1
|
Nichols ES, Karat BG, Grace M, Bezanson S, Khan AR, Duerden EG. Early life stress impairs hippocampal subfield myelination. Commun Biol 2025; 8:785. [PMID: 40404790 PMCID: PMC12098761 DOI: 10.1038/s42003-025-08165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
The hippocampus is an archicortical structure that is highly sensitive to experience and is made up of individual subfields. These subfields, crucial for learning and memory, rapidly develop and are vulnerable to early stress, yet the mechanisms are unknown. Here, we analyse data from 520 neonates born between 23 and 42 weeks' gestation to assess how early extrauterine exposure-related stress influences subfield maturation. Subfields are segmented automatically by training a U-net model on infant data using HippUnfold, a novel tool for subfield segmentation. Results indicate that subfield volumes are resilient to early stress, while myelination shows greater vulnerability and variation, which may contribute to long-term outcomes. Notably, subfields are not uniformly impacted by stress, with CA1 and CA2 showing the largest effects. Developmental context, including time spent in and ex utero, primarily influences hippocampal subfield myelination.
Collapse
Affiliation(s)
- Emily S Nichols
- Faculty of Education, Western University, London, ON, Canada.
- Western Institute for Neuroscience, Western University, London, ON, Canada.
| | - Bradley G Karat
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael Grace
- Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Samantha Bezanson
- Neuroscience program, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Ali R Khan
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Emma G Duerden
- Faculty of Education, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Cai A, Zheng D, Xu F, Wang F, Sajikumar S, Wang J. Variations of Aberrant Volume, Activity, and Network Connectivity of Hippocampus in Adolescent Male Rats Exposed to Juvenile Stress. Brain Sci 2025; 15:284. [PMID: 40149805 PMCID: PMC11940772 DOI: 10.3390/brainsci15030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Childhood is a crucial period for brain development, and short-term juvenile stress has demonstrated long-lasting effects on cognitive and cellular functions in the hippocampus. However, the influence of such stress on the brain's overall network remains unclear. METHODS In this study, we employed functional magnetic resonance imaging (fMRI) to explore the effects of transient wild stress on juvenile male rats. Pregnant rats were purchased and housed in a specific pathogen-free (SPF) environment, with pups separated by sex on postnatal day 21 (PD21). From PD27 to PD29, male rats were subjected to transient wild stress, which included forced swimming, elevated platform exposure, and restraint stress. Following stress exposure, all animals were carefully maintained and scanned at 42 days of age (PD42) using fMRI. Structural analysis was performed using voxel-based morphometry (VBM) to assess changes in gray matter volume, while functional activity was evaluated through regional homogeneity (ReHo) and voxel-wise functional connectivity. RESULTS The results showed significant reductions in gray matter volume in several brain regions in the stress group, including the periaqueductal gray (PAG), entorhinal cortex (Ent), and dentate gyrus (DG). In terms of functional activity, cortical regions, particularly the primary somatosensory areas, exhibited decreased activity, whereas increased activity was observed in the PAG, DG, and medulla. Furthermore, functional connectivity analysis revealed a significant reduction in connectivity between the DG and entorhinal cortex, while the DG-PAG connectivity was significantly enhanced. CONCLUSIONS These findings suggest that juvenile stress leads to profound alterations in both brain structure and function, potentially disrupting emotional regulation and memory processing by affecting the development and connectivity of key brain regions.
Collapse
Affiliation(s)
- Aoling Cai
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Danhao Zheng
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanyong Xu
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, China
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing 210000, China
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Jie Wang
- Department of Radiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; (A.C.)
