1
|
Male AG. Predicting the unpredicted … brain response: A systematic review of the feature-related visual mismatch negativity (vMMN) and the experimental parameters that affect it. PLoS One 2025; 20:e0314415. [PMID: 40014603 PMCID: PMC11867396 DOI: 10.1371/journal.pone.0314415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 03/01/2025] Open
Abstract
In this systematic review and meta-analysis, I consider aspects of experimental design that affect the visual mismatch negativity (vMMN)-an electrophysiological (neural) correlate of prediction error in vision that is typically largest between 150 ms and 300 ms in the event-related potential (ERP) at occipito-parietal regions on the scalp. I compiled data from 145 published studies investigating changes in a single property or feature of visual input. This review provides a concise summary of the vMMN literature on unexpected changes in features of visual input, outlining the most used (according to review) and optimal (following discussion on theoretical and practical implications) parameters of experiments investigating feature deviance for posterity as well as contemporary research. The data compiled was analysed to reveal meaningful relationships between aspects of experimental design and vMMN mean amplitude and peak latency. Results suggest that whether a control for adaptation is used, whether attention is towards vs. away from the stimulus of interest, and stimulus presentation time determines mean amplitude. Whether attention is towards vs. away from the stimulus of interest, the time between the stimulus of interest, deviant probability, and the number of standards separating deviants determines peak latency. There is also some indication that magnitude of deviance affects mean amplitude in studies exploring orientation deviance. This review and its findings elucidate potentially fruitful areas of future research.
Collapse
Affiliation(s)
- Alie G. Male
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
2
|
Ranaut A, Khandnor P, Chand T. Identification of autism spectrum disorder using electroencephalography and machine learning: a review. J Neural Eng 2024; 21:061006. [PMID: 39580816 DOI: 10.1088/1741-2552/ad9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by communication barriers, societal disengagement, and monotonous actions. Traditional diagnostic methods for ASD rely on clinical observations and behavioural assessments, which are time-consuming. In recent years, researchers have focused mainly on the early diagnosis of ASD due to the unavailability of recognised causes and the lack of permanent curative solutions. Electroencephalography (EEG) research in ASD offers insight into the neural dynamics of affected individuals. This comprehensive review examines the unique integration of EEG, machine learning, and statistical analysis for ASD identification, highlighting the promise of an interdisciplinary approach for enhancing diagnostic precision. The comparative analysis of publicly available EEG datasets for ASD, along with local data acquisition methods and their technicalities, is presented in this paper. This study also compares preprocessing techniques, and feature extraction methods, followed by classification models and statistical analysis which are discussed in detail. In addition, it briefly touches upon comparisons with other modalities to contextualize the extensiveness of ASD research. Moreover, by outlining research gaps and future directions, this work aims to catalyse further exploration in the field, with the main goal of facilitating more efficient and effective early identification methods that may be helpful to the lives of ASD individuals.
Collapse
Affiliation(s)
- Anamika Ranaut
- Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
| | - Padmavati Khandnor
- Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
| | - Trilok Chand
- Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
| |
Collapse
|
3
|
Chen T, Jiang J, Xu M, Dai Y, Gao X, Jiang C. Atypical prefrontal neural activity during an emotional interference control task in adolescents with autism spectrum disorder: A functional near-infrared spectroscopy study. Neuroimage 2024; 302:120907. [PMID: 39490560 DOI: 10.1016/j.neuroimage.2024.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Autism spectrum disorder (ASD) is typically characterized by impairments in social interaction and communication, which may be associated with a failure to naturally orient to social stimuli, particularly in recognizing and responding to facial emotions. As most previous studies have used nonsocial stimuli to investigate inhibitory control in children and adults with ASD, little is known about the behavioral and neural activation patterns of emotional inhibitory control in adolescent with ASD. Functional neuroimaging studies have underscored the key role of the prefrontal cortex (PFC) in inhibitory control and emotional face processing. Thus, this study aimed to examine whether adolescent with ASD exhibited altered PFC processing during an emotional Flanker task by using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-one adolescents with high-functioning ASD and 26 typically developing (TD) adolescents aged 13-16 years were recruited. All participants underwent an emotional Flanker task, which required to decide whether the centrally positioned facial emotion is consistent with the laterally positioned facial emotion. TD adolescents exhibited larger RT and mean O2Hb level in the incongruent condition than the congruent condition, evoking cortical activations primarily in right PFC regions in response to the emotional Flanker effect. In contrast, ASD adolescents failed to exhibit the processing advantage for congruent versus incongruent emotional face in terms of RT, but showed cortical activations primarily in left PFC regions in response to the emotional Flanker effect. These findings suggest that adolescents with ASD rely on different neural strategies to mobilize PFC neural resources to address the difficulties they experience when inhibiting the emotional face.
