1
|
Maseko N, Yang S, Li C, Zhang S, Wang R, Zhang Y, Li C, Zhang C, Li L. Impact of genetic polymorphisms on tacrolimus trough blood concentration in Chinese liver transplant recipients. Pharmacogenomics 2023; 24:207-217. [PMID: 36927114 DOI: 10.2217/pgs-2022-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Purpose: The aim of this study was to analyze the effects of various genetic polymorphisms and clinical factors on tacrolimus (TAC) concentration in the convalescence period (CP) and stabilization period (SP) post-liver transplantation. Patients & methods: A total of 13 SNPs were genotyped in 97 Chinese liver transplant recipients. Associations between SNPs and TAC trough blood concentration/dose ratio (C0/D) were analyzed using different genetic models in both CP and SP. Results: Only five SNPs were significantly associated with TAC log (C0/D) in the CP, and none showed a significant association in the SP. We identified rs15524 (CYP3A5), rs9200 (C6), albumin and creatinine as independent predictors of TAC C0/D in the CP. Furthermore, a final model in the CP explained a total of 30.5% TAC variation. Conclusion: Our study results suggest that in the early stages post-transplantation surgery, recipients' genetic and clinical factors exert a short-term impact on TAC metabolism that gradually decreases with time.
Collapse
Affiliation(s)
- Nicola Maseko
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Siqi Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ruiying Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yawen Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuanjie Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
2
|
Huang H, Zhang S, Wen X, Sadee W, Wang D, Yang S, Li L. Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis. Biomedicines 2022; 10:biomedicines10123061. [PMID: 36551817 PMCID: PMC9775998 DOI: 10.3390/biomedicines10123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
CYP3A4, CYP3A5, and CYP3A7, which are located in a multigene locus (CYP3A), play crucial roles in drug metabolism. To understand the highly variable hepatic expression of CYP3As, regulatory network analyses have focused on transcription factors (TFs). Since long non-coding RNAs (lncRNAs) likely contribute to such networks, we assessed the regulatory effects of both TFs and lncRNAs on CYP3A expression in the human liver and small intestine, main organs of CYP3A expression. Using weighted gene co-expression network analysis (WGCNA) of GTEx v8 RNA expression data and multiple stepwise regression analysis, we constructed TF-lncRNA-CYP3A co-expression networks. Multiple lncRNAs and TFs displayed robust associations with CYP3A expression that differed between liver and small intestines (LINC02499, HNF4A-AS1, AC027682.6, LOC102724153, and RP11-503C24.6), indicating that lncRNAs contribute to variance in CYP3A expression in both organs. Of these, HNF4A-AS1 had been experimentally demonstrated to affect CYP3A expression. Incorporating ncRNAs into CYP3A expression regulatory network revealed additional candidate TFs associated with CYP3A expression. These results serve as a guide for experimental studies on lncRNA-TF regulation of CYP3A expression in the liver and small intestines.
Collapse
Affiliation(s)
- Huina Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siqi Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhen Wen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Danxin Wang
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
3
|
Yang S, Jiang H, Li C, Lu H, Li C, Ye D, Qi H, Xu W, Bao X, Maseko N, Zhang S, Shao R, Li L. Genomewide association study identifies a novel variant associated with tacrolimus trough concentration in Chinese renal transplant recipients. Clin Transl Sci 2022; 15:2640-2651. [PMID: 35977080 PMCID: PMC9652447 DOI: 10.1111/cts.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tacrolimus (TAC) is an immunosuppressant widely used in kidney transplantation. TAC displays considerable interindividual variability in pharmacokinetics (PKs). Genetic and clinical factors play important roles in TAC PKs. We enrolled a total of 251 Chinese renal transplant recipients and conducted a genomewide association study (GWAS), linkage disequilibrium (LD), and one-way analysis of variance (ANOVA) to find genetic variants affecting log-transformed TAC trough blood concentration/dose ratio (log[C0 /D]). In addition, we performed dual luciferase reporter gene assays and multivariate regression models to evaluate the effect of the genetic variants. The GWAS results showed that all 23 genomewide significant single-nucleotide polymorphisms (p < 5 × 10-8 ) were located on chromosome 7, including CYP3A5*3. LD, conditional association analysis, and one-way ANOVA showed that rs75125371 T > C independently influenced TAC log(C0 /D). Dual luciferase reporter gene assays indicated that rs75125371 minor allele (C) was significantly associated with increased normalized luciferase activity than the major allele (T) in the Huh7 cells (p = 1.2 × 10-5 ) and HepaRG cells (p = 0.0097). A model inclusive of age, sex, hematocrit, CYP3A5*3, and rs75125371 explained 37.34% variance in TAC C0 . These results suggest that rs75125371 T > C is a functional and population-specific variant affecting TAC C0 in Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Siyao Yang
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haixia Jiang
- Department of Laboratory Medicine, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Huijie Lu
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Demei Ye
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Huana Qi
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenbin Xu
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaojie Bao
