1
|
Lan Y, Liu D, Liang B, Song X, Xie L, Peng H, Guo H, Hong C, Weng X, Wei X, Liao X, Liang R, Huang D, Liu M. ITGA3-MET interaction promotes papillary thyroid cancer progression via ERK and PI3K/AKT pathways. Ann Med 2025; 57:2483379. [PMID: 40138447 PMCID: PMC11948363 DOI: 10.1080/07853890.2025.2483379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studies have examined the role of integrin α3 (ITGA3) in papillary thyroid carcinoma (PTC). However, the functional and molecular mechanism by which ITGA3 is involved in the progression of PTC remains poorly understood. METHODS To investigate the role of ITGA3 in PTC, raw PTC transcriptome data underwent comprehensive bioinformatics analyses, including differential expression, co-expression network, and enrichment analyses. ITGA3 expression was validated via immunohistochemistry and western blotting in PTC tissues. Cell functional assays and xenograft models assessed PTC cell behaviour. The potential mechanisms of ITGA3 were elucidated using bioinformatics analyses, western blotting, co-immunoprecipitation, and immunofluorescence. Finally, integration of ITGA3 expression with clinical parameters enabled nomogram construction for precise prediction of cervical lymph node metastasis (CLNM) in PTC. RESULTS ITGA3 was upregulated in PTC and associated strongly with CLNM (79.5% vs. 53.84%, p = 0.016). ITGA3 expression enhanced PTC proliferation and migration in vitro and in vivo via cooperating with the MET protein tyrosine kinase, followed by phosphorylation of MET at Tyr1234/1235, and activation of ERK and PI3K/AKT signaling pathways. Furthermore, upregulation ITGA3 reduced phosphorylation at FAK-Tyr397 and Src-Tyr416 in PTC cells. Finally, a nomogram combining ITGA3 expression and clinical parameters for predicting CLNM was constructed and validated, achieving a ROC curve AUC of 0.719, suggesting potential application for PTC diagnosis. CONCLUSIONS ITGA3 promotes PTC cell proliferation and migration by cooperating with MET to activate MET-ERK and MET-PI3K-AKT signalling. ITGA3-MET cooperation may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Youmian Lan
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongchen Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Hanwei Peng
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Haipeng Guo
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chaoqun Hong
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuwu Weng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqi Liao
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Rui Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Muyuan Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Jeon HH, Salas MCC, Park K, Fisher L, Ha S, Palmer C, Chan F, Graves DT. Comparison of the bone remodeling in the midpalatal suture during maxillary expansion between young and middle-aged mice. Bone 2025; 197:117512. [PMID: 40324615 DOI: 10.1016/j.bone.2025.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Maxillary expansion is a common orthodontic procedure for treating maxillary transverse deficiency. However, the cell responses to mechanical force may vary across different age groups, suggesting the need for age-specific treatment protocols. To compare the age-related responses to the mechanical force, we examined the 6-week- and 12-month-old mice undergoing maxillary expansion with 0.012-in. stainless steel orthodontic wire bonded to the maxillary first and second molars (25 g force). Mice were euthanized on days 0, 3, 7, and 14 for analysis. MicroCT analysis, tartrate-resistant acid phosphatase (TRAP) stain, and immunofluorescence/immunohistochemistry stain using antibodies to RUNX2, alkaline phosphatase (ALP), Gli1 and Ki67 along with the TUNEL assay, were conducted to evaluate suture width, osteoclast activity, new bone formation and mesenchymal stem cell (MSC) proliferation and apoptosis. Both 6-week- and 12-month-old mice exhibited successful midpalatal suture opening, but young mice demonstrated earlier and more intense osteoclast activity, along with higher expression of RUNX2 and ALP. Young mice also exhibited a higher percentage of Gli1+Ki67+ immunopositive cells, while middle-aged mice showed a higher percentage of Gli1+TUNEL+ positive cells on day 3 after maxillary expansion. Our findings suggest that aging negatively impacts mechanical force-induced bone remodeling by reducing osteoclastogenesis, osteogenesis, and MSC proliferation while increasing MSC apoptosis.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mary Cruz Contreras Salas
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyungjoon Park
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Fisher
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Ha
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Palmer
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fionna Chan
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Lou Y, Dong C, Jiang Q, He Z, Yang S. Protein succinylation mechanisms and potential targeted therapies in urinary disease. Cell Signal 2025; 131:111744. [PMID: 40090556 DOI: 10.1016/j.cellsig.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Succinylation is a relatively common post-translational modification. It occurs in the cytoplasm, mitochondria, and the nucleus, where its essential precursor, succinyl-CoA, is present, allowing for the modification of non-histone and histone proteins. In normal cells, succinylation levels are carefully regulated to sustain a dynamic balance, necessitating the involvement of various regulatory mechanisms, including non-enzymatic reactions, succinyltransferases, and desuccinylases. Among these regulatory factors, sirtuin 5, the first identified desuccinylase, plays a significant role and has been extensively researched. The level of succinylation has a significant effect on multiple metabolic pathways, including the tricarboxylic acid cycle, redox balance, and fatty acid metabolism. Dysregulated succinylation can contribute to the progression or exacerbation of various urinary diseases. Succinylation predominantly affects disease progression by altering the expression of key genes and modulating the activity of enzymes involved in vital metabolic processes. Desuccinylases primarily affect enzymes associated with Warburg's effect, thereby affecting the energy supply of tumor cells, while succinyltransferases can regulate gene transcription to alter cell phenotype, thereby involving the development of urinary diseases. Considering these effects, targeting succinylation-related enzymes to regulate metabolic pathways or gene expression may offer a promising therapeutic strategy for treating urinary diseases.
Collapse
Affiliation(s)
- Yuanquan Lou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Li F, Fan X, Wang B, Tong J, Ling M, Tong H, Huang Y. Phillyrin counters β2 integrin-mediated neutrophil adhesion and chemotaxis to alleviate endotoxin-induced acute lung injury in neonatal rats. Biochem Pharmacol 2025; 237:116934. [PMID: 40210127 DOI: 10.1016/j.bcp.2025.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/15/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Acute lung injury (ALI) in neonates presents a grave threat to infant health, characterized by a heightened risk of mortality. Phillyrin, an extraordinary constituent derived from a traditional Chinese medicinal herb Forsythia suspensa, has garnered considerable attention for its pronounced anti-inflammatory properties. However, its therapeutic potential for acute inflammatory diseases in neonates remains unclear. Therefore, our current study endeavors to assess the protective effects of phillyrin against lipopolysaccharide (LPS)-induced ALI in neonates and elucidate the underlying mechanisms. Phillyrin exhibited significant amelioration of lung damage in neonatal rats with LPS-induced ALI, accompanied by reductions in the total cell counts, neutrophil counts, and total protein level in bronchoalveolar lavage fluid (BALF). Notably, phillyrin substantially attenuated proinflammatory cytokine secretion and suppressed NF-κB activation in the lungs of neonatal ALI rats; however, it demonstrated inefficacy in mitigating LPS-induced cytokine secretion and NF-κB activation in vitro. Notably, phillyrin effectively inhibited β2 integrin-mediated neutrophil adhesion, migration, and chemotaxis. Moreover, phillyrin robustly suppressed β2 integrin engagement-induced actin polymerization and the Vav1/Rac1/PAK1/LIMK1/cofilin pathway. From a mechanistic standpoint, phillyrin exhibited direct interaction with β2 integrin, effectively antagonizing its function and significantly disrupting its binding affinity to intercellular adhesion molecule 1 (ICAM-1). This investigation unveils the promising therapeutic prospects of phillyrin as a novel compound against neonatal ALI.
Collapse
Affiliation(s)
- Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Xinrong Fan
- Department of Durg Preparation, Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Bohao Wang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Jingyang Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Menglai Ling
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| | - Yumei Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Midekssa FS, Davidson CD, Wieger ME, Kamen JL, Hanna KM, Jayco DKP, Hu MM, Friend NE, Putnam AJ, Helms AS, Shikanov A, Baker BM. Semi-synthetic fibrous fibrin composites promote 3D microvascular assembly, survival, and host integration of endothelial cells without mesenchymal cell support. Bioact Mater 2025; 49:652-669. [PMID: 40235652 PMCID: PMC11999628 DOI: 10.1016/j.bioactmat.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Vasculogenic assembly of 3D capillary networks remains a promising approach to vascularizing tissue-engineered grafts, a significant outstanding challenge in tissue engineering and regenerative medicine. Current approaches for vasculogenic assembly rely on the inclusion of supporting mesenchymal cells alongside endothelial cells, co-encapsulated within vasculo-conducive materials such as low-density fibrin hydrogels. Here, we established a material-based approach to circumvent the need for supporting mesenchymal cells and report that the inclusion of synthetic matrix fibers in dense (>3 mg mL-1) 3D fibrin hydrogels can enhance vasculogenic assembly in endothelial cell monocultures. Surprisingly, we found that the addition of non-cell-adhesive synthetic matrix fibers compared to cell-adhesive synthetic fibers best encouraged vasculogenic assembly, proliferation, lumenogenesis, a vasculogenic transcriptional program, and additionally promoted cell-matrix interactions and intercellular force transmission. Implanting fiber-reinforced prevascularized constructs to assess graft-host vascular integration, we demonstrate additive effects of enhanced vascular network assembly during in vitro pre-culture, fiber-mediated improvements in endothelial cell survival and vascular maintenance post-implantation, and enhanced host cell infiltration that collectively enabled graft vessel integration with host circulation. This work establishes synthetic matrix fibers as an inexpensive alternative to sourcing and expanding secondary supporting cell types for the prevascularization of tissue constructs.
Collapse
Affiliation(s)
- Firaol S. Midekssa
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Christopher D. Davidson
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Megan E. Wieger
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Jordan L. Kamen
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Kaylin M. Hanna
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Danica Kristen P. Jayco
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Michael M. Hu
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan Ann Arbor, MI 48109, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| |
Collapse
|
6
|
Ma X, Yuan X, Wang G, Xue T, Zhang M, Wang J. Characterization and functional analysis of integrin αV in Sebastes schlegelii: Implications for apoptosis, adhesion, and migration in intestinal cells. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110357. [PMID: 40258433 DOI: 10.1016/j.fsi.2025.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Integrins, as essential cell adhesion molecules, consist of an α subunit and a β subunit that interact with extracellular matrix proteins and cell surface ligands to mediate cellular adhesion and signaling. The integrin αV subfamily is widely expressed on the cell surface and plays a critical role in regulating cell growth, apoptosis, and various cellular processes. To explore the function of integrin αV in teleosts, we retrieved the integrin αV (SsITGαV) sequences from the Sebastes schlegelii genome and assessed the tissue expression and response to Edwardsiella tarda stimuli of SsITGαV. We evaluated the effects of SsITGαV in the intestinal cell line on apoptosis, migration, and adhesion using flow cytometry, scratch assays, and cell adhesion experiments by overexpressing and RNA interference methods. The results showed that the coding sequence of SsITGαV comprises 1055 amino acids, containing a signal peptide and a transmembrane domain. SsITGαV is expressed in various tissues, with the highest expression observed in the gill. We investigated the expression pattern of SsITGαV in the head kidney post E. tarda stimulation and observed an increase in its expression. Subcellular localization revealed that SsITGαV predominantly resides in the extracellular matrix. SsITGαV facilitated apoptosis, enhanced cell adhesion, and promoted cell migration in the intestinal cell line. According to the qRT-PCR analysis, alterations in the expression levels of apoptosis-related genes caspase-3, caspase-8, and caspase-10, along with inflammatory factors IL-1 β, IL-6, and IL-8, were positively linked to changes in SsITGαV. These findings provide insights into the function of the integrin αV gene in teleosts, establishing a foundation for further investigation into the role of the integrin α subfamily in lower vertebrates.
