1
|
Miura K, Yoshida M, Morita K, Fujimoto M, Yasuda Y, Yamamori H, Takahashi J, Miyata S, Okazaki K, Matsumoto J, Toyomaki A, Makinodan M, Hashimoto N, Onitsuka T, Kasai K, Ozaki N, Hashimoto R. Gaze behaviors during free viewing revealed differences in visual salience processing across four major psychiatric disorders: a mega-analysis study of 1012 individuals. Mol Psychiatry 2025; 30:1594-1600. [PMID: 39394456 PMCID: PMC11919774 DOI: 10.1038/s41380-024-02773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024]
Abstract
Aberrant salience processing has been proposed as a pathophysiological mechanism underlying psychiatric symptoms in patients with schizophrenia. The gaze trajectories of individuals with schizophrenia have been reported to be abnormal when viewing an image, suggesting anomalous visual salience as one possible pathophysiological mechanism associated with psychiatric diseases. This study was designed to determine whether visual salience is affected in individuals with schizophrenia, and whether this abnormality is unique to patients with schizophrenia. We examined the gaze behaviors of 1012 participants recruited from seven institutes (550 healthy individuals and 238, 41, 50 and 133 individuals with schizophrenia, bipolar disorder, major depressive disorder and autism spectrum disorder, respectively) when they looked at stationary images as they liked, i.e., free-viewing condition. We used an established computational model of salience maps derived from low-level visual features to measure the degree to which the gaze trajectories of individuals were guided by visual salience. The analysis revealed that the saliency at the gaze of individuals with schizophrenia were higher than healthy individuals, suggesting that patients' gazes were guided more by low-level image salience. Among the low-level image features, orientation salience was most affected. Furthermore, a general linear model analysis of the data for the four psychiatric disorders revealed a significant effect of disease. This abnormal salience processing depended on the disease and was strongest in patients with schizophrenia, followed by patients with bipolar disorder, major depressive disorder, and autism spectrum disorder, suggesting a link between abnormalities in salience processing and strength/frequency for psychosis of these disorders.
Collapse
Affiliation(s)
- Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 184-8553, Japan.
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, 060-0812, Japan.
| | - Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 184-8553, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 184-8553, Japan
- Medical Corporation Foster, Life Grow Brilliant Mental Clinic, Osaka, 531-0075, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 184-8553, Japan
- Japan Community Health Care Organization, Osaka Hospital, Osaka, 553-0003, Japan
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Seiko Miyata
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kosuke Okazaki
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 184-8553, Japan
| | - Atsuto Toyomaki
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | | | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, 113-0033, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 184-8553, Japan
| |
Collapse
|
2
|
Corlett PR, Fraser KM. 20 Years of Aberrant Salience in Psychosis: What Have We Learned? Am J Psychiatry 2025:appiajp20240556. [PMID: 40134268 DOI: 10.1176/appi.ajp.20240556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Twenty years ago Shitij Kapur's "Psychosis as a state of aberrant salience" captured the attention of clinicians and cognitive and behavioral neuroscientists. It has become the de facto way of talking about delusion formation in labs and clinics. Here, evidence for this theory is critically evaluated in consideration of evolving data since its publication. A particular focus is placed on its specific predictions regarding the neural and behavioral loci of dopamine dysfunction in psychosis and finds them lacking. This examination is informed by recent advances in the understanding of the function of the dopamine system and its impacts on behavior following the explosion of new tools and probes for precise measurement and manipulation of dopaminergic circuits. Contemporary theories that have developed since Kapur-which suggest a role for dopamine in belief formation, belief updating under uncertainty, and abductive inference to the best explanation for some set of circumstances-are argued to form a more cogent theory that fits better with the work in patients with delusions and hallucinations, how they behave, and what is known about the function of their dopamine system. The original salience hypothesis has been influential as it attempted to unite neurochemical dysfunction with clinical phenomenology through computational cognitive neuroscience, which has led to the development of novel predictions that the authors highlight as future directions for the field.
