1
|
Qi Z, Guo W, Cui M, Lu J. Synthesis and Evaluation of Novel 18F-labeled Oxadiazole-based Positron Emission Tomography Tracers for β-Amyloid. Radiat Res 2025; 203:357-365. [PMID: 40122104 DOI: 10.1667/rade-25-00035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
This research details the synthesis, structure-activity evaluation, and analysis of novel oxadiazole-based compounds for visualizing β-amyloid (Aβ) in Alzheimer's disease (AD). The derivatives exhibited binding affinities to Aβ aggregates in vitro. The [18F]-labeled compounds, [18F]4-(5-(4-Fluorophenyl)-1,3,4-oxadiazol-2-yl)-N, N-dimethylaniline (compound [18F] 3) and [18F] 4-(5-(4-Fluorophenyl)-1,3,4-oxadiazol-2-yl)-N-methylaniline (compound [18F]4), effectively labeled Aβ plaques in brain sections from Alzheimer's disease patients and APP/PS1 mice. In dynamic positron emission tomography (PET) studies on healthy mice, these compounds demonstrated favorable brain uptake followed by clearance. Additional structural alterations to compounds [18F] 3 and [18F] 4 may lead to the development of more efficient PET tracers for precise visualization of Aβ plaques.
Collapse
Affiliation(s)
- Zhongyuan Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 00053 Beijing, China
| | - Wantong Guo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 00053 Beijing, China
| |
Collapse
|
2
|
Deak T, Burzynski HE, Nunes PT, Day SM, Savage LM. Adolescent Alcohol and the Spectrum of Cognitive Dysfunction in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:257-298. [PMID: 40128483 DOI: 10.1007/978-3-031-81908-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among the many changes associated with aging, inflammation in the central nervous system (CNS) and throughout the body likely contributes to the constellation of health-related maladies associated with aging. Genetics, lifestyle factors, and environmental experiences shape the trajectory of aging-associated inflammation, including the developmental timing, frequency, and intensity of alcohol consumption. This chapter posits that neuroinflammatory processes form a critical link between alcohol exposure and the trajectory of healthy aging, at least in part through direct or indirect interactions with cholinergic circuits that are crucial to cognitive integrity. In this chapter, we begin with a discussion of how inflammation changes from early development through late aging; discuss the role of inflammation and alcohol in the emergence of mild cognitive impairment (MCI); elaborate on critical findings on the contribution of alcohol-related thiamine deficiency to the loss of cholinergic function and subsequent development of Wernicke-Korsakoff syndrome (WKS); and present emerging findings at the intersection of alcohol and Alzheimer's disease and related dementias (ADRD). In doing so, our analysis points toward inflammation-mediated compromise of basal forebrain cholinergic function as a key culprit in cognitive dysfunction associated with chronic alcohol exposure, effects that may be rescuable through either pharmacological or behavioral approaches. Furthermore, our chapter reveals an interesting dichotomy in the effects of alcohol on neuropathological markers of ADRD that depend upon both biological sex and genetic vulnerability.
Collapse
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA.
| | - Hannah E Burzynski
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Polliana T Nunes
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Stephen M Day
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| |
Collapse
|
3
|
Essa H, Ali HM, Min PH, Ali DN, Lowe V, Petersen RC, Knopman DS, Lundt ES, Mester CT, Bormann NL, Choi DS. Impact of alcohol use disorder on cognition in correlation with aging: a community-based retrospective cohort study. Alcohol Alcohol 2024; 60:agae080. [PMID: 39602567 PMCID: PMC11601986 DOI: 10.1093/alcalc/agae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
AIMS Excessive alcohol use is associated with an increased risk of cognitive impairment. Since increased amyloid plaque burden exacerbates cognitive decline, we sought to assess the potential impact of alcohol use disorder (AUD) on cognition, memory, and amyloid burden corresponding with age. METHODS We conducted the retrospective analysis with 6036 subjects, including 269 AUD+ subjects. A four-item CAGE (C-Cutting Down, A-Annoyance by Criticism, G-Guilty Feeling, E-Eye-openers) alcohol questionnaire was given during the recruitment to determine AUD in each participant. We assessed cognitive function, focusing on memory using neuropsychological testing. For 1038 participants, including 57 AUD+ subjects, we measured amyloid burden using the 11C Pittsburgh Compound B tracer-based positron emission tomography imaging. RESULTS AUD+ was significantly associated with lower scores of cognition and memory function relative to AUD- individuals. No significant association was found with AUD and elevated brain amyloid under the age of 65. However, further analysis showed that those aged ≥65 showed greater odds for abnormal amyloid in AUD+ compared to AUD- participants. CONCLUSIONS Our results underscore AUD as a risk factor for cognitive decline and diminished memory, particularly in aging populations. The role of AUD in brain amyloid accumulation requires further study.