Collapse
Affiliation(s)
- Xinqing Ma
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaohua Yuan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guanghua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jingjing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Verstappen K, Klymov A, Marques PAAP, Leeuwenburgh SCG, Walboomers XF. Incorporation of graphene oxide into collagenous biomaterials attenuates scar-forming phenotype transition of reactive astrocytes in vitro. Brain Res Bull 2025; 227:111380. [PMID: 40383237 DOI: 10.1016/j.brainresbull.2025.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
The integrin-mediated interaction between collagen type I and reactive astrocytes was recently shown to induce a detrimental, scar-forming phenotype transformation following spinal cord injury (SCI), which severely limits the therapeutic potential of commonly used collagen-based biomaterials. Graphene oxide (GO) is a promising candidate to disrupt the collagen-integrin interaction, since it is capable of altering the surface topography of biomaterials applied as SCI treatment. Moreover, free GO contributes towards potassium and glutamate transport, which is often implicated following SCI. However, it remains unclear whether both the integrin-mediated binding and astrocytic transport of potassium and glutamate are affected by GO, when inserted into collagenous biomaterials. Therefore, in the current study GO was incorporated into collagen-based hydrogels in an attempt to prevent the scar-forming phenotype transition and promote the expression of astrocytic potassium channels and glutamate transporters. Primary astrocytes were cultured either on top of or embedded within GO-enriched collagen type I or adipose tissue-derived extracellular matrix (ECM) gels. The impact of GO incorporation on integrin β1-mediated binding, astrocyte phenotype and potassium and glutamate transport was assessed by gene expression analysis and immunofluorescence studies. Upon GO incorporation into ECM gels, expression of integrin β1 and N-cadherin was significantly decreased. Moreover, GO decreased proteoglycan-associated gene expression by four-fold. Finally, GO incorporation led to a decrease in expression of both potassium channels and glutamate transporters. In conclusion, the incorporation of GO into collagen-based materials attenuated the transition of reactive astrocytes into a scar-forming phenotype.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - X Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| |
Collapse
|
8
|
Zhou L, Cui M, Yu J, Liu Y, Zeng F, Liu Y. Identification of Versican as a target gene of the transcription Factor ZNF587B in ovarian cancer. Biochem Pharmacol 2025; 237:116946. [PMID: 40228636 DOI: 10.1016/j.bcp.2025.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Ovarian cancer is the most lethal malignancy affecting the female reproductive system, with its progression and metastasis being significant contributors to patient mortality. Our previous study identified the zinc finger protein ZNF587B as a potential tumor suppressor that inhibited the proliferation, migration and invasion of ovarian cancer cells, although the underlying mechanism remains elusive. In this study, ZNF587B was demonstrated to bind directly to the promoter region of Versican (VCAN), a high molecular weight chondroitin sulfate glycoprotein, and repress its transcription using Chromatin immunoprecipitation-qPCR (ChIP-qPCR), luciferase reporter assays, and immunofluorescence (IF). Moreover, in vivo and in vitro assays revealed that the effect of ZNF587B knockdown on ovarian cancer proliferation may be mediated through VCAN. Not only that, patients with reduced expression of ZNF587B and increased expression of VCAN exhibit a poorer prognosis. The potential mechanism behind this may involve its impact on the phosphorylation process of AKT.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Jian Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
9
|
Arab Bafrani M, Rios V, Kim MJ, Balan A, Bove R. Gynecological health: A missing link in comprehensive treatment monitoring for multiple sclerosis. Mult Scler 2025:13524585251346371. [PMID: 40528461 DOI: 10.1177/13524585251346371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2025]
Abstract
Safety monitoring of disease-modifying therapies (DMTs) used to treat multiple sclerosis (MS) has largely overlooked the domain of gynecological health. This topical review aims to provide MS clinicians with an overview of the three categories of complications described to date, as well as risk mitigation strategies. These are increased risk of human papilloma virus (HPV) positivity and related cervical dysplasia/cancers; inflammatory and infectious vaginitis and susceptibility to bacterial vaginosis (BV); and herpesvirus infections, including genital Herpes Simplex Virus (HSV). Current knowledge may be biased due to limited studies and lack of gynecological focus in neurological encounters. Risk mitigation strategies include promoting HPV vaccination, following guidance for immune compromised individuals relating to cervical cancer screening and antiviral suppression, and proactive communication with patients about gynecological health when starting DMTs. Together, these might improve gynecological health and thereby quality of life in females with neuroinflammatory diseases.
Collapse
Affiliation(s)
- Melika Arab Bafrani
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Viviana Rios
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Min Ji Kim
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Ayushi Balan
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Arias-Mainer C, Romero-Gavilán F, Cerqueira A, Peñarocha-Oltra D, García-Arnáez I, Amorrotu O, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J. Quercetin-doped sol-gel coatings on titanium implants: a promising approach for enhanced immune response and cell adhesion. J Mater Chem B 2025; 13:7048-7061. [PMID: 40371955 DOI: 10.1039/d4tb02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Quercetin (QUE), a natural flavonoid found in various fruits and vegetables, has diverse biological functions, including anti-inflammatory effects, regulation of cell adhesion and oxidative stress mitigation. In this study, sol-gel materials with increasing concentrations of quercetin (0.5, 1 and 2 wt%) were synthesised and applied onto titanium (Ti) surfaces as coatings. The materials were characterised physiochemically, and in vitro responses were examined using HOb osteoblastic cells and THP-1 macrophages. Human serum protein adsorption was evaluated using nLC-MS/MS. The incorporation of quercetin did not affect the sol-gel network cross-linking, and a controlled release of quercetin was achieved. The materials exhibited no cytotoxicity at any concentration. The HOb cells cultured on quercetin-doped materials were more elongated than those grown on QUE-free coatings, with protruding lamellipodia and increased cell surface. QUE-doped surfaces enhanced the expression of BMP-2, RANKL, and cell adhesion-related genes CTNNB1 and β-actin. In the THP-1 cells, pro-inflammatory gene expression (IL-1β, MCP-1 and iNOS) was down-regulated on 0.5QUE material, while it increased on 2QUE, as did the cytokine liberation. These changes correlated with altered protein adsorption patterns. The 2QUE coatings enhanced the adsorption of acute-phase proteins (SAA1, SAA2 and SAA4), indicating an inflammatory response; this behaviour was not seen on 0.5QUE. Moreover, cell adhesion (COF1, PROF1) and oxidative stress proteins (GPX3, SEPP1, AMBP) were preferentially adsorbed onto QUE-doped coatings. These results highlight the significance of optimising quercetin concentration in sol-gel coatings to modulate the immune response and enhance cell adhesion effectively.
Collapse
Affiliation(s)
- C Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| | - F Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| | - A Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| | - D Peñarocha-Oltra
- Department of Stomatology, Valencia University Medical and Dental School, Valencia, Spain
| | - I García-Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, San Sebastián, Spain
| | - O Amorrotu
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, San Sebastián, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - M Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, San Sebastián, Spain
| | - I Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, San Sebastián, Spain
| | - J Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| |
Collapse
|
11
|
Wang XY, Chen Y, Li YF, Wei CY, Liu MY, Yuan CX, Zheng YY, Qin MH, Sheng YF, Tong XC, Zheng MY, Li XT. Advancing active compound discovery for novel drug targets: insights from AI-driven approaches. Acta Pharmacol Sin 2025:10.1038/s41401-025-01591-x. [PMID: 40528034 DOI: 10.1038/s41401-025-01591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/20/2025] [Indexed: 06/20/2025]
Abstract
The discovery of active compounds for novel, underexplored targets is essential for advancing innovative therapeutics across a wide range of diseases. Recent advancements in artificial intelligence (AI) are revolutionizing active compound discovery by dramatically enhancing the efficiency, accuracy, and scalability previously challenged by traditional methods. This review provides a comprehensive overview of AI-driven methodologies for active compound discovery, with a particular focus on their application to novel targets. Initially, we explore how AI overcomes traditional bottlenecks in molecular design, enabling precise protein perception through high-accuracy protein structure prediction and enhanced docking precision. Building upon these target-focused capabilities, AI-driven approaches also advance ligand exploration, effectively bridging biological and chemical spaces through sophisticated data transfer techniques that maximize the utility of available activity data. By assessing overall cellular or organismal responses, AI plays a pivotal role in decoding complex biological systems, driving phenotypic drug discovery (PDD) through multi-modal data integration. Finally, we discuss how AI is addressing challenges associated with targeting previously undruggable proteins, exemplified by the development of protein degraders. By synthesizing these cutting-edge advancements, this review serves as a valuable resource for researchers seeking to leverage AI in the discovery of next-generation therapeutics.
Collapse
Affiliation(s)
- Xing-You Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China
| | - Yu-Fan Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Yang Wei
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Ya Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China
| | - Chen-Xing Yuan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China
| | - Yao-Yu Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China
| | - Mo-Han Qin
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China
| | - Yu-Feng Sheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China
| | - Xiao-Chu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Yue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China.
| | - Xu-Tong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Gomes L, Pardo-Pastor C, Rosenblatt J, Pouliopoulos AN. Mechanotransduction as a therapeutic target for brain tumours. EBioMedicine 2025; 117:105808. [PMID: 40527011 DOI: 10.1016/j.ebiom.2025.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/19/2025] [Accepted: 05/30/2025] [Indexed: 06/19/2025] Open
Abstract
Despite decades of research, treatment options for many paediatric and adult brain tumours remain inadequate. Mechanotransduction, a process by which cells convert mechanical cues into biochemical signals, resulting in the activation of signalling cascades, is crucial in the progression of aggressive brain tumours such as glioblastoma (GBM). In GBM, a stiffened extracellular matrix accompanies the aberrant expression of mechanosensitive ion channels, including Piezo and transient receptor potential (TRP) channels, impacting brain tumour progression and therapeutic response. Thus, targeting these ion channels and associated signalling pathways may provide effective adjuvant therapy. Focused ultrasound (FUS) is an emerging technology being explored in diagnostic and therapeutic applications within oncology and has the potential to non-invasively modulate mechanosensitive pathways. Here, we discuss recent findings, highlighting how mechanobiology is altered in brain tumours, the potential of mechanosensitive ion channels as therapeutic targets and perspectives on using FUS to exploit aberrant brain tumour mechanobiology to provide non-invasive adjuvant therapy. At the intersection of cancer cell biology and biomedical engineering, this review offers a perspective on leveraging mechanotransduction for therapeutic advances in brain tumours.