Collapse
Affiliation(s)
- Philip R Corlett
- Wu Tsai Institute, Departments of Psychiatry and Psychology, Yale University, New Haven (Corlett); Department of Psychology, University of Minnesota, Minneapolis (Fraser)
| | - Kurt M Fraser
- Wu Tsai Institute, Departments of Psychiatry and Psychology, Yale University, New Haven (Corlett); Department of Psychology, University of Minnesota, Minneapolis (Fraser)
| |
Collapse
|
3
|
Gee A, Dazzan P, Grace AA, Modinos G. Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review. Transl Psychiatry 2025; 15:21. [PMID: 39856031 PMCID: PMC11760974 DOI: 10.1038/s41398-024-03221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia spectrum disorders (SSD) involve disturbances in the integration of perception, emotion and cognition. The corticolimbic system is an interacting set of cortical and subcortical brain regions critically involved in this process. Understanding how neural circuitry and molecular mechanisms within this corticolimbic system may contribute to the development of not only positive symptoms but also negative and cognitive deficits in SSD has been a recent focus of intense research, as the latter are not adequately treated by current antipsychotic medications and are more strongly associated with poorer functioning and long-term outcomes. This review synthesises recent developments examining corticolimbic dysfunction in the pathophysiology of SSD, with a focus on neuroimaging advances and related novel methodologies that enable the integration of data across different scales. We then integrate how these findings may inform the identification of novel therapeutic and preventive targets for SSD symptomatology. A range of pharmacological interventions have shown initial promise in correcting corticolimbic dysfunction and improving negative, cognitive and treatment-resistant symptoms. We discuss current challenges and opportunities for improving the still limited translation of these research findings into clinical practice. We argue how our knowledge of the role of corticolimbic dysfunction can be improved by combining multiple research modalities to examine hypotheses across different spatial and temporal scales, combining neuroimaging with experimental interventions and utilising large-scale consortia to advance biomarker identification. Translation of these findings into clinical practice will be aided by consideration of optimal intervention timings, biomarker-led patient stratification, and the development of more selective medications.
Collapse
Affiliation(s)
- Abigail Gee
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
4
|
Bracher KM, Wohlschlaeger A, Koch K, Knolle F. Cognitive subgroups of affective and non-affective psychosis show differences in medication and cortico-subcortical brain networks. Sci Rep 2024; 14:20314. [PMID: 39223185 PMCID: PMC11369100 DOI: 10.1038/s41598-024-71316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cognitive deficits are prevalent in individuals with psychosis and are associated with neurobiological changes, potentially serving as an endophenotype for psychosis. Using the HCP-Early-Psychosis-dataset (n = 226), we aimed to investigate cognitive subtypes (deficit/intermediate/spared) through data-driven clustering in affective (AP) and non-affective psychosis patients (NAP) and controls (HC). We explored differences between three clusters in symptoms, cognition, medication, and grey matter volume. Applying principal component analysis, we selected features for clustering. Features that explained most variance were scores for intelligence, verbal recognition and comprehension, auditory attention, working memory, reasoning and executive functioning. Fuzzy K-Means clustering on those features revealed that the subgroups significantly varied in cognitive impairment, clinical symptoms, and, importantly, also in medication and grey matter volume in fronto-parietal and subcortical networks. The spared cluster (86%HC, 37%AP, 17%NAP) exhibited unimpaired cognition, lowest symptoms/medication, and grey matter comparable to controls. The deficit cluster (4%HC, 10%AP, 47%NAP) had impairments across all domains, highest symptoms scores/medication dosage, and pronounced grey matter alterations. The intermediate deficit cluster (11%HC, 54%AP, 36%NAP) showed fewer deficits than the second cluster, but similar symptoms/medication/grey matter to the spared cluster. Controlling for medication, cognitive scores correlated with grey matter changes and negative symptoms across all patients. Our findings generally emphasize the interplay between cognition, brain structure, symptoms, and medication in AP and NAP, and specifically suggest a possible mediating role of cognition, highlighting the potential of screening cognitive changes to aid tailoring treatments and interventions.
Collapse
Affiliation(s)
- Katharina M Bracher
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152, Martinsried, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Tholl S, Sojer CA, Schmidt SNL, Mier D. How to elicit a negative bias? Manipulating contrast and saturation with the facial emotion salience task. Front Psychol 2024; 15:1284595. [PMID: 39268387 PMCID: PMC11390599 DOI: 10.3389/fpsyg.2024.1284595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Emotion recognition impairments and a tendency to misclassify neutral faces as negative are common in schizophrenia. A possible explanation for these deficits is aberrant salience attribution. To explore the possibility of salience driven emotion recognition deficits, we implemented a novel facial emotion salience task (FEST). Methods Sixty-six healthy participants with variations in psychometric schizotypy completed the FEST. In the FEST, we manipulated physical salience (FEST-1: contrast, FEST-2: saturation) of emotionally salient (positive, i.e., happy and negative, i.e., fearful) and non-salient (neutral) facial expressions. Results When salience was high (increased contrast), participants recognized negative facial expressions faster, whereas neutral faces were recognized more slowly and were more frequently misclassified as negative. When salience was low (decreased saturation), positive expressions were recognized more slowly. These measures were not associated with schizotypy in our sample. Discussion Our findings show that the match between physical and emotional salience influences emotion recognition and suggest that the FEST is suitable to simulate aberrant salience processing during emotion recognition in healthy participants.