| |
Collapse
|
3
|
Muller KS, van den Bosch GE, Henke CE, Daams JG, Haverman L, Aarnoudse-Moens CSH. Examining the association between child development and parental mental health after preterm birth-related stress: a systematic review of the literature and meta-analysis protocol. BMJ Open 2025; 15:e089460. [PMID: 39909523 PMCID: PMC11800221 DOI: 10.1136/bmjopen-2024-089460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION Preterm infants born before 32 weeks of gestation are generally admitted to a neonatal intensive care unit (NICU) to receive life-saving treatment, resulting in early exposure to stressful events. Yet, NICU admission is not only stressful for the infant but can also have a long-lasting negative impact on parental mental health, who may worry about their child. Parental mental health problems might affect child development through parental behaviour and the parent-infant relationship. Simultaneously, adverse child development after preterm birth can (further) elevate parental stress and mental health problems, straining parental behaviour, the parent-infant relationship and child development. This systematic review and meta-analysis aims to examine the association between preterm-born children's development (<32 weeks' gestation) and parental mental health after preterm birth-related stress following NICU admission at any point in time. METHODS AND ANALYSIS A systematic review will be performed and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A concept-based search on preterm birth, child development and parental mental health is performed using MEDLINE, Embase, PsycINFO and Cochrane Library on 22 March 2024. Eligible are studies with original results on the association between child development after preterm birth (<32 weeks' gestation) and parental mental health. Independent reviewers will screen the articles, assess study quality using a Newcastle-Ottawa or Cochrane tool and determine the quality of evidence using Grading of Recommendations, Assessment, Development and Evaluation. Meta-analyses are planned on the association between child development and parental mental health after preterm birth. ETHICS AND DISSEMINATION No ethical approval is required. The results will enhance knowledge of the association between child development and parental mental health after preterm birth-related stress following NICU admission. This might lead to adjustments in follow-up care, optimising outcomes for infants and parents. Findings will be published in an international, peer-reviewed ad open-access journal. PROSPERO REGISTRATION NUMBER CRD42024518307.
Collapse
Affiliation(s)
- Kirsten S Muller
- Emma Children's Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Child Development and Pregnancy & Birth; Amsterdam Public Health, Mental Health and Societal Participation & Health, Amsterdam, The Netherlands
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Celina E Henke
- Emma Children's Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Lotte Haverman
- Emma Children's Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Child Development; Amsterdam Public Health, Mental Health and Digital Health, Amsterdam, The Netherlands
| | - Cornelieke S H Aarnoudse-Moens
- Emma Children's Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Child Development and Pregnancy & Birth; Amsterdam Public Health, Mental Health and Societal Participation & Health, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Neugebauer C, Oh W, Mastergeorge AM. Patterns of proximity and maternal-infant engagement in a neonatal intensive care unit. Infant Ment Health J 2025; 46:30-45. [PMID: 39648522 DOI: 10.1002/imhj.22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/15/2024] [Accepted: 11/02/2024] [Indexed: 12/10/2024]
Abstract
Mother-infant relationship development is influenced by maternal presence, proximity, and the frequency and duration of engagement. Proximity and dyadic engagement can be challenging when an infant is hospitalized in a neonatal intensive care unit (NICU). This study examined patterns of maternal proximity and engagement in a NICU in the Southwestern United States and identified thematic categories of alternate activities to engagement. Trained observers conducted 52 h of NICU observations, documenting maternal presence, patterns of proximity, engagement, nonengagement, and alternate activities to nonengagement and focused engagement. Results include data from 88 mother-infant dyads. Of the time mothers were in proximity to their infants, 83% of these instances occurred without active engagement. In contrast, focused dyadic engagement was noted in 97% of these observations, while unfocused engagement was recorded in 65% of instances. Mothers in proximity but not actively engaged were most often observed using a smartphone, a trend that was also observed when mothers were in unfocused engagement during nurturing social contexts. While it is expected that occasional interruptions to mother-infant interaction in the NICU will occur, more studies are needed to determine the implications of both brief and prolonged disruptions during dyadic interactions on interaction quality in the NICU.
Collapse
Affiliation(s)
- Christine Neugebauer
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Wonjung Oh
- Human Development & Family Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ann M Mastergeorge
- Human Development & Family Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
5
|
Sheng Y, Wang Y, Wang X, Zhang Z, Zhu D, Zheng W. No sex difference in maturation of brain morphology during the perinatal period. Brain Struct Funct 2024; 229:1979-1994. [PMID: 39020216 DOI: 10.1007/s00429-024-02828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Accumulating evidence have documented sex differences in brain anatomy from early childhood to late adulthood. However, whether sex difference of brain structure emerges in the neonatal brain and how sex modulates the development of cortical morphology during the perinatal stage remains unclear. Here, we utilized T2-weighted MRI from the Developing Human Connectome Project (dHCP) database, consisting of 41 male and 40 female neonates born between 35 and 43 postmenstrual weeks (PMW). Neonates of each sex were arranged in a continuous ascending order of age to capture the progressive changes in cortical thickness and curvature throughout the developmental continuum. The maturational covariance network (MCN) was defined as the coupled developmental fluctuations of morphology measures between cortical regions. We constructed MCNs based on the two features, respectively, to illustrate their developmental interdependencies, and then compared the network topology between sexes. Our results showed that cortical structural development exhibited a localized pattern in both males and females, with no significant sex differences in the developmental trajectory of cortical morphology, overall organization, nodal importance, and modular structure of the MCN. Furthermore, by merging male and female neonates into a unified cohort, we identified evident dependencies influences in structural development between different brain modules using the Granger causality analysis (GCA), emanating from high-order regions toward primary cortices. Our findings demonstrate that the maturational pattern of cortical morphology may not differ between sexes during the perinatal period, and provide evidence for the developmental causality among cortical structures in perinatal brains.
