1
|
Bowersock CD, Pisolkar T, Omofuma I, Luna T, Khan M, Santamaria V, Stein J, Agrawal S, Harkema SJ, Rejc E. Robotic upright stand trainer (RobUST) and postural control in individuals with spinal cord injury. J Spinal Cord Med 2023; 46:889-899. [PMID: 35532324 PMCID: PMC10653750 DOI: 10.1080/10790268.2022.2069532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
CONTEXT/OBJECTIVE Assessed feasibility and potential effectiveness of using a novel robotic upright stand trainer (RobUST) to deliver postural perturbations or provide assistance-as-needed at the trunk while individuals with spinal cord injury (SCI) performed stable standing and self-initiated trunk movements. These tasks were assessed with research participants' hands on handlebars for self-balance assistance (hands on) and with hands off (free hands). DESIGN Proof of concept study. PARTICIPANTS Four individuals with motor complete (n = 3) or incomplete (n = 1) SCI who were not able to achieve independent standing and presented a neurological lesion level ranging from cervical 4 to thoracic 2. OUTCOME MEASURES Ground reaction forces, trunk displacement, and electromyography activity of trunk and lower limb muscles. RESULTS Research participants received continuous pelvic assistance via RobUST, and manual trainer assistance at the knees to maintain standing. Participants were able to attempt all tasks. Free hands trunk perturbations resulted in greater load bearing-related sensory information (73% ipsilateral vertical loading), trunk displacement (57%), and muscle activation compared to hands on. Similarly, free hands stable standing with RobUST assistance-as-needed resulted in 8.5% larger bodyweight bearing, 112% larger trunk movement velocity, and higher trunk muscles activation compared to standing with hands on. Self-initiated trunk movements controlled by hands on showed 116% greater trunk displacement, 10% greater vertical ground reaction force, and greater ankle muscle activation compared to free hands. CONCLUSION RobUST established a safe and challenging standing environment for individuals with SCI and has the potential to improve training paradigms and assessments of standing postural control.
Collapse
Affiliation(s)
- Collin D. Bowersock
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Tanvi Pisolkar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Isirame Omofuma
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Tatiana Luna
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Moiz Khan
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Victor Santamaria
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| | - Sunil Agrawal
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Santamaria V, Ai X, Chin K, Dutkowsky JP, Gordon AM, Agrawal SK. Study protocol for a randomised controlled trial to determine the efficacy of an intensive seated postural intervention delivered with robotic and rigid trunk support systems. BMJ Open 2023; 13:e073166. [PMID: 37591642 PMCID: PMC10441060 DOI: 10.1136/bmjopen-2023-073166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Children with cerebral palsy (CP) classified as gross motor function classification system (GMFCS) levels III-IV demonstrate impaired sitting and reaching control abilities that hamper their overall functional performance. Yet, efficacious interventions for improving sitting-related activities are scarce. We recently designed a motor learning-based intervention delivered with a robotic Trunk-Support-Trainer (TruST-intervention), in which we apply force field technology to individualise sitting balance support. We propose a randomised controlled trial to test the efficacy of the motor intervention delivered with robotic TruST compared with a static trunk support system. METHODS AND ANALYSIS We will recruit 82 participants with CP, GMFCS III-IV, and aged 6-17 years. Randomisation using concealed allocation to either the TruST-support or static trunk-support intervention will be conducted using opaque-sealed envelopes prepared by someone unrelated to the study. We will apply an intention-to-treat protocol. The interventions will consist of 2 hours/sessions, 3/week, for 4 weeks. Participants will start both interventions with pelvic strapping. In the TruST-intervention, postural task progression will be implemented by a progressive increase of the force field boundaries and then by removing the pelvic straps. In the static trunk support-intervention, we will progressively lower the trunk support and remove pelvic strapping. Outcomes will be assessed at baseline, training midpoint, 1-week postintervention, and 3-month follow-up. Primary outcomes will include the modified functional reach test, a kinematic evaluation of sitting workspace, and the Box and Block test. Secondary outcomes will include The Segmental Assessment of Trunk Control test, Seated Postural & Reaching Control test, Gross Motor Function Measure-Item Set, Canadian Occupational Performance Outcome, The Participation and Environment Measure and Youth, and postural and reaching kinematics. ETHICS AND DISSEMINATION The study was approved by the Columbia University Institutional Review Board (AAAS7804). This study is funded by the National Institutes of Health (1R01HD101903-01) and is registered at clinicaltrials.gov. TRIAL REGISTRATION NUMBER NCT04897347; clinicaltrials.gov.
