1
|
Farr AD, Vasileiou C, Lind PA, Rainey PB. An extreme mutational hotspot in nlpD depends on transcriptional induction of rpoS. PLoS Genet 2025; 21:e1011572. [PMID: 39888938 PMCID: PMC11838912 DOI: 10.1371/journal.pgen.1011572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/19/2025] [Accepted: 01/13/2025] [Indexed: 02/02/2025] Open
Abstract
Mutation rate varies within and between genomes. Within genomes, tracts of nucleotides, including short sequence repeats and palindromes, can cause localised elevation of mutation rate. Additional mechanisms remain poorly understood. Here we report an instance of extreme mutational bias in Pseudomonas fluorescens SBW25 associated with a single base-pair change in nlpD. These mutants frequently evolve in static microcosms, and have a cell-chaining (CC) phenotype. Analysis of 153 replicate populations revealed 137 independent instances of a C565T loss-of-function mutation at codon 189 (CAG to TAG (Q189*)). Fitness measures of alternative nlpD mutants did not explain the deterministic evolution of C565T mutants. Recognising that transcription can be mutagenic, and that codon 189 overlaps with a predicted promoter (rpoSp) for the adjacent stationary phase sigma factor, rpoS, transcription across this promoter region was measured. This confirmed rpoSp is induced in stationary phase and that C565T mutation caused significant elevation of transcription. The latter provided opportunity to determine the C565T mutation rate using a reporter-gene fused to rpoSp. Fluctuation assays estimate the C565T mutation rate to be ~5,000-fold higher than expected. In Pseudomonas, transcription of rpoS requires the positive activator PsrA, which we show also holds for SBW25. Fluctuation assays performed in a ∆psrA background showed a ~60-fold reduction in mutation rate confirming that the elevated rate of mutation at C565T mutation rate is dependent on induction of transcription. This hotspot suggests a generalisable phenomenon where the induction of transcription causes elevated mutation rates within defining regions of promoters.
Collapse
Affiliation(s)
- Andrew D. Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Christina Vasileiou
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter A. Lind
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
2
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
3
|
Kotsyurbenko OR, Kompanichenko VN, Brouchkov AV, Khrunyk YY, Karlov SP, Sorokin VV, Skladnev DA. Different Scenarios for the Origin and the Subsequent Succession of a Hypothetical Microbial Community in the Cloud Layer of Venus. ASTROBIOLOGY 2024; 24:423-441. [PMID: 38563825 DOI: 10.1089/ast.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.
Collapse
Affiliation(s)
- Oleg R Kotsyurbenko
- Higher School of Ecology, Yugra State University, Khanty-Mansiysk, Russia
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
| | - Vladimir N Kompanichenko
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
- Institute for Complex Analysis of Regional Problems RAS, Birobidzhan, Russia
| | | | - Yuliya Y Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russia
| | - Sergey P Karlov
- Faculty of Mechanical Engineering, Moscow Polytechnic University, Moscow, Russia
| | - Vladimir V Sorokin
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Dmitry A Skladnev
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| |
Collapse
|
4
|
Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and genetic influence on the rate and spectrum of spontaneous mutations in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001452. [PMID: 38687010 PMCID: PMC11084559 DOI: 10.1099/mic.0.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.
Collapse
Affiliation(s)
- Danna R. Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra Geim
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Pembroke College, University of Cambridge, Cambridge, UK
| | - Eleanor Marshall
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Horton JS, Taylor TB. Mutation bias and adaptation in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001404. [PMID: 37943288 PMCID: PMC10710837 DOI: 10.1099/mic.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Genetic mutation, which provides the raw material for evolutionary adaptation, is largely a stochastic force. However, there is ample evidence showing that mutations can also exhibit strong biases, with some mutation types and certain genomic positions mutating more often than others. It is becoming increasingly clear that mutational bias can play a role in determining adaptive outcomes in bacteria in both the laboratory and the clinic. As such, understanding the causes and consequences of mutation bias can help microbiologists to anticipate and predict adaptive outcomes. In this review, we provide an overview of the mechanisms and features of the bacterial genome that cause mutational biases to occur. We then describe the environmental triggers that drive these mechanisms to be more potent and outline the adaptive scenarios where mutation bias can synergize with natural selection to define evolutionary outcomes. We conclude by describing how understanding mutagenic genomic features can help microbiologists predict areas sensitive to mutational bias, and finish by outlining future work that will help us achieve more accurate evolutionary forecasts.
Collapse
Affiliation(s)
- James S. Horton
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| |
Collapse
|
6
|
Gifford DR, Berríos-Caro E, Joerres C, Suñé M, Forsyth JH, Bhattacharyya A, Galla T, Knight CG. Mutators can drive the evolution of multi-resistance to antibiotics. PLoS Genet 2023; 19:e1010791. [PMID: 37311005 DOI: 10.1371/journal.pgen.1010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Antibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with 'mutators', organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic-under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair. Unexpectedly, mutators not only allowed multi-resistance to evolve under combination treatment where it was favoured, but also under single-drug treatments. Using simulations, we show that the increase in mutation rate of the two canonical resistance targets is sufficient to permit multi-resistance evolution in both single-drug and combination treatments. Under both conditions, the mutator allele swept to fixation through hitch-hiking with single-drug resistance, enabling subsequent resistance mutations to emerge. Ultimately, our results suggest that mutators may hinder the utility of combination therapy when mutators are present. Additionally, by raising the rates of genetic mutation, selection for multi-resistance may have the unwanted side-effect of increasing the potential to evolve resistance to future antibiotic treatments.
Collapse
Affiliation(s)
- Danna R Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Ernesto Berríos-Caro
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Joerres
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marc Suñé
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jessica H Forsyth
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tobias Galla
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, Palma de Mallorca, Spain
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Schmidt SBI, Rodríguez-Rojas A, Rolff J, Schreiber F. Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129280. [PMID: 35714537 DOI: 10.1016/j.jhazmat.2022.129280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution and transmission of AMR. Previous studies showed that de-novo mutagenesis and horizontal gene transfer (HGT) by conjugation or transformation - important processes underlying resistance evolution and spread - are affected by antibiotics, metals and pesticides. However, natural microbial communities are also frequently exposed to biocides used as material preservatives, but it is unknown if these substances induce mutagenesis and HGT. Here, we show that active substances used in material preservatives can increase rates of mutation and conjugation in a species- and substance-dependent manner, while rates of transformation are not increased. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in Escherichia coli, whereas no increases were identified for Bacillus subtilis and Acinetobacter baylyi. Benzalkonium chloride, chlorhexidine and permethrin increased conjugation in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Taken together, our data show the importance of assessing the contribution of material preservatives on AMR evolution and spread.
Collapse
Affiliation(s)
- Selina B I Schmidt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Internal Medicine - Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|