Collapse
Affiliation(s)
- Lauren Gomes
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Antonios N Pouliopoulos
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Wang C, Tian X, Li X. Self-Assembled Hybrid Nanomaterials from Terpyridine-Pt 2⁺-Peptide Complexes for Synergistic NIR-Enhanced Oxidative Stress and Photothermal Therapy in Cancer. Chem Asian J 2025:e00540. [PMID: 40493119 DOI: 10.1002/asia.202500540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/30/2025] [Accepted: 06/03/2025] [Indexed: 06/12/2025]
Abstract
Development of hybrid nanomaterials incorporated with Pt2⁺ complexes with high biocompatibility and multimodal therapeutic activities represents a promising strategy for advancing cancer therapy. Due to the exceptional structural rigidity and metal coordination properties of terpyridine (tpy), we designed and synthesized a novel bioactive molecule with self-assembling abilities by conjugating a tpy moiety with a self-assembling peptide segment. Through noncovalent interactions and Pt2⁺-tpy coordination, this molecule undergoes supramolecular self-assembly to form hybrid nanomaterials with high biocompatibilities with normal cells. The resulting square-planar Pt2⁺-tpy complexes exhibit high binding affinities toward DNA via molecular intercalation and groove binding. Encapsulated Pt2⁺ ions within the nanomaterials also affords them the catalytic activity to create reactive oxygen species (•OH and O2•⁻) and deplete glutathione (GSH), resulting in oxidative cell death in cancer. Moreover, the coordination between the tpy moiety and Pt2⁺ endows the self-assembled nanomaterials with near-infrared absorption and photothermal heating properties, which enhances therapeutic outcomes by synergistically further augmenting ROS production and GSH scavenging, thereby amplifying apoptotic pathways. Therefore, the multifunctional properties confer highly selective cytotoxicity against cancer cells by inducing oxidative stress-mediated damage, while minimizing harm to normal cells.
Collapse
Affiliation(s)
- Cong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
14
|
Brown PA. Transcriptomic signatures of atheroresistance in the human atrium and ventricle highlight potential candidates for targeted atherosclerosis therapeutics. Biochem Biophys Rep 2025; 42:102007. [PMID: 40248137 PMCID: PMC12004712 DOI: 10.1016/j.bbrep.2025.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Atherosclerosis risk is not uniform throughout the cardiovascular system. This study therefore aimed to compare the transcriptomes of atheroresistant human atrium and ventricle with atheroprone coronary arteries to identify transcriptomic signatures of atheroresistance and potential targets for atherosclerosis therapeutics. Using publicly available gene read counts, differentially expressed genes between the atrium, ventricle, and coronary artery were identified for each contrast and validated against the Swiss Institute of Bioinformatics' Bgee database. Over-representation analysis and active-subnetwork-oriented enrichment assessment then identified enriched terms, which were grouped into endothelial dysfunction-related processes. Potential biological significance was further explored with pathway analysis. Among 21474 features, 12656 differentially expressed genes were identified across the three contrasts and associated with 1215 enriched terms. There were 315 down-regulated and 133 up-regulated genes associated with endothelial dysfunction-related processes across the contrasts, including immune modulators, cell adhesion molecules, and lipid metabolism- and coagulation-related molecules. Differentially expressed genes were associated with six down-regulated Kyoto Encyclopedia of Genes and Genomes pathways, related to immune cell and associated endothelium functions. Review of regulated genes associated with endothelial dysfunction-related processes and included in these pathways, indicate immune cell-associated B cell scaffold protein with ankyrin repeats 1, as well as arterial endothelial cell-associated vascular cell adhesion molecule 1 and cadherin 5, as potential atherosclerosis targets.
Collapse
Affiliation(s)
- Paul A. Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
15
|
Zhou Y, Chen T, Pan Y, Liu J. Exploring the mechanism of fibronectin extra domain B in the tumor microenvironment and implications for targeted immunotherapy and diagnostics (Review). Mol Med Rep 2025; 31:160. [PMID: 40211711 PMCID: PMC12015389 DOI: 10.3892/mmr.2025.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/17/2025] [Indexed: 04/25/2025] Open
Abstract
Fibronectin extra domain B (FN‑EDB) is a unique domain of FN), whose expression is significantly upregulated in the tumor microenvironment (TME). FN‑EDB plays a key role in tumor cell adhesion, angiogenesis and invasion, and is closely related to tumor malignancy and poor prognosis. Moreover, the high expression of FN‑EDB in multiple cancer types makes it a potential therapeutic target. However, comprehensive studies of the mechanism of FN‑EDB in different cancer types and its potential as therapeutic targets are lacking. The present study aimed to explore the general role of FN‑EDB in multiple types of cancer and to integrate the knowledge of cell biology, molecular biology and immunology, so as to give a comprehensive understanding of the role of FN‑EDB in TME. Furthermore, by focusing on the use of FN‑EDB in clinical diagnosis and treatment, the potential of targeting FN‑EDB as a diagnostic and therapeutic target was evaluated and the progress in clinical trials of these drugs was discussed. By searching web sites such as PubMed and web of science, various high‑quality studies including RNA sequencing, drug experiments, cell experiments, animal models, clinical randomized controlled experiments and large‑scale cohort studies were collected, with sufficient evidence to support a comprehensive evaluation of the function and potential application of FN‑EDB. The present study revealed the general role of FN‑EDB in multiple types of cancer and evaluated its potential as a diagnostic and therapeutic target. It also provided a basis for future development of more effective and precise cancer therapies.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Tao Chen
- Department of Vascular Surgery, Jining Medical College, Jining, Shandong 272000, P.R. China
| | - Yawen Pan
- Department of Geriatric Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Jing Liu
- Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| |
Collapse
|
16
|
Zhang B, Zhou Y, Xu X, Xu G, Wu Z, Wu Q, Zeng Q, Yang J, Lv T, Yang J. RBM39 promotes hepatocarcinogenesis by regulating RFX1's alternative splicing and subsequent activation of integrin signaling pathway. Oncogene 2025; 44:1488-1503. [PMID: 40033026 DOI: 10.1038/s41388-025-03327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Alternative splicing (AS) is crucial for tumor cells as it regulates protein expression and produces various protein isoforms, which can have diverse or even opposing roles in tumor growth and metastasis. Despite its significance, the role of AS and related splicing factors, particularly splicing-related messenger ribonucleoproteins (mRNPs), in hepatocarcinogenesis, is poorly understood. High-throughput transcriptome sequencing of HCC patients revealed that the spliceosome pathway might play a significant role in HCC development. Through the combined analysis of the three gene clusters, the splicing factor RBM39 was identified, which was highly expressed in HCC tumor tissues with prognostic value. Functional studies showed that silencing RBM39 inhibited cell proliferation, migration, and invasion via the integrin pathway. By performing RNA immunoprecipitation sequencing (RIP-seq), we found that RBM39 combined to RFX1 pre-mRNA and regulated alternative splicing of exon 2. Mechanistically, the exon 2 skipping in RFX1, influenced by high RBM39 expression in HCC cells, led to the production of an N-terminal truncated RFX1, which lost the transcriptional repression ability on oncogenic collagen genes. High RBM39 expression enhances the malignant capabilities of HCC cells by regulating the alternative splicing of RFX1 and subsequently activating the FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xi Xu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Gang Xu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiong Wu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiwen Zeng
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Yang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Lv
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Zhao J, Miao D. Precision oncology in colorectal cancer: An anatomical revolution through molecular-clinical integration across colonic subsites. Clin Res Hepatol Gastroenterol 2025; 49:102613. [PMID: 40374162 DOI: 10.1016/j.clinre.2025.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/08/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Colorectal cancer (CRC) exhibits significant heterogeneity across different colonic subsites, which vary in embryological origin, microbiome, metabolome, and molecular profiles, affecting tumorigenesis, treatment response, and prognosis. We emphasize the importance of this subsite heterogeneity to advance precision medicine in CRC.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
| | - Daxing Miao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
| |
Collapse
|
18
|
Ezzat I, Zallocchi M. Integrin Alpha8 Beta1 (81): An In-Depth Review of an Overlooked RGD-Binding Receptor. BIOCELL 2025; 49:789-811. [PMID: 40510035 PMCID: PMC12162094 DOI: 10.32604/biocell.2025.062325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Integrins are heterodimeric transmembrane receptors that mediate bidirectional interactions between the intracellular cytoskeletal array and the extracellular matrix. These interactions are critical in tissue development and function by regulating gene expression and sustaining tissue architecture. In humans, the integrin family is composed of 18 alpha (α) and 8 beta (β) subunits, constituting 24 distinct αβ combinations. Based on their structure and ligand-binding properties, only a subset of integrins, 8 out of 24, recognizes the arginine-glycine-aspartate (RGD) tripeptide motif in the native ligand. One of the major RGD binding integrins is integrin alpha 8 beta 1 (α8β1), a central Ras homolog gene family member A (RHOA)-dependent modulator highly expressed in cells with contractile function. This review focuses on the recent advances regarding α8β1 function during organ development, with a particular interest in kidney and inner ear development. We also discuss α8β1's role in injury and disease and its importance for mesenchymal to epithelial transition during cancer development. Finally, we highlight α8β1's importance for hearing function and its future use as a potential diagnostic and therapeutic tool for disease elimination.
Collapse
Affiliation(s)
- Iman Ezzat
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Levasseur MD. Nonviral protein cages as tools to decipher and combat viral threats. NPJ VIRUSES 2025; 3:45. [PMID: 40419646 DOI: 10.1038/s44298-025-00127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Zoonotic viruses rank among the greatest threats to public health, with urbanization and global warming accelerating their emergence and spread. As the risk of future pandemics grows, innovative tools are needed to deepen our understanding of viral pathogenesis and enhance pandemic preparedness. Nonviral protein cages provide a versatile platform for studying viral mechanisms, virus-host interactions, and designing next-generation therapeutic approaches, making them powerful assets in the fight against viral threats.
