotic patients who had received the primary series. Methods We performed a longitudinal assessment in 48 patients with cirrhosis, 57 patients with chronic hepatitis B (CHB) and 68 healthy controls (HCs) to continuously track the dynamics of SARS-CoV-2 specific antibodies and memory B cells after receiving the primary series and booster dose at different times. A pseudovirus neutralization assay was used to determine neutralization against Omicron subvariants BA.2.12.1, BA.4 and BA.5 from serum samples collected from three cohorts. Results Serum anti-receptor-binding domain (RBD) immunoglobulin (Ig)G and neutralizing antibody (NAb) levels in cirrhotic patients were elevated within 15-45 days after completing the primary series before rapidly declining and reaching a valley at around 165-195 days. After receiving the booster dose, both antibody levels were significantly increased to levels comparable to patients with CHB and HCs. Subgroup analysis showed that booster vaccination induced weaker antibody responses in patients with decompensated cirrhosis than in those with compensated cirrhosis. The SARS-CoV-2 memory B-cell response in cirrhotic patients was durable during follow-up regardless of the hepatic fibro-cirrhosis grade. However, compared with the primary series, the booster dose did not result in an evident improvement of neutralization activity against the Omicron subvariants BA.2.12.1 and BA.4, and was followed by a significant decrease in the titer against BA.5. Conclusions A booster dose elicited a robust and durable humoral response to the wild-type strain in cirrhotic patients but not the Omicron subvariants. Repeated vaccination of inactivated SARS-CoV-2 vaccine may not benefit cirrhotic patients in neutralization against newly circulating strains.
Collapse
Affiliation(s)
| | | | - Xiaoxiao Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tianquan Huang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Taiyu He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaofeng Shi
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Liu Y, Lu J, Zhan H, Yuan W, Li X, Kang H, Li H, Chen Y, Cheng L, Sun X, Zheng H, Wang W, Dai E, Li Y. Inactivated SARS-CoV-2 booster vaccine enhanced immune responses in patients with chronic liver diseases. Virol Sin 2023; 38:723-734. [PMID: 37487943 PMCID: PMC10590695 DOI: 10.1016/j.virs.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Chronic liver disease (CLD) entails elevated risk of COVID-19 severity and mortality. The effectiveness of the booster dose of inactivated SARS-CoV-2 vaccine in stimulating antibody response in CLD patients is unclear. Therefore, we conducted a cross-sectional study involving 237 adult CLD patients and 170 healthy controls (HC) to analyze neutralizing antibodies (NAbs) against SARS-CoV-2 prototype and BA.4/5 variant, anti-receptor binding domain (RBD) IgG, and total anti-SARS-CoV-2 antibodies. Serum levels of the total anti-SARS-CoV-2 antibodies, anti-RBD IgG and inhibition efficacy of NAbs were significantly elevated in CLD patients after the booster dose compared with the pre-booster dose, but were relatively lower than those of HCs. Induced humoral responses decreased over time after booster vaccination. The neutralization efficiency of the serum against BA.4/5 increased but remained below the inhibition threshold. All four SARS-CoV-2 antibodies, including total anti-SARS-CoV-2 antibodies, anti-RBD IgG and NAbs against prototype and BA.4/5, were lower in patients with severe CLD than those with non-severe CLD. After booster shot, age and time after the last vaccine were the risk factors for seropositivity of NAb against BA.4/5 in CLD patients. Additionally, white blood cell counts and hepatitis B core antibodies were the protective factors, and severe liver disease was the risk factor associated with seropositivity of total anti-SARS-CoV-2 antibodies. Overall, our data uncovered that antibody responses were improved in CLD patients and peaked at 120 days after the booster vaccines. All antibodies excepting total anti-SARS-CoV-2 antibodies declined after peak. CLD patients exhibited impaired immunologic responses to vaccination and weakened NAbs against BA.4/5, which hindered the protective effect of the booster shot against Omicron prevalence. Cellular immune responses should be further evaluated to determine the optimal vaccine regimen for CLD patients.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianhua Lu
- Department of Clinical Laboratory, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wenfang Yuan
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100035, China
| | - Haiyan Kang
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongliang Chen
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xingli Sun
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Haojie Zheng
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Wei Wang
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China
| | - Erhei Dai
- Division of Liver Diseases, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, 050021, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
7
|
Papa A, Covino M, De Lucia SS, Del Gaudio A, Fiorani M, Polito G, Settanni CR, Piccioni A, Franceschi F, Gasbarrini A. Impact of COVID-19 in individuals with and without pre-existent digestive disorders with a particular focus on elderly patients. World J Gastroenterol 2023; 29:4099-4119. [PMID: 37475841 PMCID: PMC10354572 DOI: 10.3748/wjg.v29.i26.4099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 07/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has several extrapulmonary symptoms. Gastrointestinal (GI) symptoms are among the most frequent clinical manifestations of COVID-19, with severe consequences reported in elderly patients. Furthermore, the impact of COVID-19 on patients with pre-existing digestive diseases still needs to be fully elucidated, particularly in the older population. This review aimed to investigate the impact of COVID-19 on the GI tract, liver, and pancreas in individuals with and without previous digestive diseases, with a particular focus on the elderly, highlighting the distinctive characteristics observed in this population. Finally, the effectiveness and adverse events of the anti-COVID-19 vaccination in patients with digestive disorders and the peculiarities found in the elderly are discussed.
