1
|
Bakshi B, Yerraguntla S, Armon C, Barkhaus P, Bertorini T, Bowser R, Breevoort S, Bromberg M, Brown A, Carter GT, Chang V, Crayle J, Fullam T, Greene M, Heiman-Patterson T, Jackson C, Jhooty S, Mallon E, Cadavid JM, Mcdermott CJ, Pattee G, Pierce K, Ratner D, Sun Y, Wang O, Wicks P, Wiedau M, Bedlack R. ALSUntangled #77: Psilocybin. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:385-388. [PMID: 39709547 DOI: 10.1080/21678421.2024.2441274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
ALSUntangled reviews alternate and off-label treatments prompted by patient interest. Here, we review psilocybin, a chemical derived from mushrooms and belonging in the category of drugs known as psychedelics. Psilocybin has plausible mechanisms for slowing ALS progression because of its ability to cross the blood brain barrier and effect neurogenesis and inflammation. Currently, there are no pre-clinical ALS models, case reports, or trials for psilocybin and ALS in the context of disease modifying therapy. Depending on dosing, there can be a high risk of psychological side effects including hallucinations and physical harm. Based on the above information, we do not currently support the use of psilocybin as a means to slow ALS progression.
Collapse
Affiliation(s)
- Bhavya Bakshi
- Medical School, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Sandeep Yerraguntla
- Medical School, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Carmel Armon
- Department of Neurology, Shamir Medical Center, Tzrifin, Israel
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tulio Bertorini
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah Breevoort
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Andrew Brown
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Vincent Chang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Jesse Crayle
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Timothy Fullam
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Maxwell Greene
- Department of Neurology and Neurosciences, Stanford University, Stanford, CA, USA
| | | | - Carlayne Jackson
- Department of Neurology, UT Health San Antonio, San Antonio, TX, USA
| | - Sartaj Jhooty
- Department of Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Javier Mascias Cadavid
- ALS Unit, Neurology Department, Hospital La Paz Institute for Health Research, Madrid, Spain
| | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaitlyn Pierce
- Department of Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Dylan Ratner
- Undergraduate, Tulane University, New Orleans, LA, USA
| | - Yuyao Sun
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | | | - Paul Wicks
- Independent Consultant, Lichfield, England, UK
| | - Martina Wiedau
- Department of Neurology, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Hutson PR. Psilocybin Dispensaries and Advertising-Buyer Beware. JAMA Netw Open 2025; 8:e252858. [PMID: 40168028 DOI: 10.1001/jamanetworkopen.2025.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Affiliation(s)
- Paul R Hutson
- School of Pharmacy, University of Wisconsin, Madison
| |
Collapse
|
3
|
Jasemi E, Razmi A, Vaseghi S, Amiri S, Najafi SMA. The effect of Psilocybe cubensis alkaloids on depressive-like behavior in mice exposed to maternal separation with respect to hippocampal gene expression and DNA methylation of Slc6a4 and Nr3c1. Behav Pharmacol 2025; 36:115-126. [PMID: 39969076 DOI: 10.1097/fbp.0000000000000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Maternal separation as an early life stress can lead to long-lasting deleterious effects on cognitive and behavioral functions, and the mood state. On the other hand, Psilocybe cubensis (as one of the most well-known magic mushrooms) may be beneficial in the improvement or the treatment of neuropsychiatric disorders. In the present study, we aimed to investigate the effect of P. cubensis extract (PCE) on depressive-like and anxiety-like behaviors, and locomotor activity in mice exposed to early maternal separation. Also, we assessed the expression and methylation level of Slc6a4 and Nr3c1 in the hippocampus. Maternal separation was done in postnatal days (PNDs) 2-18. PCE was intraperitoneally injected at the dose of 20 mg/kg at PND 60, and our tests were done at days 1, 3, and 10, of administration. The results showed that maternal separation significantly induced depressive-like behavior in the forced swim test and anxiety-like behavior in the open field test (OFT). Also, maternal separation decreased locomotor activity in the OFT. In addition, maternal separation decreased the expression and increased the methylation level of both Slc6a4 and Nr3c1 in the hippocampus. However, PCE significantly reversed all these effects. In conclusion, it seems that P. cubensis affects serotonergic signaling via altering Slc6a4 expression and methylation level in the hippocampus of mice. The effect of P. cubensis on Nr3c1 expression and methylation level may also lead to alter the function of the hypothalamus-pituitary-adrenal axis and the stress response in mice exposed to maternal separation.