Collapse
|
20
|
Gouveia F, Pérez MC, Bicker J, Silva A, Santos AE, Pereira CF, Camins A, Falcão A, Cruz T, Ettcheto M, Fortuna A. Protective effects of irbesartan against neurodegeneration in APP/PS1 mice: Unraveling its triple anti-apoptotic, anti-inflammatory and anti-oxidant action. Biomed Pharmacother 2025; 188:118167. [PMID: 40414000 DOI: 10.1016/j.biopha.2025.118167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Alzheimer's disease (AD) involves a complex interplay between amyloid-β plaques, oxidative stress, neuroinflammation and apoptosis, suggesting that multi-target therapies may be more effective than single-target treatments. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) have shown protective effects against AD in hypertensive patients. However, those poor blood-brain barrier (BBB) permeability exhibit limited efficacy in neurodegenerative disorders. This study investigated the neuroprotective potential of three ARBs and one ACEI using a combined in vitro and in vivo approach. In N2a and N2a-APPswe cell lines, irbesartan showed the most robust effects, notably increasing p-AKT and HMOX1 levels. Based on these results, irbesartan was selected for the following in vivo studies and administered intranasally (40 mg/kg) to APP/PS1 male mice for 10 weeks. Treated animals showed significant improvements in memory performance, as measured by the novel object recognition test and the Morris water maze. Additionally, irbesartan enhanced dendritic spine density, restored mitochondrial bioenergetics and BBB integrity, and reduced apoptotic markers. These effects were accompanied by a marked reduction in oxidative stress and neuroinflammation. Overall, these results support the potential of intranasal irbesartan as a promising multi-target therapeutic strategy for AD, capable of modulating key pathological features, including synaptic dysfunction, mitochondrial dysfunction, oxidative stress, apoptosis, and neuroinflammation.
Collapse
Affiliation(s)
- Filipa Gouveia
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Marina Carrasco Pérez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Teresa Cruz
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
21
|
Li B, Fu Q, Lu Y, Chen C, Zhao Y, Zhao Y, Cao M, Zhou W, Fan X, Jiang X, Zhao P, Zheng Y. 3D hydrogel platform with macromolecular actuators for precisely controlled mechanical forces on cancer cell migration. Nat Commun 2025; 16:4831. [PMID: 40413192 PMCID: PMC12103621 DOI: 10.1038/s41467-025-60062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Mechanical forces play a critical role in regulating cancer cell behavior, particularly during metastasis. Here we present a three-dimensional hydrogel platform embedded with near-infrared-responsive macromolecular actuators that enable precise mechanical stimulation of specific integrin subtypes in cancer cells. By leveraging this system, we investigate how different force parameters-magnitude, frequency, and duration-affect the migration and invasion of ovarian cancer cell spheroids, focusing on the integrins αvβ3 and αvβ6. We find that mechanical stimulation enhances collective invasion at early stages and triggers a mesenchymal-to-amoeboid transition during later migration, especially when high-frequency, large-amplitude forces disrupt αvβ3-ligand interactions. In contrast, cells engaging αvβ6-through higher-affinity binding-show limited transition under similar conditions. Molecular simulations support these findings by revealing the underlying mechanics of integrin-specific responses. This 3D hydrogel platform provides a powerful tool for studying mechanotransduction in cancer cells and offers potential insights for developing targeted cancer therapies.
Collapse
Affiliation(s)
- Bohan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Qingyu Fu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Yan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Cheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Minghui Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xiaoliang Fan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xiaoyu Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
22
|
Schenker AJ, Ortiz-Hernández GL. CYR61 as a Potential Biomarker and Target in Cancer Prognosis and Therapies. Cells 2025; 14:761. [PMID: 40497940 PMCID: PMC12153564 DOI: 10.3390/cells14110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/10/2025] [Accepted: 05/21/2025] [Indexed: 06/19/2025] Open
Abstract
Cysteine-rich protein 61 (CYR61) is a matricellular protein in the CCN family that is involved in cellular adhesion, migration, proliferation, and angiogenesis. CYR61 interacts with integrins α6β1, αvβ3, αvβ5, and αIIbβ3 to modulate tumor progression and metastasis while modifying the tumor microenvironment. CYR61 exhibits context-dependent roles in cancer, acting as both a tumor promoter and suppressor. Increased CYR61 expression is linked to extracellular matrix remodeling, immune modulation, and integrin-mediated signaling, making it a potential prognostic biomarker and therapeutic target. Emerging research highlights the utility of CYR61 in liquid biopsies for cancer detection and monitoring. Integrin-targeted therapies, including CYR61-blocking antibodies and CAR-T approaches, offer novel treatment strategies. However, therapy-induced toxicity and resistance remain challenges with these strategies. The further elucidation of the molecular mechanisms of CYR61 may enhance targeted therapeutic interventions and improve patient outcomes.
Collapse
Affiliation(s)
- Andrew J. Schenker
- Department of Medical Sciences, College of Health Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Greisha L. Ortiz-Hernández
- Division of Biomarkers of Early Detection and Prevention, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
23
|
Yang TM, Fang TC, Lee YC, Lee CC, Chan YJ, Fitriana I, Cheng YW, Li CH. Aryl hydrocarbon receptor deficiency upregulates intercellular adhesion molecule 1 in retinal pigment epithelial cells and contributes to retinal inflammation. J Transl Med 2025:104197. [PMID: 40409542 DOI: 10.1016/j.labinv.2025.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
Retinal pigment epithelium (RPE) cells, located between the photoreceptors and choroid, play a crucial role in maintaining retinal health and function. They act as immunosuppressive barriers, preventing immune cell infiltration from the choroid. Retinal inflammation contributes to the development of various ocular diseases. The aryl hydrocarbon receptor (AHR) is a well-established ligand-dependent transcription factor that mediates potent anti-inflammatory signals following ligand binding. AHR expression is notably reduced under several conditions that negatively affect the retina. We hypothesized that AHR protein loss may impairs RPE cell function, shifting them toward a pro-inflammatory phenotype. In this study, we investigated the pro-inflammatory pathways activated by AHR knockout (AHR-KO) and examined associated retinal phenotypic changes in AHR-KO mice. Our findings suggest that AHR deficiency may enhance the activity of αvβ3-integrin, extracellular signal-regulated kinases (ERK1/2), and p65 subunit of nuclear factor kappa B (NF-κB), leading to an upregulation of intercellular adhesion molecule 1 (ICAM1) and promoting monocyte adhesion in vitro. Introducing an AHR-green fluorescent protein into AHR-KO RPE cells or pre-treating the cells with pharmacological inhibitors targeting αvβ3 (cycloRGDfk), focal adhesion kinase (PF573228), phospholipase C (U73122), ERK1/2 (U0126), and NF-κB (Bay11-7082) prevented ICAM1 induction in AHR-KO RPE cells. These results suggest that the pro-inflammatory pathway is driven by AHR deficiency. In AHR-KO mice, retinal tissues showed ICAM1 accumulation, microglial activation, and migration, indicating chronic retinal inflammation due to AHR deficiency. These mice also displayed early-onset electroretinogram degeneration. Collectively, our data support the protective role of AHR in maintaining RPE cell physiology and retinal health.
Collapse
Affiliation(s)
- Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ida Fitriana
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Neuroscience Research Center, Taipei Medical University.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Neuroscience Research Center, Taipei Medical University.
| |
Collapse
|
24
|
Wu J, Gao P, Yang C, Zhuang F, Luo Y, Wen F, Zhang P, Wang L, Xie H, Dai C, Zhao D, Li C, Deng H, Deng Z, Chen C. Targeting mitochondrial complex I of CD177 + neutrophils alleviates lung ischemia-reperfusion injury. Cell Rep Med 2025; 6:102140. [PMID: 40398393 DOI: 10.1016/j.xcrm.2025.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/01/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality following lung transplantation, with neutrophils playing a central role in its inflammatory pathology. Here, we employ single-cell RNA sequencing and spatial transcriptomics to investigate neutrophil subtypes in the lung ischemia-reperfusion injury (IRI) model. We identify CD177+ neutrophils as an activated subpopulation that significantly contributes to lung injury and serves as an early biomarker for predicting severe PGD in human lung transplant recipients (area under the curve [AUC] = 0.871). CD177+ neutrophils exhibit elevated oxidative phosphorylation and increased mitochondrial complex I activity, driving inflammation and the formation of neutrophil extracellular traps. Targeting mitochondrial function with the complex I inhibitor IACS-010759 reduces CD177+ neutrophil activation and alleviates lung injury in both mouse IRI and rat left lung transplant models. These findings provide a comprehensive landscape of CD177+ neutrophil-driven inflammation in lung IRI and highlight its potential value for future early diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Peigen Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chenlu Yang
- BGI Research, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghui Zhuang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Yunzhe Luo
- BGI Research, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chongwu Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China.
| |
Collapse
|
25
|
El-Naby SMA, Khedr NF, El-Ashmawy NE, Ibrahim AO. Proanthocyanidin and mitoglitazone suppress lipogenesis by targeting ferroptosis in metabolic dysfunction-associated steatohepatitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04271-z. [PMID: 40387928 DOI: 10.1007/s00210-025-04271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) can progress to liver cirrhosis, increasing mortality risk. The study investigates the role of ferroptosis-an inflammatory cell death mechanism-in MASH and evaluates the therapeutic effects of mitoglitazone and proanthocyanidin in targeting ferroptosis to mitigate MASH progression. Forty male albino mice were divided into five groups (n = 8): normal control (NC) fed a standard chow diet and given 2% DMSO; MASH group was maintained on MASH protocol (high fructose-high fat diet); mitoglitazone (Mito) group was kept on MASH protocol and given Mito (10 mg/kg/day); proanthocyanidin (Pro) group was kept on MASH protocol and given Pro (150 mg/kg/day); Mito + Pro co-treated group was given Mito and Pro parallel with MASH protocol, all treatments for 12 weeks. MASH induction significantly (p < 0.001) increased liver weight, liver index, serum liver enzymes (ALT & AST), serum glucose, insulin, insulin resistance (HOMA-IR), lipid profile (total cholesterol, triglycerides, LDL-C), ferroptosis biomarkers (total iron, soluble transferrin receptor-1 (sTfR1), and expression of liver acyl-CoA synthetase long-chain family member 4 (ACSL4) with diffused macrovesicular severe steatosis, and inflammatory cells infiltration in liver tissues compared to NC. However, HDL-cholesterol, ferroptosis biomarkers (liver glutathione peroxidase X4 (GPX4), and total glutathione peroxidase (GPX) activities and glutathione (GSH) content) were reduced significantly (p < 0.001) in MASH group compared to NC. On the other hand, Mito, Pro, and their combination significantly improved ferroptotic biomarkers (GSH, GPX4, sTFR1, and total iron and ACSL-4 gene expression), glucose homeostasis, lipid profile, liver enzymes, and histology compared to MASH group. Combining the insulin-sensitizing properties with targeting of ferroptosis, by the co-treatment with mitoglitazone (MSDC-0160) and proanthocyanidin, could be beneficial in inhibition of lipogenesis with retardation of MASH development in mice.