Collapse
Affiliation(s)
- Alfredo Papa
- CEMAD, Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
- CEMAD, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Marcello Covino
- Department of Emergency, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome 00168, Italy
- Emergency Medicine, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Sara Sofia De Lucia
- CEMAD, Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
| | - Angelo Del Gaudio
- CEMAD, Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
| | - Marcello Fiorani
- CEMAD, Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
| | - Giorgia Polito
- CEMAD, Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
| | - Carlo Romano Settanni
- Digestive Disease Center, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Andrea Piccioni
- Department of Emergency, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
| | - Francesco Franceschi
- Department of Emergency, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
- Department of Emergency, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Antonio Gasbarrini
- CEMAD, Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma 00168, Italy
| |
Collapse
|
8
|
Simão AL, Palma CS, Izquierdo-Sanchez L, Putignano A, Carvalho-Gomes A, Posch A, Zanaga P, Girleanu I, Henrique MM, Araújo C, Degre D, Gustot T, Sahuco I, Spagnolo E, Carvalhana S, Moura M, Fernandes DAE, Banales JM, Romero-Gomez M, Trifan A, Russo FP, Stauber R, Berenguer M, Moreno C, Gonçalves J, Cortez-Pinto H, Castro RE. Cirrhosis is associated with lower serological responses to COVID-19 vaccines in patients with chronic liver disease. JHEP Rep 2023; 5:100697. [PMID: 36844943 PMCID: PMC9939238 DOI: 10.1016/j.jhepr.2023.100697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND & AIMS The response of patients with chronic liver disease (CLD) to COVID-19 vaccines remains unclear. Our aim was to assess the humoral immune response and efficacy of two-dose COVID-19 vaccines among patients with CLD of different aetiologies and disease stages. METHODS A total of 357 patients were recruited in clinical centres from six European countries, and 132 healthy volunteers served as controls. Serum IgG (nM), IgM (nM), and neutralising antibodies (%) against the Wuhan-Hu-1, B.1.617, and B.1.1.529 SARS-CoV-2 spike proteins were determined before vaccination (T0) and 14 days (T2) and 6 months (T3) after the second-dose vaccination. Patients fulfilling inclusion criteria at T2 (n = 212) were stratified into 'low' or 'high' responders according to IgG levels. Infection rates and severity were collected throughout the study. RESULTS Wuhan-Hu-1 IgG, IgM, and neutralisation levels significantly increased from T0 to T2 in patients vaccinated with BNT162b2 (70.3%), mRNA-1273 (18.9%), or ChAdOx1 (10.8%). In multivariate analysis, age, cirrhosis, and type of vaccine (ChAdOx1 > BNT162b2 > mRNA-1273) predicted 'low' humoral response, whereas viral hepatitis and antiviral therapy predicted 'high' humoral response. Compared with Wuhan-Hu-1, B.1.617 and, further, B.1.1.529 IgG levels were significantly lower at both T2 and T3. Compared with healthy individuals, patients with CLD presented with lower B.1.1.529 IgGs at T2 with no additional key differences. No major clinical or immune IgG parameters associated with SARS-CoV-2 infection rates or vaccine efficacy. CONCLUSIONS Patients with CLD and cirrhosis exhibit lower immune responses to COVID-19 vaccination, irrespective of disease aetiology. The type of vaccine leads to different antibody responses that appear not to associate with distinct efficacy, although this needs validation in larger cohorts with a more balanced representation of all vaccines. IMPACT AND IMPLICATIONS In patients with CLD vaccinated with two-dose vaccines, age, cirrhosis, and type of vaccine (Vaxzevria > Pfizer BioNTech > Moderna) predict a 'lower' humoral response, whereas viral hepatitis aetiology and prior antiviral therapy predict a 'higher' humoral response. This differential response appears not to associate with SARS-CoV-2 infection incidence or vaccine efficacy. However, compared with Wuhan-Hu-1, humoral immunity was lower for the Delta and Omicron variants, and all decreased after 6 months. As such, patients with CLD, particularly those older and with cirrhosis, should be prioritised for receiving booster doses and/or recently approved adapted vaccines.