Collapse
Affiliation(s)
- Eghbal Jasemi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran
| |
Collapse
|
4
|
Murphy RJ, Sumner RL, Godfrey K, Mabidikama A, Roberts RP, Sundram F, Muthukumaraswamy S. Multimodal creativity assessments following acute and sustained microdosing of lysergic acid diethylamide. Psychopharmacology (Berl) 2025; 242:337-351. [PMID: 39235512 PMCID: PMC11775047 DOI: 10.1007/s00213-024-06680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Enhanced creativity is often cited as an effect of microdosing (taking repeated low doses of a psychedelic drug). There have been recent efforts to validate the reported effects of microdosing, however creativity remains a difficult construct to quantify. OBJECTIVES The current study aimed to assess microdosing's effects on creativity using a multimodal battery of tests as part of a randomised controlled trial of microdosing lysergic acid diethylamide (LSD). METHODS Eighty healthy adult males were given 10 µg doses of LSD or placebo every third day for six weeks (14 total doses). Creativity tasks were administered at a drug-free baseline session, at a first dosing session during the acute phase of the drug's effects, and in a drug-free final session following the six-week microdosing regimen. Creativity tasks were the Alternate Uses Test (AUT), Remote Associates Task (RAT), Consensual Assessment Technique (CAT), and an Everyday Problem-Solving Questionnaire (EPSQ). RESULTS No effect of drug by time was found on the AUT, RAT, CAT, or EPSQ. Baseline vocabulary skill had a significant effect on AUT and RAT scores. CONCLUSIONS Despite participants reporting feeling more creative on dose days, objective measurement found no acute or durable effects of the microdosing protocol on creativity. Possible explanations of these null findings are that laboratory testing conditions may negatively affect ability to detect naturalistic differences in creative performance, the tests available do not capture the facets of creativity that are anecdotally affected by microdosing, or that reported enhancements of creativity are placebo effects.
Collapse
Affiliation(s)
- Robin J Murphy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Rachael L Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Acima Mabidikama
- School of Psychology, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Reece P Roberts
- School of Psychology, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Kinderlehrer DA. Mushrooms, Microdosing, and Mental Illness: The Effect of Psilocybin on Neurotransmitters, Neuroinflammation, and Neuroplasticity. Neuropsychiatr Dis Treat 2025; 21:141-155. [PMID: 39897712 PMCID: PMC11787777 DOI: 10.2147/ndt.s500337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence of mental health disorders is increasing worldwide. While there are multiple factors contributing to this problem, neuroinflammation underlies a significant subset of psychiatric conditions, particularly major depressive and anxiety disorders. Anti-inflammatory interventions have demonstrated benefit in these conditions. Psilocin, the active ingredient of mushrooms in the Psilocybe genus, is both a potent serotonin agonist and anti-inflammatory agent, increases neuroplasticity, and decreases overactivity in the default mode network. Studies using hallucinogenic doses of psilocin under the supervision of a therapist/guide have consistently demonstrated benefits to individuals with depression and end-of-life anxiety. Microdosing psilocybin in sub-hallucinogenic doses has also demonstrated benefit in mood disorders, and may offer a safe, less expensive, and more available alternative to full doses of psilocybin for mood disorders, as well as for other medical conditions in which inflammation is the principal pathophysiology.
Collapse
|
6
|
Cuttler C, Stueber A, Simone J, Mayo LM. Down the Rabbit Hole: A Large-Scale Survey of Psychedelic Users' Patterns of Use and Perceived Effects. J Psychoactive Drugs 2025:1-13. [PMID: 39878200 DOI: 10.1080/02791072.2025.2452226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 01/31/2025]
Abstract
The ever-changing landscape surrounding legality and accessibility of psychedelics and their increasing popularity make it imperative to better understand the nature of psychedelic use by the general population. To this end, 1,486 eligible respondents (Mage = 29.58, 67.1% male) residing in the United States completed an online survey designed to assess the types of psychedelics used, methods of administration and dosing, frequency of use, intentions for use, context/environments in which they are used, perceived acute effects, frequency of those effects and distress about them, and their perceived residual effects and distress about them. Respondents predominantly endorsed using MDMA, LSD, DMT, and psilocybin. The predominant methods of administration were oral. Most reported using psychedelics for recreational purposes. The most endorsed acute effects were hallucinations, increased heart rate, positive mood, and visual tracers, while the most endorsed residual effects were headaches/migraine, dry mouth, nausea, hallucinations, and anxiety. Participants were most distressed by negative mood states, vomiting, and nausea when under the acute effects of psychedelics, but mean distress ratings were low. These results can help inform clinical trials, reform policy regarding legal access to psychedelics, and track changes in these metrics as sociocultural and legal landscapes continue to shift.