Collapse
Affiliation(s)
- Sohair M Abd El-Naby
- Biochemistry Department, Faculty of Pharmacy, Medical Campus, Tanta University, Tanta, Postal Code: 31527, Egypt
| | - Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Medical Campus, Tanta University, Tanta, Postal Code: 31527, Egypt.
| | - Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Medical Campus, Tanta University, Tanta, Postal Code: 31527, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Postal Code: 11837, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Medical Campus, Tanta University, Tanta, Postal Code: 31527, Egypt.
| |
Collapse
|
26
|
Qiu J, Zhao R, Ma C, Wang Q, Li B, Qi Y, Pan Z, Zhao S, Wang S, Gao Z, Guo X, Qiu W, Tang W, Guo X, Deng L, Xue H, Li G. O-GlcNAcylation stabilized WTAP promotes GBM malignant progression in an N6-methyladenosine-dependent manner. Neuro Oncol 2025; 27:900-915. [PMID: 39671515 PMCID: PMC12083224 DOI: 10.1093/neuonc/noae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive. METHODS Single-cell RNA sequencing and bulk RNA-seq datasets were employed to identify the critical role of WTAP in interactions between MES GBM and MDMs. The biological function of WTAP was confirmed both in vitro and in vivo. Mechanistically, mass spectrum, RNA immunoprecipitation (RIP), and co-immunoprecipitation assays were conducted. RESULTS Here, we identified that m6A methyltransferase Wilms' tumor 1-associated protein (WTAP), whose protein stability could be synergistically enhanced via OGT-mediated O-GlcNAcylation and USP7-mediated de-ubiquitination, promoted LOXL2 m6A modification to enhance its mRNA stabilization in an IGF2BP2-dependent manner, upregulating secretion of LOXL2 protein (sLOXL2). sLOXL2 then interacted with integrin α5β1 on GSCs to activate FAK-ERK signaling, inducing mesenchymal transition of GSCs in an autocrine manner. Meanwhile, sLOXL2 also activated the integrin α5β1-FAK-ERK axis in MDMs, which promoted M2-like MDM phenotypes in a paracrine pathway, thereby contributing to T-cell exhaustion to induce GBM immune escape. In translational medicine, combinations of the OGT inhibitor by targeting WTAP expression and the LOXL2 antagonist by disrupting MES GSC and MDM interactions showed favorable outcomes to the anti-PD1 immunotherapy. CONCLUSIONS WTAP plays critical roles in mesenchymal transition of GSCs and formation of TIME, highlighting the therapeutic potential of targeting WTAP and its downstream effectors to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jiawei Qiu
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Rongrong Zhao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Caizhi Ma
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Qingtong Wang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Boyan Li
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Yanhua Qi
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Ziwen Pan
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shulin Zhao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shaobo Wang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Zijie Gao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA (Xiaofan Guo)
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Wei Qiu
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Weijie Tang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xing Guo
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Lin Deng
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Hao Xue
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Gang Li
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Narayanan KB. Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review. Biomimetics (Basel) 2025; 10:317. [PMID: 40422147 DOI: 10.3390/biomimetics10050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol-gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials' surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
28
|
Wang J, Xu M, Liu H, Wang D, Zhang H, Xu Z, Shi X, Liu X, Tan Z. Vascular grafts with a mimetic microenvironment extracted from extracellular matrix of adipocytes can promote endothelialization in vivo. Acta Biomater 2025; 198:49-62. [PMID: 40169081 DOI: 10.1016/j.actbio.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Synthetic vascular substitutes are widely studied for small-caliber arteries replacement but their efficacy requires further improvement. Vascular tissue engineering holds great promise for preparing small-caliber vascular grafts with therapeutic effects, and previous work has demonstrated that the cellular layer at the luminal surface of vascular grafts has the potential to provide high functionality to vascular tissue. Improved endothelialization has been proven to be a key strategy for promoting the efficacy of vascular regeneration. However, there still remains a challenge of finding proper endothelialization methods or cell types to guarantee vascular grafts the long-term patency and functions. Herein, a biomimetic bilayer vascular graft was developed by 3D printing and electrospinning techniques. The electrospun PCL nanofiber was fabricated as the outer supporting layer while a biomimetic inner layer structure composed of cell extracellular matrix microenvironment was prepared by a decellularization process. This inner layer was designed to favor endothelial cell (EC) adhesion and enhance endothelialization on the surfaces of vascular grafts. Fibronectin, derived from adipocytes, provided a naturally occurring substrate for EC adhesion. The findings showed that by binding fibronectin, integrin α5β1 mediates EC adherence to the designed vascular graft. The bilayer graft with a mimetic microenvironment extracted from extracellular matrix of adipocytes can promote endothelialization and sustain good patency in vivo, which may represent a promising biomaterial for clinical vascular transplantation. STATEMENT OF SIGNIFICANCE: This study proposed a universal method for including any substrate type in vascular cell type-specific extracellular matrices (ECM) via regulating selective adhesion to promote vascular tissue regeneration. The reconstructed 3D ECM recapitulating a vascular-like microenvironment promoted the orderly regeneration and functional recovery of vascular tissues in vivo. The findings represent a proof of principle for vascular cell selectivity in cell type-specific ECM microenvironments, and provide a valuable perspective for further investigations on the controlled regeneration of heterogeneous tissues.
Collapse
Affiliation(s)
- Jian Wang
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China
| | - Danling Wang
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Hengyuan Zhang
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Zilong Xu
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Xiuyuan Shi
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| |
Collapse
|
29
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Zhang Y, Ma T, Lu X, Hua H, Wu L, Chen Z. Mechanical mechanics-reclaiming a new battlefield for chronic liver disease. J Adv Res 2025:S2090-1232(25)00346-7. [PMID: 40379238 DOI: 10.1016/j.jare.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND In the 21st century, significant breakthroughs have been made in the research of chronic liver disease. New biochemical markers of pathogenicity and corresponding drugs continue to emerge. However, current treatment strategies remain unsatisfactory due to complex pathological changes in the liver, including vascular dysfunction, myofibroblast-like transition, and local tissue necrosis in liver sinusoids. These challenges have created an urgent need for innovative, synergistic treatments. Mechanical mechanics is a growing field, with increasing evidence suggesting that mechanical signals play a role similar to that of biochemical markers. These signals influence response speed, conduction intensity, and functional diversity in regulating cell activities. AIM OF REVIEW This review summarizes the three main mechanical characteristics involved in the progression of "liver fibrosis-cirrhosis-hepatocellular carcinoma" and provides an in-depth interpretation of several mechanically-related targets. Finally, current and cutting-edge therapeutic strategies are proposed from a cellular perspective. Despite the many challenges that remain, this review is both relevant and significant.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - XingXing Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin 214400, China.
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
31
|
Salari G, Shadi A, Ahmadi A, Esfandyari J, Nikmanesh H. Targeted delivery of doxorubicin to B-cell lymphoma using monoclonal antibody-functionalized Chaetoceros biosilica. Sci Rep 2025; 15:16598. [PMID: 40360717 PMCID: PMC12075519 DOI: 10.1038/s41598-025-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The use of biogenic nanoparticles as targeted drug delivery systems has gained increasing attention for improving anticancer therapies. This study investigates the effectiveness of porous biosilica derived from the diatom Chaetoceros sp., functionalized with hydrophilic GPTMS, labeled with CD-19 antibody, and loaded with doxorubicin in targeting Raji cells, a B lymphoid cell line. Biosilica was extracted, purified, and modified for enhanced drug delivery. Characterization involved X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, zeta potential measurement, dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared (FT-IR) spectroscopy, followed by drug loading and release measurements. Cytotoxicity was assessed using the MTT assay and apoptosis tests, with Jurkat cells as non-target controls. Results confirmed successful GPTMS surface modification and revealed the amorphous structure of biosilica, with mean intraparticle pore sizes of 130 nm (BET). The drug loading capacity reached 53.92%. The system exhibited significant cytotoxic effects on Raji cells (IC50 = 0.1 mg/mL), with lower Jurkat cell survival (p < 0.05). Enhanced apoptosis was detected in Raji cells. These findings suggest the modified biosilica has substantial potential for targeted drug delivery, with the antibody enhancing attachment and release at target sites. Further investigation is needed to address biocompatibility and bioaccumulation for in vivo applications.
Collapse
Affiliation(s)
- Ghazal Salari
- Department of Biological Science and Technology, Persian Gulf University, Bushehr, 751691, Iran
| | - Ahmad Shadi
- Department of Biological Science and Technology, Persian Gulf University, Bushehr, 751691, Iran.
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Persian Gulf University, Bushehr, 751691, Iran
| | - Javid Esfandyari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | |
Collapse
|
32
|
Keerikkadu M, Bangera PD, Tippavajhala VK, Rathnanand M. Dasatinib Pharmacokinetics and Advanced Nanocarrier Strategies: from Systemic Limitations to Targeted Success. AAPS PharmSciTech 2025; 26:131. [PMID: 40360939 DOI: 10.1208/s12249-025-03130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Dasatinib (DSB) is a second-generation tyrosine kinase inhibitor widely used for treating chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). Though clinically effective, DSB has some pharmacokinetic drawbacks evidenced by rapid systemic clearance, low oral bioavailability, and poor aqueous solubility requiring high doses for therapeutic action. Novel formulation strategies like solid dispersions, liposomal formulations, and PEGylated and hybrid nanoparticles enhance DSB's pharmacokinetic and pharmacodynamic profiles by enhancing drug solubility, stability, and controlled release. In addition, through these targeted drug-delivery systems based on ligand-functionalized nanoparticles and antibody-drug conjugates-the tumor-targeted DSB is allowed selective accumulation at the tumor site, causing fewer off-target effects and lessening systemic toxicity while maximizing effectiveness. These approaches are geared toward utilizing nanotechnology to improve intracellular drug uptake and extend the circulation time to optimize antitumor efficacy. Overall, those advances in drug delivery systems could greatly boost the therapeutic efficacy of DSB by providing better bioavailability, controlled release, and targeted distribution. Such advances would increase treatment success in CML and Ph + ALL and expand DSB's potential clinical applications toward other malignancies. Research concerning the delivery of DSB with nanocarriers and ligand-mediated targeting strategies should bear further fruits to augment DSB therapy in oncology.
