1
|
Jiang LX, Huang GD, Wang HL, Zhang C, Yu X. The olfactory working memory capacity paradigm: A more sensitive and robust method of assessing cognitive function in male 5XFAD mice. J Neurosci Res 2024; 102:e25265. [PMID: 38284863 DOI: 10.1002/jnr.25265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/29/2023] [Accepted: 10/07/2023] [Indexed: 01/30/2024]
Abstract
The olfactory working memory capacity (OWMC) paradigm is able to detect cognitive deficits in 5XFAD mice (an animal model of Alzheimer's disease [TG]) as early as 3 months of age, while other behavioral paradigms detect cognitive deficits only at 4-5 months of age. Therefore, we aimed to demonstrate that the OWMC paradigm is more sensitive and consistent in the early detection of declines in cognitive function than other commonly used behavioral paradigms. The prefrontal cortex (PFC), retrosplenial cortex (RSC), subiculum (SUB), and amygdala (AMY) of 5XFAD mice were harvested and subjected to immunostaining to detect the expression of β-amyloid (Aβ). Additionally, we compared the performance of 3-month-old male 5XFAD mice on common behavioral paradigms for assessing cognitive function (i.e., the open field [OF] test, novel object recognition [NOR] test, novel object location [NOL] test, Y-maze, and Morris water maze [MWM]) with that on the OWMC task. In the testing phase of the OWMC task, we varied the delay periods to evaluate the working memory capacity (WMC) of wild-type (WT) mice. Significant amyloid plaque deposition was observed in the PFC, RSC, SUB, and AMY of 3-month-old male 5XFAD mice. However, aside from the OWMC task, the other behavioral tests failed to detect cognitive deficits in 5XFAD mice. Additionally, to demonstrate the efficacy of the OWMC task in assessing WMC, we varied the retention delay periods; we found that the WMC of WT mice decreased with longer delay periods. The OWMC task is a sensitive and robust behavioral assay for detecting changes in cognitive function.
Collapse
Affiliation(s)
- Li-Xin Jiang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| | - Hua-Li Wang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| |
Collapse
|
2
|
Jiang LX, Huang GD, Tian YL, Cong RX, Meng X, Wang HL, Zhang C, Yu X. Diminished activation of excitatory neurons in the prelimbic cortex leads to impaired working memory capacity in mice. BMC Biol 2023; 21:171. [PMID: 37568146 PMCID: PMC10416384 DOI: 10.1186/s12915-023-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Working memory capacity impairment is an early sign of Alzheimer's disease, but the underlying mechanisms remain unclear. Clarifying how working memory capacity is affected will help us better understand the pathological mechanism of Alzheimer's disease. We used the olfactory working memory capacity paradigm to evaluate memory capacity in 3-month-old 5XFAD (an animal model of Alzheimer's disease) mice. Immunofluorescence staining of the prefrontal cortex was performed to detect the number of FOS-positive neurons, calmodulin-dependent protein kinase II-positive neurons, and glutamate decarboxylase-positive neurons in the prelimbic cortex and infralimbic cortex. A chemogenetic method was then used to modulate the inhibition and activation of excitatory neurons in the prelimbic cortex of wild-type and 5XFAD mice and to measure the memory capacity of mice. RESULTS Working memory capacity was significantly diminished in 5XFAD mice compared to littermate wild-type mice. Neuronal activation of the prelimbic cortex, but not the infralimbic cortex, was attenuated in 5XFAD mice performing the olfactory working memory capacity task. Subsequently, the FOS-positive neurons were co-localized with both calmodulin-dependent protein kinase II-positive neurons and glutamate decarboxylase-positive neurons. The results showed that the activation of excitatory neurons in the prelimbic cortex was correlated with working memory capacity in mice. Our results further demonstrate that the chemogenetic inhibition of prelimbic cortex excitatory neurons resulted in reduced working memory capacity in wild-type mice, while the chemogenetic activation of prelimbic cortex excitatory neurons improved the working memory capacity of 5XFAD mice. CONCLUSION The diminished activation of prelimbic cortex excitatory neurons in 5XFAD mice during task performance is associated with reduced working memory capacity, and activation modulation of excitatory neurons by chemogenetic methods can improve memory capacity impairment in 5XFAD mice. These findings may provide a new direction for exploring Alzheimer's disease therapeutic approaches.