Collapse
Affiliation(s)
- Yucen Sheng
- School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou, People's Republic of China
| | - Ying Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhe Zhang
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Dalin Zhu
- Department of Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital Lanzhou, Lanzhou, People's Republic of China.
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
6
|
Tang L, Zhao P, Pan C, Song Y, Zheng J, Zhu R, Wang F, Tang Y. Epigenetic molecular underpinnings of brain structural-functional connectivity decoupling in patients with major depressive disorder. J Affect Disord 2024; 363:249-257. [PMID: 39029702 DOI: 10.1016/j.jad.2024.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is progressively recognized as a stress-related disorder characterized by aberrant brain network dynamics, encompassing both structural and functional domains. Yet, the intricate interplay between these dynamic networks and their molecular underpinnings remains predominantly unexplored. METHODS Both structural and functional networks were constructed using multimodal neuroimaging data from 183 MDD patients and 300 age- and gender-matched healthy controls (HC). structural-functional connectivity (SC-FC) coupling was evaluated at both the connectome- and nodal-levels. Methylation data of five HPA axis key genes, including NR3C1, FKBP5, CRHBP, CRHR1, and CRHR2, were analyzed using Illumina Infinium Methylation EPIC BeadChip. RESULTS We observed a significant reduction in SC-FC coupling at the connectome-level in patients with MDD compared to HC. At the nodal level, we found an imbalance in SC-FC coupling, with reduced coupling in cortical regions and increased coupling in subcortical regions. Furthermore, we identified 23 differentially methylated CpG sites on the HPA axis, following adjustment for multiple comparisons and control of age, gender, and medication status. Notably, three CpG sites on NR3C1 (cg01294526, cg19457823, and cg23430507), one CpG site on FKBP5 (cg25563198), one CpG site on CRHR1 (cg26656751), and one CpG site on CRHR2 (cg18351440) exhibited significant associations with SC-FC coupling in MDD patients. CONCLUSIONS These findings provide valuable insights into the connection between micro-scale epigenetic changes in the HPA axis and SC-FC coupling at macro-scale connectomes. They unveil the mechanisms underlying increased susceptibility to MDD resulting from chronic stress and may suggest potential pharmacological targets within the HPA-axis for MDD treatment.
Collapse
Affiliation(s)
- Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China; Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, PR China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
7
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part one; clinical studies. Pediatr Res 2024; 95:1698-1708. [PMID: 38519794 PMCID: PMC11245394 DOI: 10.1038/s41390-024-03105-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a neuron-rich specialised brain structure that plays a central role in the regulation of emotions, learning and memory, cognition, spatial navigation, and motivational processes. In human fetal development, hippocampal neurogenesis is principally complete by mid-gestation, with subsequent maturation comprising dendritogenesis and synaptogenesis in the third trimester of pregnancy and infancy. Dendritogenesis and synaptogenesis underpin connectivity. Hippocampal development is exquisitely sensitive to perturbations during pregnancy and at birth. Clinical investigations demonstrate that preterm birth, fetal growth restriction (FGR), and acute hypoxic-ischaemic encephalopathy (HIE) are common perinatal complications that alter hippocampal development. In turn, deficits in hippocampal development and structure mediate a range of neurodevelopmental disorders, including cognitive and learning problems, autism, and Attention-Deficit/Hyperactivity Disorder (ADHD). In this review, we summarise the developmental profile of the hippocampus during fetal and neonatal life and examine the hippocampal deficits observed following common human pregnancy complications. IMPACT: The review provides a comprehensive summary of the developmental profile of the hippocampus in normal fetal and neonatal life. We address a significant knowledge gap in paediatric research by providing a comprehensive summary of the relationship between pregnancy complications and subsequent hippocampal damage, shedding new light on this critical aspect of early neurodevelopment.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Bian X, Yang W, Lin J, Jiang B, Shao X. Hypothalamic-Pituitary-Adrenal Axis and Epilepsy. J Clin Neurol 2024; 20:131-139. [PMID: 38330420 PMCID: PMC10921057 DOI: 10.3988/jcn.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024] Open
Abstract
Epilepsy is a recurrent, transient seizure disorder of the nervous system that affects the intellectual development, life and work, and psychological health of patients. People with epilepsy worldwide experience great suffering. Stressful stimuli such as infection, mental stress, and sleep deprivation are important triggers of epilepsy, and chronic stressful stimuli can lead to frequent seizures and comorbidities. The hypothalamic-pituitary-adrenal (HPA) axis is the most important system involved in the body's stress response, and dysfunction thereof is thought to be associated with core epilepsy symptoms and related psychopathology. This article explores the intrinsic relationships of corticotropin-releasing hormone, adrenocorticotropic hormone, and glucocorticoids with epilepsy in order to reveal the role of the HPA axis in the pathogenesis of epilepsy. We hope that this information will yield future possible directions and ideas for fully understanding the pathogenesis of epilepsy and developing antiepileptic drugs.