Collapse
Affiliation(s)
- Mahesha Keerikkadu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Pragathi Devanand Bangera
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
33
|
Zhang K, Sun J, Song W, Liu J, Ma C, Chen Y, Guan Y, Liu Y, Ren Z, Che Q, Zhang G, Liu Y, Zhu T, Li D. Multifunctional cytochrome P450 orchestrates radical cleavage and non-radical cyclization in 5-oxaindolizidine biosynthesis. Chem Sci 2025:d4sc07174c. [PMID: 40375862 PMCID: PMC12076214 DOI: 10.1039/d4sc07174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/03/2025] [Indexed: 05/18/2025] Open
Abstract
Penicilactam A (1), a fungal alkaloid featuring a rare 5-oxaindolizidine scaffold, has long eluded biosynthetic characterization despite recent advances in microbial genomics. Through retro-biosynthetic analysis of Penicillium citrinum HDN11-186, we identified the pnlt gene cluster governing its production. This pathway ultilizes a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) system to assemble the prolinol-containing precursor scalusamide A (2). The multifunctional cytochrome P450 enzyme PnltC then orchestrates two mechanistically distinct reactions: radical-mediated C-C bond cleavage followed by iminium-driven cyclization. Combined structural and computational analyses unveil PnltC's unprecedented catalytic logic, merging radical oxidation with non-radical cyclization within a single active site, which challenges existing paradigms of P450 enzymology. Our findings expand the functional repertoire of oxygenases in natural products (NPs) biosynthesis, revealing nature's sophisticated strategies for constructing complex nitrogen heterocycles.
Collapse
Affiliation(s)
- Kaijin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Jingxian Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Wencai Song
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Junyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Yan Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Yuting Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Zilin Ren
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center Qingdao 266237 People's Republic of China
| | - Yankai Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center Qingdao 266237 People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China Qingdao 266003 China
- Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China Sanya 572025 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center Qingdao 266237 People's Republic of China
| |
Collapse
|
34
|
Naz Z, Fareed M, Chaudhary ARH, Snigdha NT, Zafar A, Alsaidan OA, Mangu K, Ahmad S, Aslam M, Rizwanullah M. Exploring the therapeutic potential of ligand-decorated nanostructured lipid carriers for targeted solid tumor therapy. Int J Pharm 2025; 678:125687. [PMID: 40348302 DOI: 10.1016/j.ijpharm.2025.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Solid tumors present significant therapeutic challenges due to their complex pathophysiology, including poor vascularization, dense extracellular matrix, multidrug resistance, and immune evasion. Conventional treatment strategies, such as chemotherapy, radiotherapy, and surgical interventions, are often associated with systemic toxicity, suboptimal drug accumulation at the tumor site, and chemoresistance. Nanostructured lipid carriers (NLCs) have emerged as a promising approach to enhance anticancer therapy. NLCs offer several advantages, including high drug loading capacity, improved bioavailability, controlled release, and enhanced stability. Recent advancements in active targeting strategies have led to the development of ligand-decorated NLCs, which exhibit selective tumor targeting, improved cellular uptake, and reduced systemic toxicity. By functionalizing NLCs with different targeting ligands, site-specific drug delivery can be achieved for better therapeutic efficacy. This review comprehensively explores the potential of ligand-decorated NLCs in solid tumor therapy, highlights their design principles, and mechanisms of tumor targeting. Furthermore, it discusses various receptor-targeted NLCs for the effective treatment of solid tumors. The potential of ligand-decorated NLCs in combination therapy, gene therapy, photothermal therapy, and photodynamic therapy is also explored. Overall, ligand-decorated NLCs represent a versatile and effective strategy to achieve better therapeutic outcomes in solid tumor therapy.
Collapse
Affiliation(s)
- Zrien Naz
- Department of Pharmaceutics, College of Pharmacy, Al Asmarya University, Zliten 218521, Libya
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | | | - Niher Tabassum Snigdha
- Department of Dental Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105 Tamil Nadu, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Karthik Mangu
- Kogniverse Education and Research, Bionest, Avishkaran (NIPER), Hyderabad-500037, Telangana, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001 Kurdistan Region, Iraq
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| |
Collapse
|
35
|
Garemilla SSS, Gampa SC, Garimella S. Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance. Med Oncol 2025; 42:202. [PMID: 40332723 DOI: 10.1007/s12032-025-02754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.
Collapse
Affiliation(s)
| | - Siri Chandana Gampa
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Sireesha Garimella
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
36
|
Li Y, Peng S, Xu J, Liu W, Luo Q. Integrin signaling in tumor biology: mechanisms of intercellular crosstalk and emerging targeted therapies. PeerJ 2025; 13:e19328. [PMID: 40352270 PMCID: PMC12065456 DOI: 10.7717/peerj.19328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Integrins, a family of transmembrane cell adhesion receptors, mediate intercellular and cell-extracellular matrix crosstalk via outside-in and inside-out signaling pathways. Integrins, categorized into 24 distinct combinations of α and β subunits, exhibit tissue-specific expression and perform unique or overlapping roles in physiological and pathophysiological processes. These roles encompass embryonic angiogenesis, tissue repair, and the modulation of tumor cell angiogenesis, progression, invasion, and metastasis. Notably, integrins are significant contributors to tumor development, offering valuable insights into the potential of integrin-targeted diagnostics and therapeutics. Currently, there are various preclinical and clinical trials aiming to harness integrin antagonists that are safe, efficacious, and exhibit low toxicity. Owing to the functional redundancy across integrin types and the complexity of the mechanisms of integrin-mediated multiple key processes associated with tumor biology, challenges exist that impede advancements in integrin-targeted therapy. Nevertheless, innovative strategies focused on integrin modulation represent significant breakthroughs for improving patient care and promoting comprehensive insights into the underlying mechanisms of tumor biology. This review elucidates the impact of integrins on three distinct cell types in multiple key processes associated with tumor biology and explores the emerging integrin-targeted therapeutic approaches for the treatment of tumors, which will provide ideas for optimal therapeutic approaches in the future.
Collapse
Affiliation(s)
- Yifan Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shantong Peng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiatong Xu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjie Liu
- The First Clinical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Luo
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Tarvirdipour S, Abdollahi SN, Köser J, Bina M, Schoenenberger CA, Palivan CG. Enhanced antimicrobial protection through surface immobilization of antibiotic-loaded peptide multicompartment micelles. J Mater Chem B 2025; 13:5365-5379. [PMID: 40227831 PMCID: PMC11996027 DOI: 10.1039/d5tb00246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The escalating global threat of antibiotic-resistant bacterial infections, driven by biofilm formation on medical device surfaces, prompts the need for innovative therapeutic strategies. To address this growing challenge, we develop rifampicin-loaded multicompartment micelles (RIF-MCMs) immobilized on surfaces, offering a dual-functional approach to enhance antimicrobial efficacy for localized therapeutic applications. We first optimize the physicochemical properties of RIF-MCMs, and subsequently coat the optimal formulation onto a glass substrate, as confirmed by quartz crystal microbalance and atomic force microscopy. Surface-immobilized RIF-MCMs facilitate sustained antibiotic release in response to biologically relevant temperatures (37 °C and 42 °C). In addition, their heterogeneous distribution enhances the surface's roughness, contributing to the antibacterial activity through passive mechanisms such as hindering bacterial adhesion and biofilm formation. In vitro antimicrobial testing demonstrates that RIF-MCM-modified surfaces achieve a 98% reduction in Staphylococcus aureus viability and a three-order-of-magnitude decrease in colony formation compared to unmodified surfaces. In contrast, RIF-MCMs exhibit minimal cytotoxicity to mammalian cells, making them suitable candidates for medical device coatings. Our dual-function antimicrobial strategy, combining sustained antibiotic release and enhanced surface roughness, presents a promising approach to locally prevent implant-associated infections and biofilm formation.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel-4058, Switzerland
| | - S Narjes Abdollahi
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
| | - Joachim Köser
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz-4132, Switzerland
| | - Maryame Bina
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
| | | | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel-4058, Switzerland
| |
Collapse
|
38
|
Jeyachandran AV, Zaiss AK, Chakravarty N, Singh S, Delgado Y, Paravastu R, Satheeshkumar N, Gerald E, Jeysankar A, Thomas J, Fuller L, Lee N, Taylor C, Joshi S, Parcells M, French SW, Date A, Bouhaddou M, Garcia G, Kumar A, Damoiseaux R, Arumugaswami V. Drug screen reveals new potent host-targeted antivirals against Mpox virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.02.651913. [PMID: 40400715 PMCID: PMC12094526 DOI: 10.1101/2025.05.02.651913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Mpox virus (MPXV), a re-emerging zoonotic threat, has caused outbreaks in non-endemic regions through respiratory, sexual, and close-contact transmission. The increased transmissibility of Clade IIb fueled the 2022 global outbreak, with 2024 Clade Ib spread in the Democratic Republic of Congo further escalating concern. Both outbreaks were declared public health emergencies by the WHO. Although tecovirimat (TPOXX) has been used off-label for Mpox, its limited effectiveness highlights the critical need for newer antivirals for MPXV. We conducted high-throughput antiviral drug screening using a host-directed kinase inhibitor library composed of 2,750 compounds against 2022 Clade IIb MPXV. Our primary screen identified 138 compounds preventing MPXV cytopathic effects, including multiple inhibitors of EGFR, PI3K-mTOR, and Ras/Raf, as well as apoptosis and autophagy regulators. Secondary and tertiary screenings yielded a shortlist of potent, nontoxic antiviral compounds that inhibited MPXV replication. Three selected compounds, IRAK4-IN-6, SM-7368, and KRAS inhibitor-10, reduced MPXV-induced cell death in primary human epidermal keratinocytes. IRAK4-IN-6 and SM-7368 were also found to modulate NF-κB and STING signaling. Furthermore, these compounds were found effective in reducing skin lesions and viral burden in a mouse model of MPXV skin infection. Together, our study reveals new classes of antiviral compounds against MPXV, offering promising candidates for future clinical development.