Collapse
Affiliation(s)
- Li-Xin Jiang
- Peking University Institute of Mental Health (Sixth Hospital), No.51 Huayuanbei Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
- Beijing Municipal Key Laboratory for Translational Research On Diagnosis and Treatment of Dementia, Beijing, 100191, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, China
- Affiliated Mental Health Center, Southern University of Science and Technology, No.1088 Xueyuan Avenue, Fuguang Community, Taoyuan Street, Nanshan District, Shenzhen, 518118, China
| | - Yong-Lu Tian
- School of Psychological and Cognitive Sciences, Peking University, No.5 Summer Palace Road, Haidian District, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ri-Xu Cong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Meng
- National Center of Gerontology, Beijing Hospital, No.1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100005, China
| | - Hua-Li Wang
- Peking University Institute of Mental Health (Sixth Hospital), No.51 Huayuanbei Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.
- Beijing Municipal Key Laboratory for Translational Research On Diagnosis and Treatment of Dementia, Beijing, 100191, China.
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You'anmenwai, Fengtai District, Beijing, 100069, China.
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), No.51 Huayuanbei Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.
- Beijing Municipal Key Laboratory for Translational Research On Diagnosis and Treatment of Dementia, Beijing, 100191, China.
| |
Collapse
|
3
|
Kostka JK, Bitzenhofer SH. How the sense of smell influences cognition throughout life. NEUROFORUM 2022; 28:177-185. [PMID: 36067120 PMCID: PMC9380998 DOI: 10.1515/nf-2022-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although mostly unaware, we constantly navigate a complex landscape of airborne molecules. The perception of these molecules helps us navigate, shapes our social life, and can trigger emotionally charged memories transporting us back to the past within a split second. While the processing of olfactory information in early sensory areas is well understood, how the sense of smell affects cognition only recently gained attention in the field of neuroscience. Here, we review links between olfaction and cognition and explore the idea that the activity in olfactory areas may be critical for coordinating cognitive networks. Further, we discuss how olfactory activity may shape the development of cognitive networks and associations between the decline of olfactory and cognitive abilities in aging. Olfaction provides a great tool to study large-scale networks underlying cognitive abilities and bears the potential for a better understanding of cognitive symptoms associated with many mental disorders.
Collapse
Affiliation(s)
- Johanna K. Kostka
- Center for Molecular Neurobiology Hamburg, Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Sebastian H. Bitzenhofer
- Center for Molecular Neurobiology Hamburg, Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| |
Collapse
|
4
|
Jiang LX, Huang GD, Wang HL, Zhang C, Yu X. The protocol for assessing olfactory working memory capacity in mice. Brain Behav 2022; 12:e2703. [PMID: 35849713 PMCID: PMC9392537 DOI: 10.1002/brb3.2703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Working memory capacity (WMC) is the ability to maintain information over a few seconds. Although it has been extensively studied in healthy subjects and neuropsychiatric patients, few tasks have been developed to measure such changes in rodents. Many procedures have been used to measure WM in rodents, including the radial arm maze, the WM version of the Morris swimming task, and various delayed matching and nonmatching-to-sample tasks. It should be noted, however, that the memory components assessed in these procedures do not include memory capacity. METHODS We developed an olfactory working memory capacity (OWMC) paradigm to assess the WMC of 3-month-old 5×FAD mice, a mouse model of Alzheimer's disease. The task is divided into five phases: context adaptation, digging training, rule learning for nonmatching to a single sample odor (NMSS), rule learning for nonmatching to multiple sample odors (NMMS), and capacity testing. RESULTS In the NMSS rule-learning phase, there was no difference between wild-type (WT) mice and 5×FAD mice in the performance correct rate, correct option rate, and correct rejection rate. The WT mice and 5×FAD mice showed similar memory capacity in the NMMS rule-learning phase. After capacity test, we found that the WMC was significantly diminished in 5×FAD mice. As the memory load increased, 5×FAD mice also made significantly more errors than WT mice. CONCLUSION The OWMC task, based on a nonmatch-to-sample rule, is a sensitive and robust behavioral assay that we validated as a reliable method for measuring WMC and exploring different components of memory in mice.
Collapse
Affiliation(s)
- Li-Xin Jiang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China.,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Geng-Di Huang
- Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, China
| | - Hua-Li Wang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China.,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Chen Zhang
- Capital Medical University, Youanmenwai, Beijing, China
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China.,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| |
Collapse
|