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nicola Maseko
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siqi Zhang
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ruifan Shao
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Experimental Education and Administration Center, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Collins JM, Nworu AC, Mohammad SJ, Li L, Li C, Li C, Schwendeman E, Cefalu M, Abdel‐Rasoul M, Sun JW, Smith SA, Wang D. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin Transl Sci 2022; 15:2720-2731. [PMID: 36045613 PMCID: PMC9652438 DOI: 10.1111/cts.13398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
The cytochrome P450 3As (CYP3As) are abundantly expressed in the liver and metabolize many commonly prescribed medications. Their expression is highly variable between individuals with little known genetic cause. Despite extensive investigation, cis-acting genetic elements that control the expression of the CYP3As remain uncharacterized. Using chromatin conformation capture (4C assays), we detected reciprocal interaction between a distal regulatory region (DRR) and the CYP3A4 promoter. The DRR colocalizes with a variety of enhancer marks and was found to promote transcription in reporter assays. CRISPR-mediated deletion of the DRR decreased expression of CYP3A4, CYP3A5, and CYP3A7, supporting its role as a shared enhancer regulating the expression of three CYP3A genes. Using reporter gene assays, we identified two single-nucleotide polymorphisms (rs115025140 and rs776744/rs776742) that increased DRR-driven luciferase reporter expression. In a liver cohort (n = 246), rs115025140 was associated with increased expression of CYP3A4 mRNA (1.8-fold) and protein (1.6-fold) and rs776744/rs776742 was associated with 1.39-fold increased expression of CYP3A5 mRNA. The rs115025140 is unique to the African population and in a clinical cohort of African Americans taking statins for lipid control rs115025140 carriers showed a trend toward reduced statin-mediated lipid reduction. In addition, using a published cohort of Chinese patients who underwent renal transplantation taking tacrolimus, rs776744/rs776742 carriers were associated with reduced tacrolimus concentration after adjusting for CYP3A5*3. Our results elucidate a complex regulatory network controlling expression of three CYP3A genes and identify two novel regulatory variants with potential clinical relevance for predicting CYP3A4 and CYP3A5 expression.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Adaeze C. Nworu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Somayya J. Mohammad
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ethan Schwendeman
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mattew Cefalu
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mahmoud Abdel‐Rasoul
- Center for Biostatistics, Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Jessie W. Sun
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA,School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Sakima A. Smith
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Lu H, Jiang H, Yang S, Li C, Li C, Shao R, Zhang P, Wang D, Liu Z, Qi H, Cai Y, Xu W, Bao X, Wang H, Li L. Trans-eQTLs of the CYP3A4 and CYP3A5 associated with tacrolimus trough blood concentration in Chinese renal transplant patients. Biomed Pharmacother 2021; 145:112407. [PMID: 34781138 DOI: 10.1016/j.biopha.2021.112407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to systematically investigate trans-eQTLs of CYP3A4 and CYP3A5 affecting tacrolimus trough blood concentrations in Chinese renal transplant patients. We used Plink v1.90 to perform data quality control and linear regression analysis on GTEx v8 data. SNPs with p-value < 0.05 were selected and the GTEx eQTL Calculator was used to further prioritize the eQTLs of CYP3A4 and CYP3A5 in the liver and small intestine. The eQTLs with a p-value < 5 × 10-5 and MAF≥ 0.05 in the CHB population were selected as candidate eQTLs. The genotyping of candidate eQTLs was performed using high-resolution melting (HRM) assays and Sanger DNA sequencing. This study included 845 Chinese renal transplant patients who received tacrolimus as an immunosuppressive agent. Association between 103 candidate eQTLs and log-transformed tacrolimus concentration/dose ratio (log (C0/D)) in this cohort was conducted using the SNPassoc package of R software. In the end, a total of 75,632 liver eQTLs of CYP3A4, 69,558 liver eQTLs of CYP3A5, 48,596 small intestine eQTLs of CYP3A4 and 28,616 small intestine eQTLs of CYP3A5 were obtained using the GTEx v8 eQTL Calculator. Of the 103 candidate eQTLs, rs75727207, rs181294422 and rs28522676 were significantly associated with tacrolimus log(C0/D) in different genetic models. We discovered a substantial number of novel eQTLs of CYP3A4 and CYP3A5 in liver and small intestine, also found that rs75727207, rs181294422 and rs28522676 may affect tacrolimus trough blood concentrations in Chinese renal transplant patients.
Collapse
Affiliation(s)
- Huijie Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haixia Jiang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery,Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ruifan Shao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pai Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Daoyi Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiwei Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huana Qi
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yinuan Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wenbin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaojie Bao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hailan Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|