Collapse
Affiliation(s)
- André Lopes Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Santos Palma
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Izquierdo-Sanchez
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Antonella Putignano
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Carvalho-Gomes
- Hepatology & Liver Transplantation Unit, La Fe University Hospital, University of Valencia, CIBER-EHD and IIS La Fe, Valencia, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, “Instituto de Salud Carlos III” (ISCIII), Madrid, Spain
| | - Andreas Posch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Paola Zanaga
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale-Università di Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Irina Girleanu
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, ‘St. Spiridon’ Emergency Hospital, Institute of Gastroenterology and Hepatology, Iasi, Romania
| | - Mariana Moura Henrique
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Araújo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Delphine Degre
- Institute for Medical Immunology, Erasme Campus, Brussels, Belgium
| | - Thierry Gustot
- Institute for Medical Immunology, Erasme Campus, Brussels, Belgium
| | - Iván Sahuco
- Hepatology & Liver Transplantation Unit, La Fe University Hospital, University of Valencia, CIBER-EHD and IIS La Fe, Valencia, Spain
| | - Elia Spagnolo
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale-Università di Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Sofia Carvalhana
- Departamento de Gastrenterologia, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Miguel Moura
- Departamento de Gastrenterologia, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Diogo AE. Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, “Instituto de Salud Carlos III” (ISCIII), Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Romero-Gomez
- Digestive Diseases Department, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain
| | - Anca Trifan
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, ‘St. Spiridon’ Emergency Hospital, Institute of Gastroenterology and Hepatology, Iasi, Romania
| | - Francesco Paolo Russo
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale-Università di Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Marina Berenguer
- Hepatology & Liver Transplantation Unit, La Fe University Hospital, University of Valencia, CIBER-EHD and IIS La Fe, Valencia, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, “Instituto de Salud Carlos III” (ISCIII), Madrid, Spain
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Cortez-Pinto
- Departamento de Gastrenterologia, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Efficacy, Safety and Immunogenicity of Anti-SARS-CoV-2 Vaccines in Patients with Cirrhosis: A Narrative Review. Vaccines (Basel) 2023; 11:vaccines11020452. [PMID: 36851329 PMCID: PMC9966438 DOI: 10.3390/vaccines11020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19), has led to a pandemic with more than 6.5 million deaths worldwide. Patients with liver cirrhosis (PWLC) are regarded as prone to severe COVID-19. Vaccination against SARS-CoV-2 has been proven to be the most effective measure against COVID-19 and a variety of different vaccines have been approved for use; namely mRNA and vector-based, inactivated, whole virion, and protein subunit vaccines. Unfortunately, only a small number of PWLC were included in phase I-III vaccine trials, raising concerns regarding their efficacy and safety in this population. The authors, in this review, present available data regarding safety and efficacy of anti-SARS-CoV-2 vaccination in PWLC and discuss post-vaccination antibody responses. Overall, all vaccines seem to be extremely safe, with only a few and insignificant adverse events, and efficient, leading to lower rates of hospitalization and COVID-19-related mortality. T- and B-cell responses, on the other hand, remain an enigma, especially in patients with decompensated disease, since these patients show lower titers of anti-SARS-CoV-2 antibodies in some studies, with a more rapid waning. However, this finding is not consistent, and its clinical impact is still undetermined.
Collapse
|