Collapse
Affiliation(s)
- Sarah Tholl
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | | | | | - Daniela Mier
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Sheffield JM, Brinen AP, Feola B, Heckers S, Corlett PR. Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100333. [PMID: 38952435 PMCID: PMC11215207 DOI: 10.1016/j.bpsgos.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 07/03/2024] Open
Abstract
Psychological treatments for persecutory delusions, particularly cognitive behavioral therapy for psychosis, are efficacious; however, mechanistic theories explaining why they work rarely bridge to the level of cognitive neuroscience. Predictive coding, a general brain processing theory rooted in cognitive and computational neuroscience, has increasing experimental support for explaining symptoms of psychosis, including the formation and maintenance of delusions. Here, we describe recent advances in cognitive behavioral therapy for psychosis-based psychotherapy for persecutory delusions, which targets specific psychological processes at the computational level of information processing. We outline how Bayesian learning models employed in predictive coding are superior to simple associative learning models for understanding the impact of cognitive behavioral interventions at the algorithmic level. We review hierarchical predictive coding as an account of belief updating rooted in prediction error signaling. We examine how this process is abnormal in psychotic disorders, garnering noisy sensory data that is made sense of through the development of overly strong delusional priors. We argue that effective cognitive behavioral therapy for psychosis systematically targets the way sensory data are selected, experienced, and interpreted, thus allowing for the strengthening of alternative beliefs. Finally, future directions based on these arguments are discussed.
Collapse
Affiliation(s)
- Julia M. Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aaron P. Brinen
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip R. Corlett
- Department of Psychiatry, Clinical Neuroscience Research Unit, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
8
|
Yoshida M, Miura K, Fujimoto M, Yamamori H, Yasuda Y, Iwase M, Hashimoto R. Visual salience is affected in participants with schizophrenia during free-viewing. Sci Rep 2024; 14:4606. [PMID: 38409435 PMCID: PMC10897421 DOI: 10.1038/s41598-024-55359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Abnormalities in visual exploration affect the daily lives of patients with schizophrenia. For example, scanpath length during free-viewing is shorter in schizophrenia. However, its origin and its relevance to symptoms are unknown. Here we investigate the possibility that abnormalities in eye movements result from abnormalities in visual or visuo-cognitive processing. More specifically, we examined whether such abnormalities reflect visual salience in schizophrenia. Eye movements of 82 patients and 252 healthy individuals viewing natural and/or complex images were examined using saliency maps for static images to determine the contributions of low-level visual features to salience-guided eye movements. The results showed that the mean value for orientation salience at the gazes of the participants with schizophrenia were higher than that of the healthy control subjects. Further analyses revealed that orientation salience defined by the L + M channel of the DKL color space is specifically affected in schizophrenia, suggesting abnormalities in the magnocellular visual pathway. By looking into the computational stages of the visual salience, we found that the difference between schizophrenia and healthy control emerges at the earlier stage, suggesting functional decline in early visual processing. These results suggest that visual salience is affected in schizophrenia, thereby expanding the concept of the aberrant salience hypothesis of psychosis to the visual domain.
Collapse
Affiliation(s)
- Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan.
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Japan Community Health Care Organization, Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Medical Corporation Foster, Life Grow Brilliant Mental Clinic, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Hirakata, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
9
|
Hasan SM, Huq MS, Chowdury AZ, Baajour S, Kopchick J, Robison AJ, Thakkar KN, Haddad L, Amirsadri A, Thomas P, Khatib D, Rajan U, Stanley JA, Diwadkar VA. Learning without contingencies: A loss of synergy between memory and reward circuits in schizophrenia. Schizophr Res 2023; 258:21-35. [PMID: 37467677 PMCID: PMC10521382 DOI: 10.1016/j.schres.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/09/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Motivational deficits in schizophrenia may interact with foundational cognitive processes including learning and memory to induce impaired cognitive proficiency. If such a loss of synergy exists, it is likely to be underpinned by a loss of synchrony between the brains learning and reward sub-networks. Moreover, this loss should be observed even during tasks devoid of explicit reward contingencies given that such tasks are better models of real world performance than those with artificial contingencies. Here we applied undirected functional connectivity (uFC) analyses to fMRI data acquired while participants engaged in an associative learning task without contingencies or feedback. uFC was estimated and inter-group differences (between schizophrenia patients and controls, n = 54 total, n = 28 patients) were assessed within and between reward (VTA and NAcc) and learning/memory (Basal Ganglia, DPFC, Hippocampus, Parahippocampus, Occipital Lobe) sub-networks. The task paradigm itself alternated between Encoding, Consolidation, and Retrieval conditions, and uFC differences were quantified for each of the conditions. Significantly reduced uFC dominated the connectivity profiles of patients across all conditions. More pertinent to our motivations, these reductions were observed within and across classes of sub-networks (reward-related and learning/memory related). We suggest that disrupted functional connectivity between reward and learning sub-networks may drive many of the performance deficits that characterize schizophrenia. Thus, cognitive deficits in schizophrenia may in fact be underpinned by a loss of synergy between reward-sensitivity and cognitive processes.