Collapse
Affiliation(s)
- Tingting Chen
- Faculty of Dance Education, Beijing Dance Academy, Beijing, PR China
| | - Jiarui Jiang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | - Mingchao Xu
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Yuanfu Dai
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Xiaoyan Gao
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Changhao Jiang
- Beijing Key Lab of Physical Fitness Evaluation and Tech Analysis, Capital University of Physical Education and Sports, Beijing, PR China.
| |
Collapse
|
4
|
Torrens WA, Pablo JN, Berryhill ME, Haigh SM. Pattern glare sensitivity distinguishes subclinical autism and schizotypy. Cogn Neuropsychiatry 2024; 29:155-172. [PMID: 38551240 PMCID: PMC11296901 DOI: 10.1080/13546805.2024.2335103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Schizophrenia and autism spectrum disorder are distinct neurodevelopmental disorders sharing clinically relevant behaviours. However, early sensory responses show divergent responses. Individuals with schizophrenia typically exhibit cortical hypo-excitability whereas individuals with autism show cortical hyperexcitability. Identifying reliable neurobiological differences between the disorders can diminish misdiagnosis and optimise treatments. METHODS The pattern glare test (PGT) is a simple measure of behavioural hyperexcitability. It measures the number of illusions seen in a static horizontal grating. We collected PGT data from non-clinical adults varying in traits of autism and schizophrenia (schizotypy). 576 undergraduate students completed an online survey consisting of the Schizotypal Personality Questionnaire - Brief Revised, the Autism Spectrum Quotient, and the PGT. RESULTS Subclinical autism and schizotypy traits were highly positively correlated. However, only schizotypy scores were significantly predictive of reporting more pattern glare (PG) illusions. When assessing the subcomponents of the schizotypy and autism scores, positive and disorganised schizotypy traits were predictive of reporting more PG illusions. Whereas, subclinical autism factors were not predictive of PG illusions. CONCLUSIONS High schizotypy performed the PGT in a manner consistent with behavioural hyperexcitability. The PGT distinguished subclinical autistic traits from schizotypy, suggesting potential clinical application.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Jenna N Pablo
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Marian E Berryhill
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Sarah M Haigh
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| |
Collapse
|
5
|
Liu J, Liu Y, Jiang H, Zhao J, Ding X. Facial feedback manipulation influences the automatic detection of unexpected emotional body expressions. Neuropsychologia 2024; 195:108802. [PMID: 38266669 DOI: 10.1016/j.neuropsychologia.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Unexpected or changing facial expressions are known to be able to engage more automatic processing than frequently occurring facial expressions, thereby inducing a neural differential wave response known as expression mismatch negativity (EMMN). Recent studies have shown that EMMN can be modulated by the observer's facial feedback (i.e., feedback from their own facial movements). A similar EMMN activity has been discovered for body expressions, but thus far only a few emotion types have been investigated. It is unknown whether the EMMNs evoked by body expressions can be influenced by facial feedback. To explore this question, we recorded EEG activity of 29 participants in the reverse oddball paradigm. Here two unexamined categories of body expressions were presented, happy and sad, placed in two paired stimulus sequences: in one the happy body was presented with a probability of 80% (standards) while the sad body was presented with a probability of 20% (deviants), and in the other the probabilities were reversed. The facial feedback was manipulated by different pen holding conditions (i.e., participants holding the pen with the teeth, lips, or nondominant hand). The nonparametric cluster permutation test revealed significant happy and sad body-related EMMN (bEMMN) activities. The happy-bEMMN were more negative than sad-bEMMN within the range of 100-150 ms. Additionally, the bEMMN amplitude of both emotions is modulated by the facial feedback conditions. These results expand the range of emotional types applicable to bEMMN and provide evidence for the validity of the facial feedback hypothesis across emotional carriers.