Collapse
Affiliation(s)
- Victor Santamaria
- Department of Rehabilitation Sciences: Physical Therapy Division, New York Medical College, Valhalla, New York, USA
| | - Xupeng Ai
- Mechanical Engineering Department, Columbia University, New York, New York, USA
| | - Karen Chin
- Biobehavioral Sciences Department, Columbia University, New York, New York, USA
- Burke Neurological Institute, White Plains, New York, USA
| | - Joseph P Dutkowsky
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Andrew M Gordon
- Biobehavioral Sciences Department, Columbia University, New York, New York, USA
| | - Sunil K Agrawal
- Mechanical Engineering Department, Columbia University, New York, New York, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Cai L, Liu Y, Wei Z, Liang H, Liu Y, Cui M. Robot-assisted rehabilitation training improves knee function and daily activity ability in older adults following total knee arthroplasty. Res Nurs Health 2023; 46:203-209. [PMID: 36504201 DOI: 10.1002/nur.22290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
To evaluate the effects of robot-assisted rehabilitation training on knee function and the daily activity ability of older adults following total knee arthroplasty (TKA). Eighty-eight patients who underwent TKA were randomly assigned to a robot-assisted rehabilitation or traditional therapy group. The patients in the control group were treated with traditional manual rehabilitation therapy, while the patients in the experimental group were subjected to the robot-assisted rehabilitation program. Range of motion of the knee joint, Hospital for Special Surgery Knee Rating Score, and the modified Barthel Index were assessed on the first or second day after TKA (preintervention) and the discharge day (postintervention). Additionally, the length of hospital stay and related hospitalization expenses of the two groups were collected on the discharge day. Improvements in the active range of motion (p < 0.001), passive range of motion (p = 0.001), Hospital for Special Surgery Knee Rating Score (p < 0.001), and modified Barthel Index score (p = 0.004) were significantly better in the robot-assisted rehabilitation group than in the traditional therapy group. Interestingly, the length of hospital stay in the experimental group (9 days) was shorter than that in the control group (13 days), and the total cost of hospitalization was lower (p = 0.002). The robot-assisted rehabilitation training program is an effective intervention that significantly improves the daily activity ability and knee function of older adults following TKA.
Collapse
Affiliation(s)
- Libai Cai
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zexu Wei
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Hao Liang
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Yangyang Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaoran Cui
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Santamaria V, Ai X, Agrawal SK. A motor learning-based postural intervention with a robotic trunk support trainer to improve functional sitting in spinal cord injury: case report. Spinal Cord Ser Cases 2022; 8:88. [PMID: 36433944 PMCID: PMC9700847 DOI: 10.1038/s41394-022-00554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
STUDY DESIGN Single-subject-research-design. OBJECTIVES To improve seated postural control in a participant with spinal cord injury (SCI) with a robotic Trunk-Support-Trainer (TruST). SETTING Laboratory. METHODS TruST delivered "assist-as-needed" forces on the participant's torso during a motor learning-and-control-based intervention (TruST-intervention). TruST-assistive forces were progressed and matched to the participant's postural trunk control gains across six intervention sessions. The T-shirt test was used to capture functional improvements while dressing the upper body. Kinematics were used to compute upper body excursions (cm) and velocity (cm2), and sitting workspace area (cm2). Functional trunk dynamometry was used to examine muscle force (Kg). Surface electromyography (sEMG) was applied to measure trunk muscle activity. The Borg Rating of Perceived Exertion (RPE) was used to monitor physical exertion during TruST-intervention. A two-standard-deviation bandwidth method was adopted for data interpretation. RESULTS After TruST-intervention, the participant halved the time needed to don and doff a T-shirt, increased muscle force of trunk muscles (mean = 3 kg), acquired a steadier postural sitting control without vision (mean excursion baseline: 76.0 ± 2 SD = 5.25 cm and post-intervention: 44.1 cm; and mean velocity baseline: 3.0 ± 2 SD = 0.2 cm/s and post-intervention: 1.8 cm/s), and expanded his sitting workspace area (mean baseline: 36.7 ± 2 SD = 36.6 cm2 and post-intervention: 419.2 cm2). The participant increased his tolerance to counteract greater TruST-force perturbations in lateral and posterior directions. Furthermore, abdominal muscle activity substantially augmented after completion of TruST-intervention across all perturbation directions. CONCLUSIONS Our data indicate a potential effectiveness of TruST-intervention to promote functional sitting in SCI.
Collapse
Affiliation(s)
- V Santamaria
- Department of Physical Therapy, New York Medical College, New York, NY, USA
| | - X Ai
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - S K Agrawal
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|