Collapse
Affiliation(s)
- Sazid M Hasan
- Oakland University William Beaumont School of Medicine, USA
| | - Munajj S Huq
- Michigan State University, College of Osteopathic Medicine, USA
| | - Asadur Z Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Shahira Baajour
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - John Kopchick
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - A J Robison
- Dept. of Physiology, Michigan State University, USA
| | | | - Luay Haddad
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Alireza Amirsadri
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Patricia Thomas
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Usha Rajan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Jeffrey A Stanley
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
10
|
Knolle F, Arumugham SS, Barker RA, Chee MWL, Justicia A, Kamble N, Lee J, Liu S, Lenka A, Lewis SJG, Murray GK, Pal PK, Saini J, Szeto J, Yadav R, Zhou JH, Koch K. A multicentre study on grey matter morphometric biomarkers for classifying early schizophrenia and parkinson's disease psychosis. NPJ Parkinsons Dis 2023; 9:87. [PMID: 37291143 PMCID: PMC10250419 DOI: 10.1038/s41531-023-00522-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Psychotic symptoms occur in a majority of schizophrenia patients and in ~50% of all Parkinson's disease (PD) patients. Altered grey matter (GM) structure within several brain areas and networks may contribute to their pathogenesis. Little is known, however, about transdiagnostic similarities when psychotic symptoms occur in different disorders, such as in schizophrenia and PD. The present study investigated a large, multicenter sample containing 722 participants: 146 patients with first episode psychosis, FEP; 106 individuals in at-risk mental state for developing psychosis, ARMS; 145 healthy controls matching FEP and ARMS, Con-Psy; 92 PD patients with psychotic symptoms, PDP; 145 PD patients without psychotic symptoms, PDN; 88 healthy controls matching PDN and PDP, Con-PD. We applied source-based morphometry in association with receiver operating curves (ROC) analyses to identify common GM structural covariance networks (SCN) and investigated their accuracy in identifying the different patient groups. We assessed group-specific homogeneity and variability across the different networks and potential associations with clinical symptoms. SCN-extracted GM values differed significantly between FEP and Con-Psy, PDP and Con-PD, PDN and Con-PD, as well as PDN and PDP, indicating significant overall grey matter reductions in PD and early schizophrenia. ROC analyses showed that SCN-based classification algorithms allow good classification (AUC ~0.80) of FEP and Con-Psy, and fair performance (AUC ~0.72) when differentiating PDP from Con-PD. Importantly, the best performance was found in partly the same networks, including the thalamus. Alterations within selected SCNs may be related to the presence of psychotic symptoms in both early schizophrenia and PD psychosis, indicating some commonality of underlying mechanisms. Furthermore, results provide evidence that GM volume within specific SCNs may serve as a biomarker for identifying FEP and PDP.
Collapse
Affiliation(s)
- Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - Shyam S Arumugham
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Roger A Barker
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Azucena Justicia
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jimmy Lee
- Research Division, Institute of Mental Health, Singapore, Singapore
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Neuroscience and Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Siwei Liu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhishek Lenka
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
- Department of Neurology, Medstar Georgetown University School of Medicine, Washington, DC, USA
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Jennifer Szeto
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Ravi Yadav
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
12
|
Ince S, Steward T, Harrison BJ, Jamieson AJ, Davey CG, Agathos JA, Moffat BA, Glarin RK, Felmingham KL. Subcortical contributions to salience network functioning during negative emotional processing. Neuroimage 2023; 270:119964. [PMID: 36822252 DOI: 10.1016/j.neuroimage.2023.119964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Core regions of the salience network (SN), including the anterior insula (aINS) and dorsal anterior cingulate cortex (dACC), coordinate rapid adaptive changes in attentional and autonomic processes in response to negative emotional events. In doing so, the SN incorporates bottom-up signals from subcortical brain regions, such as the amygdala and periaqueductal gray (PAG). However, the precise influence of these subcortical regions is not well understood. Using ultra-high field 7-Tesla functional magnetic resonance imaging, this study investigated the bottom-up interactions of the amygdala and PAG with the SN during negative emotional salience processing. Thirty-seven healthy participants completed an emotional oddball paradigm designed to elicit a salient negative emotional response via the presentation of random, task-irrelevant negative emotional images. Negative emotional processing was associated with prominent activation in the SN, spanning the amygdala, PAG, aINS, and dACC. Consistent with previous research, analysis using dynamic causal modelling revealed an excitatory influence from the amygdala to the aINS, dACC, and PAG. In contrast, the PAG showed an inhibitory influence on amygdala, aINS and dACC activity. Our findings suggest that the amygdala may amplify the processing of negative emotional stimuli in the SN to enable upstream access to attentional resources. In comparison, the inhibitory influence of the PAG possibly reflects its involvement in modulating sympathetic-parasympathetic autonomic arousal mediated by the SN. This PAG-mediated effect may be driven by amygdala input and facilitate bottom-up processing of negative emotional stimuli. Overall, our results show that the amygdala and PAG modulate divergent functions of the SN during negative emotional processing.
Collapse
Affiliation(s)
- Sevil Ince
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Trevor Steward
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James A Agathos
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bradford A Moffat
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rebecca K Glarin
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Adam Yaple Z, Tolomeo S, Yu R. Spatial and chronic differences in neural activity in medicated and unmedicated schizophrenia patients. Neuroimage Clin 2022; 35:103029. [PMID: 35569228 PMCID: PMC9112098 DOI: 10.1016/j.nicl.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Abstract
The medicated schizophrenia group yielded concordant activity among three right lateralized frontal clusters and a left lateralized parietal cluster. The unmedicated schizophrenia group yielded concordant activity among right lateralized frontal-parietal regions. A neural compensatory mechanism in schizophrenia.