Collapse
Affiliation(s)
- Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Anne K. Zaiss
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Medicine, California University of Science and Medicine, Colton, CA, USA
| | - Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Yennifer Delgado
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Ramya Paravastu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Nivedha Satheeshkumar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Ephrem Gerald
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Aakash Jeysankar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Joshua Thomas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Lilly Fuller
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Noella Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Cameron Taylor
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Mark Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel W. French
- Department of Cellular and Molecular Pathology, University of California, Los Angeles, CA, USA
| | - Abhijit Date
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Cheng X, Li C, Hong H, Zhou Z, Wu Z. Macrocyclic RGD-peptides with high selectivity for α vβ 3 integrin in cancer imaging and therapy. RSC Med Chem 2025:d5md00280j. [PMID: 40370651 PMCID: PMC12070224 DOI: 10.1039/d5md00280j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
Integrins, particularly the αvβ3 subtype, are critical receptors involved in cell adhesion, migration, and signaling, playing a significant role in tumor progression and metastasis. Despite extensive research into integrin-targeted therapies, challenges remain in developing ligands that exhibit high selectivity for αvβ3 over other integrin subtypes, such as αvβ5. This study employs a one-pot sortase A-mediated on-resin peptide cleavage and in situ cyclization method to synthesize two generations of macrocyclic RGD-peptide libraries. Systematic screening through surface plasmon resonance and cell-based competition assays identified the lead compound, c-(G5RGDKcLPET), which demonstrated high affinity and selectivity for αvβ3. Additionally, the optimized cyclic peptide was functionalized with a fluorescent dye (Cy5) and the cytotoxic drug monomethyl auristatin E (MMAE), enhancing its potential for cancer imaging and targeted therapy. This work contributes a novel platform for developing integrin-targeted diagnostics and therapeutics, highlighting the importance of macrocyclic peptides in cancer treatment strategies.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
- School of Biological and Food Engineering, Hefei Normal University Hefei 230601 China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| |
Collapse
|
40
|
Khanda M, Seal P, Mohan AJ, Arya N, Boda SK. Antimicrobial peptides and their application to combat implant-associated infections - opportunities and challenges. NANOSCALE 2025; 17:10462-10484. [PMID: 40227869 DOI: 10.1039/d5nr00953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Despite minimally invasive surgeries and advancements in aseptic techniques, implant-associated infections are a significant complication in post-surgical implantation of medical devices. The standard practice of systemic antibiotic administration is often ineffective due to the development of bacterial antibiotic resistance, poor antibiotic penetration into biofilms, and low antibiotic bioavailability at the infected site. Infected implants are typically salvaged by tissue resection and antibacterial reinforcements during revision surgery. Towards this end, antimicrobial peptides (AMPs) have emerged as a promising alternative to traditional antibiotics to combat infections. Herein, a comprehensive overview of antimicrobial peptides, their structure and function, comparison with conventional antibiotics, antimicrobial properties, mechanisms of action of AMPs, and bacterial resistance to AMPs in relation to antibiotics are discussed. Furthermore, stimuli-responsive AMP delivery and contact killing via AMP coatings on implant surfaces are deliberated. We discuss various methods of AMP immobilization and coatings on implant materials through physico-chemical coating strategies. The review also addresses the clinical status and current limitations of AMP coatings such as proteolytic instability and potential cytotoxicity. Finally, we conclude with future directions to develop small, effective AMP mimetics and encapsulation of AMPs within nanocarriers to improve antimicrobial properties and design-controlled release systems for sustained antimicrobial activity.
Collapse
Affiliation(s)
- Milan Khanda
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - Pallabi Seal
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - Arya J Mohan
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Sunil Kumar Boda
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
- Department of Medical Science and Technology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
41
|
Chen C, Liu W, Yuan F, Wang X, Xu X, Ling CC, Ge X, Shen X, Li B, Shen Y, Liu D. G protein-coupled receptor GPR182 negatively regulates sprouting angiogenesis via modulating CXCL12-CXCR4 axis signaling. Angiogenesis 2025; 28:25. [PMID: 40314798 PMCID: PMC12048421 DOI: 10.1007/s10456-025-09977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025]
Abstract
Angiogenesis is a critical process for tumor progression, regulated by various signaling pathways. Although antiangiogenic therapies targeting the VEGF pathway have shown potential, their effectiveness is inconsistent across different tumor types. GPR182, an endothelial cell-specific G protein-coupled receptor, is frequently downregulated in hypervascular tumors, but its specific role in angiogenesis has not been well defined. Our study reveals that GPR182 expression is markedly reduced in hepatocellular carcinoma (HCC) and inversely correlates with CD31, a pan-endothelial marker. In zebrafish embryos, Gpr182 deficiency resulted in enhanced angiogenic sprouting and hypervascularization, and GPR182-deficient human umbilical vein endothelial cells (HUVECs) showed increased migration and proliferation. At the molecular level, GPR182 acts as a decoy receptor, binding CXCL12 and regulating its gradient, which in turn suppresses CXCR4-mediated angiogenesis. The pharmacological blockade of CXCR4 with AMD3100 corrected the abnormal angiogenic phenotype in Gpr182-deficient zebrafish embryos and in the livers of a zebrafish HCC model. This work uncovers GPR182 as a negative regulator of angiogenesis, a key process in tumor growth and metastasis, and proposes that targeting GPR182 may offer a novel therapeutic approach for antiangiogenic strategies in cancer treatment.
Collapse
MESH Headings
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Animals
- Zebrafish/embryology
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Signal Transduction
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Human Umbilical Vein Endothelial Cells/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Neovascularization, Physiologic
- Cell Movement
- Cell Proliferation
- Angiogenesis
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China.
| | - Wei Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
| | - Fang Yuan
- Medical College of Nantong University, Nantong, Jiangsu Province, China
- Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, Jiangsu Province, China
| | - Xiaoning Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Chun Ling
- Department of Intervention and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaojuan Ge
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
| | - Xiaozhong Shen
- Medical College of Nantong University, Nantong, Jiangsu Province, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Li
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
| | - Yuqian Shen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
- Department of Translational Medicine, IGBMC, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China.
- Medical College of Nantong University, Nantong, Jiangsu Province, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
42
|
Long Q, Liu C, Zheng H, Wang M, Liu H, Liu Y, Cao Z, Sun Y, Mo Q, Backman LJ, Zhu J, Hu L, Huang J, Zhang W, Chen J. Enhancing Tendon Regeneration: Investigating the Impact of Topography on the Secretome of Adipose-Derived Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417447. [PMID: 40091553 PMCID: PMC12079404 DOI: 10.1002/advs.202417447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Indexed: 03/19/2025]
Abstract
Tendons are vital for maintaining integrity and movement, but current treatment options are insufficient for their regeneration after injuries. Previous studies have shown that the secretome from mesenchymal stem cells (MSCs) promoted tendon regeneration. However, limited studies have explored the impact of the physical microenvironment on the secretome's efficacy of MSCs. In this study, it is shown that the topographic orientation regulates the secretome of human adipose-derived stem cells (ADSCs) and promotes tendon regeneration. Conditioned medium (CM) is collected from ADSCs cultured on the scaffolds with different topography. The results show that CM generated from aligned structure group has a potent effect in promoting cell migration and proliferation, tenogenic differentiation, macrophage polarization toward M2 phenotype, tendon structure and mechanical function recovery. Proteomic analysis revealed that the aligned structure can up-regulate the secretion of Extracellular matrix (ECM) proteins while down-regulate proinflammatory factors. This modulation activates the MAPK, GPCR and Integrin signaling pathways which may account for the enhanced effect on tendon regeneration. This study offers a promising and safer non-cell-based treatment option for tendon repair.
Collapse
Affiliation(s)
- Qiuzi Long
- Nanjing University of Chinese MedicineNanjing210029China
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- Nanjing Second HospitalNanjing Hospital affiliated to Nanjing University of Chinese MedicineNanjing210003China
| | - Chuanquan Liu
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Haotian Zheng
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Mingyue Wang
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Hanmei Liu
- Nanjing University of Chinese MedicineNanjing210029China
| | - Yue Liu
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Zhicheng Cao
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
- Department of Orthopaedic SurgeryInstitute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
- Department of Orthopaedic SurgeryInstitute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Qingyun Mo
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Ludvig J. Backman
- Department of Medical and Translational Biology, AnatomyUmeå UniversityUmeå90187Sweden
- Department of Community Medicine and RehabilitationUmeå UniversityUmeå90187Sweden
| | - Jialin Zhu
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Lizhi Hu
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
| | - Jinlong Huang
- Nanjing University of Chinese MedicineNanjing210029China
| | - Wei Zhang
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
- Jiangsu Key Laboratory for Biomaterials and DevicesSoutheast UniversityNanjing210096China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310058China
| | - Jialin Chen
- Center for Stem Cell and Regenerative MedicineSoutheast UniversityNanjing210009China
- School of MedicineSoutheast UniversityNanjing210009China
- Jiangsu Key Laboratory for Biomaterials and DevicesSoutheast UniversityNanjing210096China
- Department of OphthalmologyZhongda HospitalSoutheast UniversityNanjing210009China
| |
Collapse
|
43
|
Abbad L, Esteve E, Chatziantoniou C. Advances and challenges in kidney fibrosis therapeutics. Nat Rev Nephrol 2025; 21:314-329. [PMID: 39934355 DOI: 10.1038/s41581-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Chronic kidney disease (CKD) is a major global health burden that affects more than 10% of the adult population. Current treatments, including dialysis and transplantation, are costly and not curative. Kidney fibrosis, defined as an abnormal accumulation of extracellular matrix in the kidney parenchyma, is a common outcome in CKD, regardless of disease aetiology, and is a major cause of loss of kidney function and kidney failure. For this reason, research efforts have focused on identifying mediators of kidney fibrosis to inform the development of effective anti-fibrotic treatments. Given the prominent role of the transforming growth factor-β (TGFβ) family in fibrosis, efforts have focused on inhibiting TGFβ signalling. Despite hopes raised by the efficacy of this approach in preclinical models, translation into clinical practice has not met expectations. Antihypertensive and antidiabetic drugs slow the decline in kidney function and could slow fibrosis but, owing to the lack of technologies for in vivo renal imaging, their anti-fibrotic effect cannot be truly assessed at present. The emergence of new drugs targeting pro-fibrotic signalling, or enabling cell repair and cell metabolic reprogramming, combined with better stratification of people with CKD and the arrival of nanotechnologies for kidney-specific drug delivery, open up new perspectives for the treatment of this major public health challenge.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Emmanuel Esteve
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France.
| |
Collapse
|
44
|
Du ZW, Li YS, Jiang XC, Gao JQ. Nanoparticles Designed Based on the Blood-Brain Barrier for the Treatment of Cerebral Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410404. [PMID: 40042407 DOI: 10.1002/smll.202410404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is currently considered a significant factor affecting the prognosis of ischemic stroke. The blood-brain barrier (BBB) plays multiple roles in the treatment ofCI/RI. BBB leakage allows bloodborne toxins to exacerbate the stroke pathology. Yet as the physiological barrier that separates the blood from the brain, BBB also poses a significant obstacle to therapeutic drug delivery. Therefore, it is essential to consider both crossing and repairing the BBB in the process of the treatment of CI/RI. Leveraging the exceptional benefits of nanoparticles (NPs) for BBB penetration and targeted repair, numerous NPs are developed as promising drug delivery platforms. Considering the complex role of the BBB in CI/RI, this review delves into the strategies for designing NPs to cross the BBB, focusing on peptide-modified NPs, cell-mediated NPs, cell membrane-derived NPs, and BBB-modulating NPs. Additionally, it summarizes design strategies of NPs targeting endothelial cells (ECs), astrocytes, and those aimed at regulating the microenvironment to repair the BBB. On this basis, it reveals the prospects and challenges of NPs designed around the BBB in CI/RI treatment. And it highlights the need to combine BBB permeability promotion and BBB repair in nanoparticle strategies designed based on the BBB to achieve more effective treatment.