Collapse
Affiliation(s)
- Xueying Bian
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Wenxian Yang
- Department of Pediatrics, Yiwu Central Hospital, Yiwu, China
| | - Jiannan Lin
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Biao Jiang
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaoli Shao
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
9
|
Verney C, Vitalis T. [Stress during prenatal and early postnatal period when everything begins]. Med Sci (Paris) 2023; 39:744-753. [PMID: 37943135 DOI: 10.1051/medsci/2023124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Early severe stresses are known to affect the biological and psychological development in childhood. Good and adaptable stress during prenatal and early postnatal period can switch to traumatic during these highly susceptible developmental stages. These different stresses modulate genetic/epigenetic processes and the setting up of connectome during these highly plastic and adaptable time periods. The polyvagal processes control the base of the security/well-being perception of the newborn by the onset of synchronized interactions between the mother/parent/nurse and the baby. These positive adjustments in mirror lead to attachment and social links and to implicit learning processes leading to a balanced emotional and cognitive development.
Collapse
Affiliation(s)
- Catherine Verney
- Université de Paris, NeuroDiderot, Paris, France - Association Ensemble pour l'éducation de la petite enfance, 37 allée du Forum, 92100 Boulogne-Billancourt, France
| | - Tania Vitalis
- Université de Paris, NeuroDiderot, Paris, France - Inserm, Paris, U1141, hôpital Robert-Debré, 48 boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
10
|
Conole ELS, Vaher K, Cabez MB, Sullivan G, Stevenson AJ, Hall J, Murphy L, Thrippleton MJ, Quigley AJ, Bastin ME, Miron VE, Whalley HC, Marioni RE, Boardman JP, Cox SR. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun 2023; 110:322-338. [PMID: 36948324 DOI: 10.1016/j.bbi.2023.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Preterm birth is closely associated with a phenotype that includes brain dysmaturation and neurocognitive impairment, commonly termed Encephalopathy of Prematurity (EoP), of which systemic inflammation is considered a key driver. DNA methylation (DNAm) signatures of inflammation from peripheral blood associate with poor brain imaging outcomes in adult cohorts. However, the robustness of DNAm inflammatory scores in infancy, their relation to comorbidities of preterm birth characterised by inflammation, neonatal neuroimaging metrics of EoP, and saliva cross-tissue applicability are unknown. METHODS Using salivary DNAm from 258 neonates (n = 155 preterm, gestational age at birth 23.28 - 34.84 weeks, n = 103 term, gestational age at birth 37.00 - 42.14 weeks), we investigated the impact of a DNAm surrogate for C-reactive protein (DNAm CRP) on brain structure and other clinically defined inflammatory exposures. We assessed i) if DNAm CRP estimates varied between preterm infants at term equivalent age and term infants, ii) how DNAm CRP related to different types of inflammatory exposure (maternal, fetal and postnatal) and iii) whether elevated DNAm CRP associated with poorer measures of neonatal brain volume and white matter connectivity. RESULTS Higher DNAm CRP was linked to preterm status (-0.0107 ± 0.0008, compared with -0.0118 ± 0.0006 among term infants; p < 0.001), as well as perinatal inflammatory diseases, including histologic chorioamnionitis, sepsis, bronchopulmonary dysplasia, and necrotising enterocolitis (OR range |2.00 | to |4.71|, p < 0.01). Preterm infants with higher DNAm CRP scores had lower brain volume in deep grey matter, white matter, and hippocampi and amygdalae (β range |0.185| to |0.218|). No such associations were observed for term infants. Association magnitudes were largest for measures of white matter microstructure among preterms, where elevated epigenetic inflammation associated with poorer global measures of white matter integrity (β range |0.206| to |0.371|), independent of other confounding exposures. CONCLUSIONS Inflammatory-related DNAm captures the allostatic load of inflammatory burden in preterm infants. Such DNAm measures complement biological and clinical metrics when investigating the determinants of neurodevelopmental differences.