A major caveat with investigations on schizophrenic patients is the difficulty to control for medication usage across samples as disease-related neural differences may be confounded by medication usage. Following a thorough literature search (632 records identified), we included 37 studies with a total of 740 medicated schizophrenia patients and 367 unmedicated schizophrenia patients. Here, we perform several meta-analyses to assess the neurofunctional differences between medicated and unmedicated schizophrenic patients across fMRI studies to determine systematic regions associated with medication usage. Several clusters identified by the meta-analysis on the medicated group include three right lateralized frontal clusters and a left lateralized parietal cluster, whereas the unmedicated group yielded concordant activity among right lateralized frontal-parietal regions. We further explored the prevalence of activity within these regions across illness duration and task type. These findings suggest a neural compensatory mechanism across these regions both spatially and chronically, offering new insight into the spatial and temporal dynamic neural differences among medicated and unmedicated schizophrenia patients.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
14
|
Zhao L, Bo Q, Zhang Z, Chen Z, Wang Y, Zhang D, Li T, Yang N, Zhou Y, Wang C. Altered Dynamic Functional Connectivity in Early Psychosis Between the Salience Network and Visual Network. Neuroscience 2022; 491:166-175. [DOI: 10.1016/j.neuroscience.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
|
15
|
Kesby JP, Murray GK, Knolle F. Neural Circuitry of Salience and Reward Processing in Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:33-46. [PMID: 36712572 PMCID: PMC9874126 DOI: 10.1016/j.bpsgos.2021.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
The processing of salient and rewarding stimuli is integral to engaging our attention, stimulating anticipation for future events, and driving goal-directed behaviors. Widespread impairments in these processes are observed in psychosis, which may be associated with worse functional outcomes or mechanistically linked to the development of symptoms. Here, we summarize the current knowledge of behavioral and functional neuroimaging in salience, prediction error, and reward. Although each is a specific process, they are situated in multiple feedback and feedforward systems integral to decision making and cognition more generally. We argue that the origin of salience and reward processing dysfunctions may be centered in the subcortex during the earliest stages of psychosis, with cortical abnormalities being initially more spared but becoming more prominent in established psychotic illness/schizophrenia. The neural circuits underpinning salience and reward processing may provide targets for delaying or preventing progressive behavioral and neurobiological decline.
Collapse
Affiliation(s)
- James P. Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia,Address correspondence to James Kesby, Ph.D.
| | - Graham K. Murray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Franziska Knolle
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom,Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany,Franziska Knolle, Ph.D.
| |
Collapse
|
16
|
Workman CI, Humphries S, Hartung F, Aguirre GK, Kable JW, Chatterjee A. Morality is in the eye of the beholder: the neurocognitive basis of the "anomalous-is-bad" stereotype. Ann N Y Acad Sci 2021; 1494:3-17. [PMID: 33565114 PMCID: PMC8247878 DOI: 10.1111/nyas.14575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/28/2022]
Abstract
Are people with flawed faces regarded as having flawed moral characters? An "anomalous-is-bad" stereotype is hypothesized to facilitate negative biases against people with facial anomalies (e.g., scars), but whether and how these biases affect behavior and brain functioning remain open questions. We examined responses to anomalous faces in the brain (using a visual oddball paradigm), behavior (in economic games), and attitudes. At the level of the brain, the amygdala demonstrated a specific neural response to anomalous faces-sensitive to disgust and a lack of beauty but independent of responses to salience or arousal. At the level of behavior, people with anomalous faces were subjected to less prosociality from participants highest in socioeconomic status. At the level of attitudes, we replicated previously reported negative character evaluations made about individuals with facial anomalies, and further identified explicit biases directed against them as a group. Across these levels of organization, the specific amygdala response to facial anomalies correlated with stronger just-world beliefs (i.e., people get what they deserve), less dispositional empathic concern, and less prosociality toward people with facial anomalies. Characterizing the "anomalous-is-bad" stereotype at multiple levels of organization can reveal underappreciated psychological burdens shouldered by people who look different.
Collapse
Affiliation(s)
- Clifford I. Workman
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Brain Science CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Center for NeuroaestheticsUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Stacey Humphries
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Brain Science CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Center for NeuroaestheticsUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Franziska Hartung
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Brain Science CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Center for NeuroaestheticsUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | | | - Joseph W. Kable
- Penn Brain Science CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Center for NeuroaestheticsUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Anjan Chatterjee
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Brain Science CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Penn Center for NeuroaestheticsUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
17
|
Lukow PB, Kiemes A, Kempton MJ, Turkheimer FE, McGuire P, Modinos G. Neural correlates of emotional processing in psychosis risk and onset - A systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev 2021; 128:780-788. [PMID: 33722617 PMCID: PMC8345001 DOI: 10.1016/j.neubiorev.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
The neural bases of altered emotion processing in psychosis are still unclear. Systematic review indicated widespread activation decreases to emotion in first-episode psychosis. Evidence in people at clinical high-risk for psychosis lacked convergence. These findings were corroborated by image-based meta-analyses.