Collapse
Affiliation(s)
- Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Hossam M Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Dina N Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Val Lowe
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - David S Knopman
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Emily S Lundt
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Carly T Mester
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Nicholas L Bormann
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, United States
| |
Collapse
|
4
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
5
|
Souchet B, Michaïl A, Heuillet M, Dupuy-Gayral A, Haudebourg E, Pech C, Berthemy AA, Autelitano F, Billoir B, Domoto-Reilly K, Fowler C, Grabowski T, Jayadev S, Masters CL, Braudeau J. Multiomics Blood-Based Biomarkers Predict Alzheimer's Predementia with High Specificity in a Multicentric Cohort Study. J Prev Alzheimers Dis 2024; 11:567-581. [PMID: 38706273 PMCID: PMC11061038 DOI: 10.14283/jpad.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/06/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The primary criteria for diagnosing mild cognitive impairment (MCI) due to Alzheimer's Disease (AD) or probable mild AD dementia rely partly on cognitive assessments and the presence of amyloid plaques. Although these criteria exhibit high sensitivity in predicting AD among cognitively impaired patients, their specificity remains limited. Notably, up to 25% of non-demented patients with amyloid plaques may be misdiagnosed with MCI due to AD, when in fact they suffer from a different brain disorder. The introduction of anti-amyloid antibodies complicates this scenario. Physicians must prioritize which amyloid-positive MCI patients receive these treatments, as not all are suitable candidates. Specifically, those with non-AD amyloid pathologies are not primary targets for amyloid-modifying therapies. Consequently, there is an escalating medical necessity for highly specific blood biomarkers that can accurately detect pre-dementia AD, thus optimizing amyloid antibody prescription. OBJECTIVES The objective of this study was to evaluate a predictive model based on peripheral biomarkers to identify MCI and mild dementia patients who will develop AD dementia symptoms in cognitively impaired population with high specificity. DESIGN Peripheral biomarkers were identified in a gene transfer-based animal model of AD and then validated during a retrospective multi-center clinical study. SETTING Participants from 7 retrospective cohorts (US, EU and Australia). PARTICIPANTS This study followed 345 cognitively impaired individuals over up to 13 years, including 193 with MCI and 152 with mild dementia, starting from their initial visits. The final diagnoses, established during their last assessments, classified 249 participants as AD patients and 96 as having non-AD brain disorders, based on the specific diagnostic criteria for each disorder subtype. Amyloid status, assessed at baseline, was available for 82.9% of the participants, with 61.9% testing positive for amyloid. Both amyloid-positive and negative individuals were represented in each clinical group. Some of the AD patients had co-morbidities such as metabolic disorders, chronic diseases, or cardiovascular pathologies. MEASUREMENTS We developed targeted mass spectrometry assays for 81 blood-based biomarkers, encompassing 45 proteins and 36 metabolites previously identified in AAV-AD rats. METHODS We analyzed blood samples from study participants for the 81 biomarkers. The B-HEALED test, a machine learning-based diagnostic tool, was developed to differentiate AD patients, including 123 with Prodromal AD and 126 with mild AD dementia, from 96 individuals with non-AD brain disorders. The model was trained using 70% of the data, selecting relevant biomarkers, calibrating the algorithm, and establishing cutoff values. The remaining 30% served as an external test dataset for blind validation of the predictive accuracy. RESULTS Integrating a combination of 19 blood biomarkers and participant age, the B-HEALED model successfully distinguished participants that will develop AD dementia symptoms (82 with Prodromal AD and 83 with AD dementia) from non-AD subjects (71 individuals) with a specificity of 93.0% and sensitivity of 65.4% (AUROC=81.9%, p<0.001) during internal validation. When the amyloid status (derived from CSF or PET scans) and the B-HEALED model were applied in association, with individuals being categorized as AD if they tested positive in both tests, we achieved 100% specificity and 52.8% sensitivity. This performance was consistent in blind external validation, underscoring the model's reliability on independent datasets. CONCLUSIONS The B-HEALED test, utilizing multiomics blood-based biomarkers, demonstrates high predictive specificity in identifying AD patients within the cognitively impaired population, minimizing false positives. When used alongside amyloid screening, it effectively identifies a nearly pure prodromal AD cohort. These results bear significant implications for refining clinical trial inclusion criteria, facilitating drug development and validation, and accurately identifying patients who will benefit the most from disease-modifying AD treatments.