Collapse
Affiliation(s)
- Eleanor L S Conole
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jill Hall
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J Quigley
- Imaging Department, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - James P Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
11
|
Holz NE, Berhe O, Sacu S, Schwarz E, Tesarz J, Heim CM, Tost H. Early Social Adversity, Altered Brain Functional Connectivity, and Mental Health. Biol Psychiatry 2023; 93:430-441. [PMID: 36581495 DOI: 10.1016/j.biopsych.2022.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Early adverse environmental exposures during brain development are widespread risk factors for the onset of severe mental disorders and strong and consistent predictors of stress-related mental and physical illness and reduced life expectancy. Current evidence suggests that early negative experiences alter plasticity processes during developmentally sensitive time windows and affect the regular functional interaction of cortical and subcortical neural networks. This, in turn, may promote a maladapted development with negative consequences on the mental and physical health of exposed individuals. In this review, we discuss the role of functional magnetic resonance imaging-based functional connectivity phenotypes as potential biomarker candidates for the consequences of early environmental exposures-including but not limited to-childhood maltreatment. We take an expanded concept of developmentally relevant adverse experiences from infancy over childhood to adolescence as our starting point and focus our review of functional connectivity studies on a selected subset of functional magnetic resonance imaging-based phenotypes, including connectivity in the limbic and within the frontoparietal as well as default mode networks, for which we believe there is sufficient converging evidence for a more detailed discussion in a developmental context. Furthermore, we address specific methodological challenges and current knowledge gaps that complicate the interpretation of early stress effects on functional connectivity and deserve particular attention in future studies. Finally, we highlight the forthcoming prospects and challenges of this research area with regard to establishing functional connectivity measures as validated biomarkers for brain developmental processes and individual risk stratification and as target phenotypes for mechanism-based interventions.
Collapse
Affiliation(s)
- Nathalie E Holz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jonas Tesarz
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany; College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
12
|
The Role of Oxytocin in Abnormal Brain Development: Effect on Glial Cells and Neuroinflammation. Cells 2022; 11:cells11233899. [PMID: 36497156 PMCID: PMC9740972 DOI: 10.3390/cells11233899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The neonatal period is critical for brain development and determinant for long-term brain trajectory. Yet, this time concurs with a sensitivity and risk for numerous brain injuries following perinatal complications such as preterm birth. Brain injury in premature infants leads to a complex amalgam of primary destructive diseases and secondary maturational and trophic disturbances and, as a consequence, to long-term neurocognitive and behavioral problems. Neuroinflammation is an important common factor in these complications, which contributes to the adverse effects on brain development. Mediating this inflammatory response forms a key therapeutic target in protecting the vulnerable developing brain when complications arise. The neuropeptide oxytocin (OT) plays an important role in the perinatal period, and its importance for lactation and social bonding in early life are well-recognized. Yet, novel functions of OT for the developing brain are increasingly emerging. In particular, OT seems able to modulate glial activity in neuroinflammatory states, but the exact mechanisms underlying this connection are largely unknown. The current review provides an overview of the oxytocinergic system and its early life development across rodent and human. Moreover, we cover the most up-to-date understanding of the role of OT in neonatal brain development and the potential neuroprotective effects it holds when adverse neural events arise in association with neuroinflammation. A detailed assessment of the underlying mechanisms between OT treatment and astrocyte and microglia reactivity is given, as well as a focus on the amygdala, a brain region of crucial importance for socio-emotional behavior, particularly in infants born preterm.
Collapse
|