Aberrant emotion processing is a well-established component of psychotic disorders and is already present at the first episode of psychosis (FEP). However, the role of emotion processing abnormalities in the emergence of psychosis and the underlying neurobiology remain unclear. Here, we systematically reviewed functional magnetic resonance studies that used emotion processing task paradigms in FEP patients, and in people at clinical high-risk for psychosis (CHRp). Image-based meta-analyses with Seed-based d Mapping on available studies (n = 6) were also performed. Compared to controls, FEP patients showed decreased neural responses to emotion, particularly in the amygdala and anterior cingulate cortex. There were no significant differences between CHRp subjects and controls, but a high degree of heterogeneity was identified across studies. The role of altered emotion processing in the early phase of psychosis may be clarified through more homogenous experimental designs, particularly in the CHRp population.
Collapse
Affiliation(s)
- P B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - A Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - M J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - P McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - G Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, new hunt's House, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|
18
|
Kirschner M, Schmidt A, Hodzic-Santor B, Burrer A, Manoliu A, Zeighami Y, Yau Y, Abbasi N, Maatz A, Habermeyer B, Abivardi A, Avram M, Brandl F, Sorg C, Homan P, Riecher-Rössler A, Borgwardt S, Seifritz E, Dagher A, Kaiser S. Orbitofrontal-Striatal Structural Alterations Linked to Negative Symptoms at Different Stages of the Schizophrenia Spectrum. Schizophr Bull 2020; 47:849-863. [PMID: 33257954 PMCID: PMC8084448 DOI: 10.1093/schbul/sbaa169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Negative symptoms such as anhedonia and apathy are among the most debilitating manifestations of schizophrenia (SZ). Imaging studies have linked these symptoms to morphometric abnormalities in 2 brain regions implicated in reward and motivation: the orbitofrontal cortex (OFC) and striatum. Higher negative symptoms are generally associated with reduced OFC thickness, while higher apathy specifically maps to reduced striatal volume. However, it remains unclear whether these tissue losses are a consequence of chronic illness and its treatment or an underlying phenotypic trait. Here, we use multicentre magnetic resonance imaging data to investigate orbitofrontal-striatal abnormalities across the SZ spectrum from healthy populations with high schizotypy to unmedicated and medicated first-episode psychosis (FEP), and patients with chronic SZ. Putamen, caudate, accumbens volume, and OFC thickness were estimated from T1-weighted images acquired in all 3 diagnostic groups and controls from 4 sites (n = 337). Results were first established in 1 discovery dataset and replicated in 3 independent samples. There was a negative correlation between apathy and putamen/accumbens volume only in healthy individuals with schizotypy; however, medicated patients exhibited larger putamen volume, which appears to be a consequence of antipsychotic medications. The negative association between reduced OFC thickness and total negative symptoms also appeared to vary along the SZ spectrum, being significant only in FEP patients. In schizotypy, there was increased OFC thickness relative to controls. Our findings suggest that negative symptoms are associated with a temporal continuum of orbitofrontal-striatal abnormalities that may predate the occurrence of SZ. Thicker OFC in schizotypy may represent either compensatory or pathological mechanisms prior to the disease onset.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; 3801 Rue University, Montréal QC, H3A 2B4 Canada; tel: +1 514-398-1726, fax: +1 514–398–8948, e-mail:
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Achim Burrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Wellcome Centre for Human Neuroimaging, University College London, London, UK,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yvonne Yau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nooshin Abbasi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Anke Maatz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Aslan Abivardi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Mihai Avram
- Department of Neuroradiology and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, Lübeck Germany
| | - Felix Brandl
- Department of Psychiatry and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Psychiatry and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY,Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY
| | | | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
19
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Nakamura Y, Okada N, Koshiyama D, Kamiya K, Abe O, Kunimatsu A, Okanoya K, Kasai K, Koike S. Differences in Functional Connectivity Networks Related to the Midbrain Dopaminergic System-Related Area in Various Psychiatric Disorders. Schizophr Bull 2020; 46:1239-1248. [PMID: 31901932 PMCID: PMC7505191 DOI: 10.1093/schbul/sbz121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Disruptions in the dopamine system have been observed in psychiatric disorders. Since dopamine is mainly produced in the ventral tegmental area (VTA), elucidating the differences in the VTA neural network across psychiatric disorders would facilitate a greater understanding of the pathophysiological mechanisms underlying these disorders. However, no study has compared VTA-seed-based functional connectivity across psychiatric disorders. Therefore, we conducted a resting-state functional magnetic resonance imaging (rs-fMRI) study to perform a seed-based fMRI analysis, using the VTA as a seed. METHODS We included participants with major depressive disorder (MDD; n = 45), schizophrenia (n = 32), and bipolar disorder (BPD; n = 30), along with healthy control participants (n = 46) who were matched for age, gender, and handedness. RESULTS The results showed that patients with MDD and BPD had altered VTA-related connectivity in the superior frontal gyrus, frontal pole regions, hippocampus, cerebellum, and posterior cingulate cortex. Some of these differences in connectivity were also found between affective disorders and schizophrenia; however, there were no differences between the schizophrenia and control groups. Connectivity between the VTA and the hippocampus was correlated with positive symptoms in the schizophrenia group. The connectivity was not associated with medication dose, and the results remained significant after controlling for dose. CONCLUSIONS The results suggest that altered brain functional connectivity related to VTA networks could be associated with the distinctive pathophysiologies of psychiatric disorders, especially affective disorders.
