1
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
D’Angiolini S, Basile MS, Mazzon E, Gugliandolo A. In Silico Analysis Reveals the Modulation of Ion Transmembrane Transporters in the Cerebellum of Alzheimer's Disease Patients. Int J Mol Sci 2023; 24:13924. [PMID: 37762226 PMCID: PMC10530854 DOI: 10.3390/ijms241813924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. AD hallmarks are extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tangles in the brain. It is interesting to notice that Aβ plaques appear in the cerebellum only in late stages of the disease, and then it was hypothesized that it can be resistant to specific neurodegenerative mechanisms. However, the role of cerebellum in AD pathogenesis is not clear yet. In this study, we performed an in silico analysis to evaluate the transcriptional profile of cerebellum in AD patients and non-AD subjects in order to deepen the knowledge on its role in AD. The analysis evidenced that only the molecular function (MF) "active ion transmembrane transporter activity" was overrepresented. Regarding the 21 differentially expressed genes included in this MF, some of them may be involved in the ion dyshomeostasis reported in AD, while others assumed, in the cerebellum, an opposite regulation compared to those reported in other brain regions in AD patients. They might be associated to a protective phenotype, that may explain the initial resistance of cerebellum to neurodegeneration in AD. Of note, this MF was not overrepresented in prefrontal cortex and visual cortex indicating that it is a peculiarity of the cerebellum.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.D.); (M.S.B.); (A.G.)
| | | |
Collapse
|
3
|
Zhao Y, Yang WQ, Yu L, Yang J, Zhu HR, Zhang L. Dl-3-n-butylphthalide alleviates cognitive impairment in amyloid precursor protein/presenilin 1 transgenic mice by regulating the striatal-enriched protein tyrosine phosphatase/ERK/cAMP-response element-binding protein signaling pathway. Exp Ther Med 2022; 23:319. [PMID: 35350668 PMCID: PMC8943801 DOI: 10.3892/etm.2022.11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and the deposition of amyloid plaques in the brain. In a transgenic mouse model of AD, cognitive impairment and synaptic dysfunction were revealed to be associated with soluble amyloid oligomers and to occur prior to plaque formation. The results of our previous studies revealed that striatal-enriched protein tyrosine phosphatase (STEP)61 negatively regulated the β-amyloid protein-mediated ERK/cAMP-response element-binding protein (CREB) signaling pathway. Dl-3-n-butylphthalide (NBP) is a synthetic compound approved by the Food and Drug Administration of China for the treatment of ischemic stroke in 2002. Studies have shown that the neuroprotective effects of NBP involve multiple mechanisms. The present study further explored the mechanism of NBP therapy in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, and the involvement of the STEP/ERK/CREB signaling pathway. The results suggested that NBP treatment effectively ameliorated the spatial learning and memory impairment of the APP/PS1 transgenic mice, which was assessed using a Morris water maze. In addition, NBP reduced amyloid-induced activation of STEP61 levels, while increasing phosphorylated (p)-ERK1/2 and p-CREB levels in the cerebral cortex and hippocampus of APP/PS1 transgenic mice by western blotting and immunostaining. In conclusion, the present study provided evidence to suggest that the new drug NBP improved amyloid-induced learning and memory deficits, likely through the regulation of the STEP/ERK/CREB pathway. The results revealed that NBP, as a multi-target drug, may exert a neuroprotective effect. Therefore, NBP may serve as an effective treatment for AD.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science Institution, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Wen-Qiang Yang
- Life Science Institution, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lu Yu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hai-Rong Zhu
- Department of Neurology, Affiliated Taizhou Hospital of Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Lin Zhang
- Department of Neurology, Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China,Correspondence to: Dr Lin Zhang, Department of Neurology, Affiliated Wenling Hospital of Wenzhou Medical University, 333 Chuan'an South Road, Chengxi Street, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
4
|
Siewert-Rocks KM, Kim SS, Yao DW, Shi H, Price AL. Leveraging gene co-regulation to identify gene sets enriched for disease heritability. Am J Hum Genet 2022; 109:393-404. [PMID: 35108496 PMCID: PMC8948163 DOI: 10.1016/j.ajhg.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Identifying gene sets that are associated to disease can provide valuable biological knowledge, but a fundamental challenge of gene set analyses of GWAS data is linking disease-associated SNPs to genes. Transcriptome-wide association studies (TWASs) detect associations between the genetically predicted expression of a gene and disease risk, thus implicating candidate disease genes. However, causal disease genes at TWAS-associated loci generally remain unknown due to gene co-regulation, which leads to correlations across genes in predicted expression. We developed a method, gene co-regulation score (GCSC) regression, to identify gene sets that are enriched for disease heritability explained by predicted expression. GCSC regresses TWAS chi-square statistics on gene co-regulation scores reflecting correlations in predicted gene expression; a gene set is enriched for heritability if genes with high co-regulation to the set have higher TWAS chi-square statistics than genes with low co-regulation to the set, beyond what is expected based on co-regulation to all genes. We verified via simulations that GCSC is well calibrated and well powered. We applied GCSC to gene expression data from GTEx (48 tissues) and GWAS summary statistics for 43 independent diseases and complex traits analyzing a broad set of biological pathways and specifically expressed gene sets. We identified many enriched sets, recapitulating known biology. For Alzheimer disease, we detected evidence of an immune basis, and specifically a role for antigen presentation, in analyses of both biological pathways and specifically expressed gene sets. Our results highlight the advantages of leveraging gene co-regulation within the TWAS framework to identify enriched gene sets.
Collapse
Affiliation(s)
- Katherine M Siewert-Rocks
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Samuel S Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Douglas W Yao
- Program in Systems, Synthetic, and Quantitative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Mahbub NI, Hasan MI, Rahman MH, Naznin F, Islam MZ, Moni MA. Identifying molecular signatures and pathways shared between Alzheimer's and Huntington's disorders: A bioinformatics and systems biology approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Abstract
Clonal haematopoiesis (CH) is a common, age-related expansion of blood cells with somatic mutations that is associated with an increased risk of haematological malignancies, cardiovascular disease and all-cause mortality. CH may be caused by point mutations in genes associated with myeloid neoplasms, chromosomal copy number changes and loss of heterozygosity events. How inherited and environmental factors shape the incidence of CH is incompletely understood. Even though the several varieties of CH may have distinct phenotypic consequences, recent research points to an underlying genetic architecture that is highly overlapping. Moreover, there are numerous commonalities between the inherited variation associated with CH and that which has been linked to age-associated biomarkers and diseases. In this Review, we synthesize what is currently known about how inherited variation shapes the risk of CH and how this genetic architecture intersects with the biology of diseases that occur with ageing.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|