Collapse
Affiliation(s)
- Jianyi Liu
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Yang Liu
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Heng Jiang
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China.
| | - Xiaobin Ding
- School of Psychology, Northwest Normal University, Lanzhou, China.
| |
Collapse
|
6
|
Liu J, Fan T, Chen Y, Zhao J. Seeking the neural representation of statistical properties in print during implicit processing of visual words. NPJ SCIENCE OF LEARNING 2023; 8:60. [PMID: 38102191 PMCID: PMC10724295 DOI: 10.1038/s41539-023-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Statistical learning (SL) plays a key role in literacy acquisition. Studies have increasingly revealed the influence of distributional statistical properties of words on visual word processing, including the effects of word frequency (lexical level) and mappings between orthography, phonology, and semantics (sub-lexical level). However, there has been scant evidence to directly confirm that the statistical properties contained in print can be directly characterized by neural activities. Using time-resolved representational similarity analysis (RSA), the present study examined neural representations of different types of statistical properties in visual word processing. From the perspective of predictive coding, an equal probability sequence with low built-in prediction precision and three oddball sequences with high built-in prediction precision were designed with consistent and three types of inconsistent (orthographically inconsistent, orthography-to-phonology inconsistent, and orthography-to-semantics inconsistent) Chinese characters as visual stimuli. In the three oddball sequences, consistent characters were set as the standard stimuli (probability of occurrence p = 0.75) and three types of inconsistent characters were set as deviant stimuli (p = 0.25), respectively. In the equal probability sequence, the same consistent and inconsistent characters were presented randomly with identical occurrence probability (p = 0.25). Significant neural representation activities of word frequency were observed in the equal probability sequence. By contrast, neural representations of sub-lexical statistics only emerged in oddball sequences where short-term predictions were shaped. These findings reveal that the statistical properties learned from long-term print environment continues to play a role in current word processing mechanisms and these mechanisms can be modulated by short-term predictions.
Collapse
Affiliation(s)
- Jianyi Liu
- School of Psychology, Shaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| | - Tengwen Fan
- School of Psychology, Shaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Yan Chen
- Key laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, China
- Key laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| |
Collapse
|
7
|
Merchie A, Gomot M. Habituation, Adaptation and Prediction Processes in Neurodevelopmental Disorders: A Comprehensive Review. Brain Sci 2023; 13:1110. [PMID: 37509040 PMCID: PMC10377027 DOI: 10.3390/brainsci13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Habituation, the simplest form of learning preserved across species and evolution, is characterized by a response decrease as a stimulus is repeated. This adaptive function has been shown to be altered in some psychiatric and neurodevelopmental disorders such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) or schizophrenia. At the brain level, habituation is characterized by a decrease in neural activity as a stimulation is repeated, referred to as neural adaptation. This phenomenon influences the ability to make predictions and to detect change, two processes altered in some neurodevelopmental and psychiatric disorders. In this comprehensive review, the objectives are to characterize habituation, neural adaptation, and prediction throughout typical development and in neurodevelopmental disorders; and to evaluate their implication in symptomatology, specifically in sensitivity to change or need for sameness. A summary of the different approaches to investigate adaptation will be proposed, in which we report the contribution of animal studies as well as electrophysiological studies in humans to understanding of underlying neuronal mechanisms.
Collapse
Affiliation(s)
| | - Marie Gomot
- UMR 1253 iBrain, Université de Tours, INSERM, 37000 Tours, France
| |
Collapse
|
8
|
The role of attention control in visual mismatch negativity (vMMN) studies. Exp Brain Res 2023; 241:1001-1008. [PMID: 36862235 PMCID: PMC10082096 DOI: 10.1007/s00221-023-06573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/12/2023] [Indexed: 03/03/2023]
Abstract
The detection of unattended visual changes is investigated by the visual mismatch negativity (vMMN) component of event-related potentials (ERPs). The vMMN is measured as the difference between the ERPs to infrequent (deviant) and frequent (standard) stimuli irrelevant to the ongoing task. In the present study, we used human faces expressing different emotions as deviants and standards. In such studies, participants perform various tasks, so their attention is diverted from the vMMN-related stimuli. If such tasks vary in their attentional demand, they might influence the outcome of vMMN studies. In this study, we compared four kinds of frequently used tasks: (1) a tracking task that demanded continuous performance, (2) a detection task where the target stimuli appeared at any time, (3) a detection task where target stimuli appeared only in the inter-stimulus intervals, and (4) a task where target stimuli were members of the stimulus sequence. This fourth task elicited robust vMMN, while in the other three tasks, deviant stimuli elicited moderate posterior negativity (vMMN). We concluded that the ongoing task had a marked influence on vMMN; thus, it is important to consider this effect in vMMN studies.