Collapse
Affiliation(s)
- Yuko Nakamura
- Center for Integrative Science of Human Behavior, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Science at the University of Tokyo, Tokyo, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Kunimatsu
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Center for Integrative Science of Human Behavior, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Science at the University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Kiyoto Kasai
- Center for Integrative Science of Human Behavior, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Science at the University of Tokyo, Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Shinsuke Koike
- Center for Integrative Science of Human Behavior, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Science at the University of Tokyo, Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| |
Collapse
|
21
|
Knolle F, Garofalo S, Viviani R, Justicia A, Ermakova AO, Blank H, Williams GB, Arrondo G, Ramachandra P, Tudor-Sfetea C, Bunzeck N, Duezel E, Robbins TW, Barker RA, Murray GK. Altered subcortical emotional salience processing differentiates Parkinson's patients with and without psychotic symptoms. NEUROIMAGE-CLINICAL 2020; 27:102277. [PMID: 32540629 PMCID: PMC7298672 DOI: 10.1016/j.nicl.2020.102277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023]
Abstract
Emotional salience processing differentiates PD patients with and without psychosis. Enhanced striatal, hippocampal and midbrain responses in PD patients with psychosis. Indication for ‘jumping to conclusions’ bias in the same PD patients with psychosis. Aberrant top-down and salience processing associated with PD psychosis. Similar deficits as proposed in ‘aberrant salience hypothesis’ of schizophrenia.
Objective Current research does not provide a clear explanation for why some patients with Parkinson’s Disease (PD) develop psychotic symptoms. The ‘aberrant salience hypothesis’ of psychosis has been influential and proposes that dopaminergic dysregulation leads to inappropriate attribution of salience to irrelevant/non-informative stimuli, facilitating the formation of hallucinations and delusions. The aim of this study is to investigate whether non-motivational salience is altered in PD patients and possibly linked to the development of psychotic symptoms. Methods We investigated salience processing in 14 PD patients with psychotic symptoms, 23 PD patients without psychotic symptoms and 19 healthy controls. All patients were on dopaminergic medication for their PD. We examined emotional salience using a visual oddball fMRI paradigm that has been used to investigate early stages of schizophrenia spectrum psychosis, controlling for resting cerebral blood flow as assessed with arterial spin labelling fMRI. Results We found significant differences between patient groups in brain responses to emotional salience. PD patients with psychotic symptoms had enhanced brain responses in the striatum, dopaminergic midbrain, hippocampus and amygdala compared to patients without psychotic symptoms. PD patients with psychotic symptoms showed significant correlations between the levels of dopaminergic drugs they were taking and BOLD signalling, as well as psychotic symptom scores. Conclusion Our study suggests that enhanced signalling in the striatum, dopaminergic midbrain, the hippocampus and amygdala is associated with the development of psychotic symptoms in PD, in line with that proposed in the ‘aberrant salience hypothesis’ of psychosis in schizophrenia.
Collapse
Affiliation(s)
- F Knolle
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Neuroradiology, Technical University Munich, Munich, Germany.
| | - S Garofalo
- University of Bologna, Department of Psychology, Bologna, Italy
| | - R Viviani
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria; Psychiatry and Psychotherapy Clinic III, University of Ulm, Ulm, Germany
| | - A Justicia
- Department of Psychiatry, University of Cambridge, Cambridge, UK; IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - A O Ermakova
- Faculty of Natural Sciences, Imperial College London, UK
| | - H Blank
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G B Williams
- Department of Clinical Neuroscience and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - G Arrondo
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - P Ramachandra
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - C Tudor-Sfetea
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - N Bunzeck
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| | - E Duezel
- Otto-von-Guericke University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - T W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - R A Barker
- Department of Clinical Neuroscience and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - G K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Leroy A, Amad A, D'Hondt F, Pins D, Jaafari N, Thomas P, Jardri R. Reward anticipation in schizophrenia: A coordinate-based meta-analysis. Schizophr Res 2020; 218:2-6. [PMID: 31948895 DOI: 10.1016/j.schres.2019.12.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022]
Abstract
Reward processing impairments have been linked with positive and negative symptoms of schizophrenia. Here, we performed a coordinate-based meta-analysis that combined eleven BOLD-fMRI studies comparing reward anticipation signals between schizophrenia patients and healthy controls. We observed a reduced difference in activation in schizophrenia patients within a frontal-striatal network. Meta-regressions revealed that this functional signature was linked to the severity of psychotic symptoms and persisted even after controlling for the dose of antipsychotic medications.