Collapse
Affiliation(s)
- B Souchet
- Jérôme Braudeau, AgenT, 4 rue Pierre Fontaine, 91000 Evry-Courcouronnes, France. e-mail address: , Telephone: +33 6 11 10 26 95
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wolf EJ, Miller MW, Hawn SE, Zhao X, Wallander SE, McCormick B, Govan C, Rasmusson A, Stone A, Schichman SA, Logue MW. Longitudinal study of traumatic-stress related cellular and cognitive aging. Brain Behav Immun 2024; 115:494-504. [PMID: 37967663 PMCID: PMC10843744 DOI: 10.1016/j.bbi.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/18/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Traumatic stress is associated with both accelerated epigenetic age and increased risk for dementia. Accelerated epigenetic age might link symptoms of traumatic stress to dementia-associated biomarkers, such as amyloid-beta (Aβ) proteins, neurofilament light (NFL), and inflammatory molecules. We tested this hypothesis using longitudinal data obtained from 214 trauma-exposed military veterans (85 % male, mean age at baseline: 53 years, 75 % White) who were assessed twice over the course of an average of 5.6 years. Cross-lagged panel mediation models evaluated measures of lifetime posttraumatic stress disorder and internalizing and externalizing comorbidity (assessed at Time 1; T1) in association with T1 epigenetic age (per the GrimAge algorithm) and T1 plasma markers of neuropathology along with bidirectional temporal paths between T1 and T2 epigenetic age and the plasma markers. Results revealed that a measure of externalizing comorbidity was associated with accelerated epigenetic age (β = 0.30, p <.01), which in turn, was associated with subsequent increases in Aβ-40 (β = 0.20, p <.001), Aβ-42 (β = 0.18, p <.001), and interleukin-6 (β = 0.18, p <.01). T1 advanced epigenetic age and the T1 neuropathology biomarkers NFL and glial fibrillary acidic protein predicted worse performance on T2 neurocognitive tasks assessing working memory, executive/attentional control, and/or verbal memory (ps = 0.03 to 0.009). Results suggest that advanced GrimAge is predictive of subsequent increases in neuropathology and inflammatory biomarkers as well as worse cognitive function, highlighting the clinical significance of this biomarker with respect to cognitive aging and brain health over time. The finding that advanced GrimAge mediated the association between psychiatric comorbidity and future neuropathology is important for understanding potential pathways to neurodegeneration and early identification of those at greatest risk.
Collapse
Affiliation(s)
- Erika J Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA.
| | - Mark W Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Sage E Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Old Dominion University, Department of Psychology, Norfolk, VA, USA
| | - Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Sara E Wallander
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Beth McCormick
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Christine Govan
- MAVERIC Central Biorepository, VA Boston Healthcare System, Boston, MA, USA
| | - Ann Rasmusson
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Annjanette Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Steven A Schichman
- Pathology and Laboratory Medicine Service, Central Arkansas Veterans Healthcare System, USA; Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark W Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA; Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA; Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA; Boston University School of Medicine, Department of Medicine, Biomedical Genetics, Boston, MA, USA
| |
Collapse
|
7
|
Souchet B, Michaïl A, Billoir B, Braudeau J. Biological Diagnosis of Alzheimer's Disease Based on Amyloid Status: An Illustration of Confirmation Bias in Medical Research? Int J Mol Sci 2023; 24:17544. [PMID: 38139372 PMCID: PMC10744068 DOI: 10.3390/ijms242417544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) was first characterized by Dr. Alois Alzheimer in 1906 by studying a demented patient and discovering cerebral amyloid plaques and neurofibrillary tangles. Subsequent research highlighted the roles of Aβ peptides and tau proteins, which are the primary constituents of these lesions, which led to the amyloid cascade hypothesis. Technological advances, such as PET scans using Florbetapir, have made it possible to visualize amyloid plaques in living patients, thus improving AD's risk assessment. The National Institute on Aging and the Alzheimer's Association introduced biological diagnostic criteria in 2011, which underlined the amyloid deposits diagnostic value. However, potential confirmation bias may have led researchers to over-rely on amyloid markers independent of AD's symptoms, despite evidence of their limited specificity. This review provides a critical examination of the current research paradigm in AD, including, in particular, the predominant focus on amyloid and tau species in diagnostics. We discuss the potential multifaceted consequences of this approach and propose strategies to mitigate its overemphasis in the development of new biomarkers. Furthermore, our study presents comprehensive guidelines aimed at enhancing the creation of biomarkers for accurately predicting AD dementia onset. These innovations are crucial for refining patient selection processes in clinical trial enrollment and for the optimization of therapeutic strategies. Overcoming confirmation bias is essential to advance the diagnosis and treatment of AD and to move towards precision medicine by incorporating a more nuanced understanding of amyloid biomarkers.
Collapse
Affiliation(s)
| | | | | | - Jérôme Braudeau
- AgenT SAS, 4 Rue Pierre Fontaine, 91000 Evry-Courcouronnes, France; (B.S.); (A.M.); (B.B.)
| |
Collapse
|