Collapse
|
9
|
Impact of emotional valence on mismatch negativity in the course of cortical face processing. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100078. [PMID: 36926599 PMCID: PMC10011816 DOI: 10.1016/j.crneur.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Various aspects of cortical face processing have been studied by assessing event related potentials (ERP). It has been described in the literature that mismatch negativity (MMN), a well-studied ERP, is not only modulated by sensory features but also emotional valence. However, the exact impact of emotion on the temporo-spatial profile of visual MMN during face processing remains inconsistent. By employing a sequential oddball paradigm using both neutral and emotional deviants, we were able to differentiate two distinct vMMN subcomponents. While an early subcomponent at 150-250 ms is elicited by emotional salient facial stimuli, the later subcomponent at 250-400 ms seems to reflect the detection of regularity violations in facial recognition per se, unaffected by emotional salience. Our results suggest that emotional valence is encoded in vMMN signal strength at an early stage of facial processing. Furthermore, we assume that of facial processing consists of temporo-spatially distinct, partially overlapping levels concerning different facial aspects.
Collapse
|
10
|
Ding X, Xiong M, Kang T, Zhao X, Zhao J, Liu J. Automatic change detection of multiple facial expressions: A visual mismatch negativity study. Neuropsychologia 2022; 170:108234. [DOI: 10.1016/j.neuropsychologia.2022.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
11
|
Lacroix A, Harquel S, Mermillod M, Vercueil L, Alleysson D, Dutheil F, Kovarski K, Gomot M. The Predictive Role of Low Spatial Frequencies in Automatic Face Processing: A Visual Mismatch Negativity Investigation. Front Hum Neurosci 2022; 16:838454. [PMID: 35360280 PMCID: PMC8963370 DOI: 10.3389/fnhum.2022.838454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Visual processing is thought to function in a coarse-to-fine manner. Low spatial frequencies (LSF), conveying coarse information, would be processed early to generate predictions. These LSF-based predictions would facilitate the further integration of high spatial frequencies (HSF), conveying fine details. The predictive role of LSF might be crucial in automatic face processing, where high performance could be explained by an accurate selection of clues in early processing. In the present study, we used a visual Mismatch Negativity (vMMN) paradigm by presenting an unfiltered face as standard stimulus, and the same face filtered in LSF or HSF as deviant, to investigate the predictive role of LSF vs. HSF during automatic face processing. If LSF are critical for predictions, we hypothesize that LSF deviants would elicit less prediction error (i.e., reduced mismatch responses) than HSF deviants. Results show that both LSF and HSF deviants elicited a mismatch response compared with their equivalent in an equiprobable sequence. However, in line with our hypothesis, LSF deviants evoke significantly reduced mismatch responses compared to HSF deviants, particularly at later stages. The difference in mismatch between HSF and LSF conditions involves posterior areas and right fusiform gyrus. Overall, our findings suggest a predictive role of LSF during automatic face processing and a critical involvement of HSF in the fusiform during the conscious detection of changes in faces.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Laurent Vercueil
- Grenoble Institut Neurosciences, InsermU1216, CHU Grenoble, Grenoble, France
| | - David Alleysson
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Klara Kovarski
- Hôpital Fondation Rothschild, I3N, Paris, France
- Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | - Marie Gomot
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
12
|
Ding X, Chen Y, Liu Y, Zhao J, Liu J. The automatic detection of unexpected emotion and neutral body postures: A visual mismatch negativity study. Neuropsychologia 2022; 164:108108. [PMID: 34863799 DOI: 10.1016/j.neuropsychologia.2021.108108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The ability to automatically detect emotional changes in the environment is crucial for social interaction. In the visual system, expression-related mismatch negativity (EMMN) reflects the automatic processing of emotional changes in facial expression. However, body postures also carry visual emotional information that can be recognized effectively and processed automatically, although their processing mechanism remains unknown. In this study, the reverse oddball paradigm was used to investigate the mismatch responses of unexpected fear and neutral body postures. The nonparametric cluster permutation test revealed significant fear and neutral visual mismatch negativity (vMMN) activities, and the fear-related vMMN was enhanced prior (130-230 ms) to the neutral vMMN (180-230 ms). The body-sensitive N190 component may partially account for the vMMN obtained in this study. The fearful body posture evoked a greater N190 response over the neutral body, and amplitudes of N190 were more negative in the deviant condition than the standard condition. Additionally, the body-related visual mismatch oscillatory responses were associated with enhancement of the alpha band oscillation, especially for the fearful body posture. These results expanded the applicable scope of body posture cues corresponding to mismatch signals, objectively defined the electrophysiological activities evoked, and revealed the processing bias toward negative emotion.
Collapse
Affiliation(s)
- Xiaobin Ding
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Yan Chen
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Yang Liu
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, And Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| | - Jianyi Liu
- School of Psychology, Shaanxi Normal University, And Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| |
Collapse
|