Collapse
Affiliation(s)
- Arnaud Leroy
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France.
| | - Ali Amad
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| | - Fabien D'Hondt
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Centre national de ressources et de résilience Lille-Paris (CN2R), Lille, France
| | - Delphine Pins
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| | - Nematollah Jaafari
- Groupement De Recherche en Psychiatrie CNRS-3557, France; Unité de Recherche Clinique Intersectorielle en Psychiatrie Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France; Univ. Poitiers & CHU Poitiers, INSERM U1084, Laboratoire Expérimental et Clinique en Neurosciences, 86021 Poitiers, France
| | - Pierre Thomas
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| | - Renaud Jardri
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| |
Collapse
|
23
|
Bracht T, Viher PV, Stegmayer K, Strik W, Federspiel A, Wiest R, Walther S. Increased structural connectivity of the medial forebrain bundle in schizophrenia spectrum disorders is associated with delusions of paranoid threat and grandiosity. NEUROIMAGE-CLINICAL 2019; 24:102044. [PMID: 31678911 PMCID: PMC6978276 DOI: 10.1016/j.nicl.2019.102044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Increased FA of bilateral slMFB can be found in delusional SSD-patients. Findings are supported by a psychopathological model of paranoia and grandiosity. Findings are in line with a model of underlying network physiology (slMFB).
In many cases delusions in schizophrenia spectrum disorders (SSD) are driven by strong emotions such as feelings of paranoia or grandiosity. We refer to these extreme emotional experiences as psychotic affectivity. We hypothesized that increased structural connectivity of the supero-lateral medial forebrain bundle (slMFB), a major tract of the reward system, is associated with delusional psychotic affectivity. Forty-six patients with SSD and 44 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. The slMFB and a comparison tract (corticospinal tract) were reconstructed using diffusion tensor imaging (DTI)-based tractography. Fractional anisotropy (FA) was sampled across the tracts. We used a mixed-model analyses of variance controlling for age and gender to compare FA of bilateral slMFB between SSD-patients and HC. Correlations of FA of bilateral slMFB and the PANSS-positive item delusions were calculated. In addition, FA was compared between three clinically homogeneous SSD-subgroups in terms of psychotic affectivity (severe, mild and no PA, sPA, mPA, nPA) and HC. FA of the slMFB did not differ between all SSD-patients and HC. In SSD-patients there was a positive correlation between delusions and FA in bilateral slMFB. Likewise, SSD-subgroups of psychotic affectivity and HC differed significantly in FA of the slMFB. Results were driven by higher FA in the right slMFB in sPA as compared to nPA and to HC. There was no significant effect for the comparison tract. In conclusion, increased structural connectivity of the slMFB may underlie delusional experiences of paranoia and grandiosity in SSD.
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Petra V Viher
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Karcher NR, Rogers BP, Woodward ND. Functional Connectivity of the Striatum in Schizophrenia and Psychotic Bipolar Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:956-965. [PMID: 31399394 DOI: 10.1016/j.bpsc.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND The striatum is abnormal in schizophrenia and possibly represents a common neurobiological mechanism underlying psychotic disorders. Resting-state functional magnetic resonance imaging studies have not reached a consensus regarding striatal dysconnectivity in schizophrenia, although these studies generally find impaired frontoparietal and salience network connectivity. The goal of the current study was to clarify the pattern of corticostriatal connectivity, including whether corticostriatal dysconnectivity is transdiagnostic and extends into psychotic bipolar disorder. METHODS We examined corticostriatal functional connectivity in 60 healthy subjects and 117 individuals with psychosis, including 77 with a schizophrenia spectrum illness and 40 with psychotic bipolar disorder. We conducted a cortical seed-based region-of-interest analysis with follow-up voxelwise analysis for any significant results. Further, a striatum seed-based analysis was conducted to examine group differences in connectivity between the striatum and the whole cortex. RESULTS Cortical region-of-interest analysis indicated that overall connectivity of the salience network with the striatum was reduced in psychotic disorders, which follow-up voxelwise analysis localized to the left putamen. Striatum seed-based analyses showed reduced ventral rostral putamen connectivity with the salience network portion of the medial prefrontal cortex in both schizophrenia and psychotic bipolar disorder. CONCLUSIONS The current study found evidence of transdiagnostic corticostriatal dysconnectivity in both schizophrenia and psychotic bipolar disorder, including reduced salience network connectivity, as well as reduced connectivity between the putamen and the medial prefrontal cortex. Overall, the current study points to the relative importance of salience network hypoconnectivity in psychotic disorders.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|