Collapse
Affiliation(s)
- Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
45
|
Madrid-Gambin F, Haro N, Mason NL, Mallaroni P, Theunissen EL, Toennes SW, Pozo OJ, Ramaekers JG. Metabolomic profiling of cannabis use and cannabis intoxication in humans. Neuropsychopharmacology 2025; 50:920-927. [PMID: 40074870 PMCID: PMC12032370 DOI: 10.1038/s41386-025-02082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Acute intoxication from Δ9-tetrahydrocannabinol (THC, the primary active ingredient of cannabis) can lead to neurocognitive impairment and interference with day-to-day operations, such as driving. Present evaluations of THC-induced impairment in legal settings rely on biological drug tests that solely establish cannabis use, rather than cannabis impairment. The current study evaluated the metabolome in blood collected from occasional and chronic cannabis users (N = 35) at baseline and following treatments with cannabis (300 μg/kg THC) and placebo, with the aim to identify unique metabolic alterations that are associated with acute cannabis intoxication and cannabis use frequency. Blood samples were collected at baseline and repeatedly during 70 min after treatment. Sustained attention performance and ratings of subjective high were taken twice within 40 min after treatment. Metabolomic fingerprints of occasional and chronic cannabis users were distinctly different at baseline, when both groups were not intoxicated. A total of 14 metabolites, mainly related to endocannabinoid and amino acid metabolism, were identified that distinguished chronic from occasional cannabis users and that yielded a discriminant analysis model with an 80% classification rate (95% CI: 61-91%). Distinct metabolomic fingerprints were found for occasional cannabis users who, in contrast to chronic cannabis users, showed attentional impairment and elevated ratings of subjective high during cannabis intoxication. These included increments in organic acids, β-hydroxybutyrate and second messenger ceramides. The current study demonstrates the feasibility of the metabolomics approach to identify metabolic changes that are specific to the neurocognitive state of cannabis intoxication and to the history of cannabis use.
Collapse
Affiliation(s)
- Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003, Barcelona, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003, Barcelona, Spain
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Stefan W Toennes
- Goethe University Frankfurt, University Hospital, Institute of Legal Medicine, Frankfurt, Germany
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003, Barcelona, Spain
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
46
|
Krafčíková MD, Beriashvili D, Bahri S, Bergmeijer M, Howes SC, Gurinov A, Förster FG, Folkers GE, Baldus M. A DNP-Supported Solid-State NMR Approach to Study Nucleic Acids In Situ Reveals Berberine-Stabilized Hoogsteen Structures in Mitochondria. Angew Chem Int Ed Engl 2025; 64:e202424131. [PMID: 40052409 PMCID: PMC12087828 DOI: 10.1002/anie.202424131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Mitochondria are central to cellular bioenergetics, with the unique ability to translate and transcribe a subset of their own proteome. Given the critical importance of energy production, mitochondria seem to utilize higher-order nucleic acid structures to regulate gene expression, much like nuclei. Herein, we introduce a tailored approach to probe the formation of such structures, specifically G-quadruplexes, within intact mitochondria by using sensitivity-enhanced dynamic nuclear polarization-supported solid-state NMR (DNP-ssNMR). We acquired NMR spectra on isolated intact isotopically labeled mitochondria treated with berberine, a known high-affinity G-quadruplex stabilizer. The DNP-ssNMR data revealed spectral changes in nucleic acid sugar correlations, increased signal intensity for guanosine carbons, and enhanced Hoogsteen hydrogen bond formation, providing evidence of in vivo G-quadruplex formation in mitochondria. Together, our workflow enables the study of mitochondrial nucleic acid-ligand interactions at endogenous concentrations within biologically relevant environments by DNP-ssNMR, thus paving the way for future research into mitochondrial diseases and their potential treatments.
Collapse
Affiliation(s)
- Michaela Dzurov Krafčíková
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584CHThe Netherlands
| | - David Beriashvili
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584CHThe Netherlands
| | - Salima Bahri
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584CHThe Netherlands
| | - Menno Bergmeijer
- Structural BiochemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityUniversiteitsweg 99Utrecht3584CGThe Netherlands
| | - Stuart C. Howes
- Structural BiochemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityUniversiteitsweg 99Utrecht3584CGThe Netherlands
| | - Andrei Gurinov
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584CHThe Netherlands
| | - Friedrich G. Förster
- Structural BiochemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityUniversiteitsweg 99Utrecht3584CGThe Netherlands
| | - Gert E. Folkers
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584CHThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584CHThe Netherlands
| |
Collapse
|
47
|
Martins Rodrigues F, Terekhanova NV, Imbach KJ, Clauser KR, Esai Selvan M, Mendizabal I, Geffen Y, Akiyama Y, Maynard M, Yaron TM, Li Y, Cao S, Storrs EP, Gonda OS, Gaite-Reguero A, Govindan A, Kawaler EA, Wyczalkowski MA, Klein RJ, Turhan B, Krug K, Mani DR, Leprevost FDV, Nesvizhskii AI, Carr SA, Fenyö D, Gillette MA, Colaprico A, Iavarone A, Robles AI, Huang KL, Kumar-Sinha C, Aguet F, Lazar AJ, Cantley LC, Marigorta UM, Gümüş ZH, Bailey MH, Getz G, Porta-Pardo E, Ding L. Precision proteogenomics reveals pan-cancer impact of germline variants. Cell 2025; 188:2312-2335.e26. [PMID: 40233739 DOI: 10.1016/j.cell.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/29/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
We investigate the impact of germline variants on cancer patients' proteomes, encompassing 1,064 individuals across 10 cancer types. We introduced an approach, "precision peptidomics," mapping 337,469 coding germline variants onto peptides from patients' mass spectrometry data, revealing their potential impact on post-translational modifications, protein stability, allele-specific expression, and protein structure by leveraging the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes potentially affecting proteomic features, including variants altering protein abundance and structure and variants in kinases (ERBB2 and MAP2K2) impacting phosphorylation. Precision peptidome analysis predicted destabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of proteins. Polygenic risk scores correlated with distal effects from risk variants. Our findings emphasize the contribution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.
Collapse
Affiliation(s)
- Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kathleen J Imbach
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Translational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Yifat Geffen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yo Akiyama
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tomer M Yaron
- Meyer Cancer Center, Department of Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Erik P Storrs
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Olivia S Gonda
- Department of Biology, Brigham Young University, Salt Lake City, UT, USA
| | - Adrian Gaite-Reguero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Akshay Govindan
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Emily A Kawaler
- Applied Bioinformatics Laboratories, New York University Langone Health, New York City, NY, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Kuan-Lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Urko M Marigorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew H Bailey
- Department of Biology, Brigham Young University, Salt Lake City, UT, USA.
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
48
|
Guan C, Otchere A, Laskovs M, Papatheodorou I, Slack C. Genetic and Pharmacological Inhibition of Metabotropic Glutamate Receptor Signalling Extends Lifespan in Drosophila. Aging Cell 2025; 24:e14500. [PMID: 39943697 PMCID: PMC12073928 DOI: 10.1111/acel.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 05/15/2025] Open
Abstract
Invertebrate models have been instrumental in advancing our understanding of the molecular mechanisms of ageing. The isolation of single gene mutations that both extend lifespan and improve age-related health have identified potential targets for therapeutic intervention to alleviate age-related morbidity. Here, we find that genetic loss of function of the G protein-coupled metabotropic glutamate receptor (DmGluRA) in Drosophila extends the lifespan of female flies. This longevity phenotype was accompanied by lower basal levels of oxidative stress and improved stress tolerance, and differences in early-life behavioural markers. Gene expression changes in DmGluRA mutants identified reduced ribosome biogenesis, a hallmark of longevity, as a key process altered in these animals. We further show that the pro-longevity effects of reduced DmGluRA signalling are dependent on the fly homologue of Fragile X Mental Retardation Protein (FMRP), an important regulator of ribosomal protein translation. Importantly, we can recapitulate lifespan extension using a specific pharmacological inhibitor of mGluR activity. Hence, our study identifies metabotropic glutamate receptors as potential targets for age-related therapeutics.
Collapse
Affiliation(s)
- Cui Guan
- College of Health and Life SciencesAston UniversityBirminghamUK
- School of Life SciencesWarwick UniversityCoventryUK
| | - Abigail Otchere
- College of Health and Life SciencesAston UniversityBirminghamUK
| | - Mihails Laskovs
- College of Health and Life SciencesAston UniversityBirminghamUK
- School of Life SciencesWarwick UniversityCoventryUK
| | | | - Cathy Slack
- College of Health and Life SciencesAston UniversityBirminghamUK
- School of Life SciencesWarwick UniversityCoventryUK
| |
Collapse
|
49
|
Marques PAAP. The emerging role of graphene in spinal cord regeneration. Nanomedicine (Lond) 2025; 20:1081-1084. [PMID: 40052204 PMCID: PMC12068324 DOI: 10.1080/17435889.2025.2475732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 05/08/2025] Open
Affiliation(s)
- Paula A. A. P. Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
50
|
Palanikumar L, Yasin FM, Munkhjargal I, Boitet M, Ali L, Ali MS, Straubinger R, Barrera FN, Magzoub M. Tumor-targeted hydroxyapatite nanoparticles for dual-mode diagnostic imaging and near-infrared light-triggered photothermal cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639217. [PMID: 40060684 PMCID: PMC11888167 DOI: 10.1101/2025.02.20.639217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Photothermal therapy (PTT), which utilizes photothermal agents (PTAs) to induce localized hyperthermia within tumors upon light irradiation, has emerged as a promising cancer treatment strategy. However, low water solubility, poor in vivo circulation stability and a lack of tumor specificity of many common PTAs limit their applicability. To address these issues, we have developed a simple, yet highly potent, tumor-targeted nanotheranostic system that consists of lipid/PEG-coated hydroxyapatite nanoparticles (LHAPNs) encapsulating the near-infrared (NIR) photothermal dye IR106 (LHAPNIRs). The lipid coat serves to retain the encapsulated dye and prevent serum protein adsorption and macrophage recognition, which would otherwise destabilize the nanoparticles and hinder their tumor targeting efficiency. Additionally, the coat is functionalized with the tumor-acidity-triggered rational membrane (ATRAM) peptide for efficient and specific internalization into tumor cells in the mildly acidic microenvironment of tumors. The nanoparticles facilitated real-time fluorescence and thermal imaging of tumors and demonstrated potent NIR-light triggered anticancer activity in vitro and in vivo , without adversely affecting healthy tissue, leading to markedly prolonged survival. Our results demonstrate that the biocompatible and biodegradable ATRAM-functionalized LHAPNIRs (ALHAPNIRs) effectively combine dual-mode diagnostic imaging with targeted cancer PTT.
Collapse
|