Collapse
Affiliation(s)
- Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Amanda Stueber
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Jonathan Simone
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Kurzbaum E, Páleníček T, Shrchaton A, Azerrad S, Dekel Y. Exploring Psilocybe cubensis Strains: Cultivation Techniques, Psychoactive Compounds, Genetics and Research Gaps. J Fungi (Basel) 2025; 11:99. [PMID: 39997393 PMCID: PMC11856550 DOI: 10.3390/jof11020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Psilocybe cubensis, a widely recognized psychoactive mushroom species, has played a significant role in both historical and modern therapeutic practices. This review explores the complex interplay between genetic diversity, strain variability and environmental factors that shape the biosynthesis of key psychoactive compounds, including psilocybin and psilocin. With many strains exhibiting substantial variability in their phenotypic characteristics and biochemical content, understanding and documenting this diversity is crucial for optimizing therapeutic applications. The review also highlights advances in cultivation techniques, such as submerged fermentation of the mycelium, and innovative analytical methodologies that have improved the precision of compound quantification and extraction. Although there is limited scientific information on P. cubensis due to nearly four decades of regulatory restrictions on psychedelic research, recent developments in genetic and biochemical studies are beginning to provide valuable insights into its therapeutic potential. Furthermore, this review emphasizes key knowledge gaps and offers insights into future research directions to advance the cultivation, scientific documentation of strain diversity, regulatory considerations and therapeutic use of P. cubensis.
Collapse
Affiliation(s)
- Eyal Kurzbaum
- Water Science Department, Tel-Hai College, Upper Galilee 1220800, Israel
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin 1290000, Israel; (A.S.); (S.A.); (Y.D.)
- Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Haifa 3498838, Israel
| | - Tomáš Páleníček
- National Institute of Mental Health, 250 67 Klecany, Czech Republic;
- 3rd Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Amiel Shrchaton
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin 1290000, Israel; (A.S.); (S.A.); (Y.D.)
| | - Sara Azerrad
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin 1290000, Israel; (A.S.); (S.A.); (Y.D.)
- The Natural Resources and Environmental Research Center-NRERC, University of Haifa, Mount Carmel, Haifa 3498838, Israel
| | - Yaron Dekel
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin 1290000, Israel; (A.S.); (S.A.); (Y.D.)
- The Cheryl Spencer Department of Nursing, The Cheryl Spencer Institute of Nursing Research, University of Haifa, Haifa 3498838, Israel
- The Cheryl Spencer Institute of Nursing Research, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
8
|
Yousefi P, Lietz MP, O'Higgins FJ, Rippe RCA, Hasler G, van Elk M, Enriquez-Geppert S. Acute effects of psilocybin on attention and executive functioning in healthy volunteers: a systematic review and multilevel meta-analysis. Psychopharmacology (Berl) 2025:10.1007/s00213-024-06742-2. [PMID: 39847068 DOI: 10.1007/s00213-024-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
RATIONALE Psilocybin shows promise for treating neuropsychiatric disorders. However, insight into its acute effects on cognition is lacking. Given the significant role of executive functions in daily life and treatment efficacy, it is crucial to evaluate how psilocybin influences these cognitive domains. OBJECTIVES This meta-analysis aims to quantify the acute effects of psilocybin on executive functions and attention, while examining how dosage, timing of administration, cognitive domain, and task characteristics moderate these effects. METHODS A systematic review and multilevel meta-analysis were conducted on empirical studies assessing psilocybin's acute effects on working memory, conflict monitoring, response inhibition, cognitive flexibility, and attention. Effect sizes for reaction time (RT) and accuracy (ACC) were calculated, exploring the effects of timing (on-peak defined as 90-180 min post-administration), dosage, cognitive function categories, and task sensitivity to executive functions as potential moderators. RESULTS Thirteen studies (42 effect sizes) were included. In the acute phase, psilocybin increased RTs (Hedges' g = 1.13, 95% CI [0.57, 1.7]) and did not affect ACC (Hedges' g = -0.45, 95% CI [-0.93, 0.034]). Effects on RT were dose dependent. Significant between-study heterogeneity was found for both RT and ACC. Task sensitivity to executive functions moderated RT effects. Publication bias was evident, but the overall effect remained significant after adjustment for this. CONCLUSIONS Our meta-analysis shows that psilocybin impairs executive functions and results in a slowing down of RT. We discuss potential neurochemical mechanisms underlying the observed effects as well as implications for the safe use of psilocybin in clinical and experimental contexts.
Collapse
Affiliation(s)
- P Yousefi
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands.
| | - Morten P Lietz
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland.
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, the Netherlands.
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands.
| | - F J O'Higgins
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - R C A Rippe
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - G Hasler
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
- Freiburg Mental Health Network, Villars-sur-Glâne, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
| | - M van Elk
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - S Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands
- Psychedelic Treatment and Mechanisms Group, University Centre of Psychiatry, Groningen, the Netherlands
| |
Collapse
|
9
|
Fonzo GA, Nemeroff CB, Kalin N. Psychedelics in Psychiatry: Oh, What A Trip! Am J Psychiatry 2025; 182:1-5. [PMID: 39741442 DOI: 10.1176/appi.ajp.20241025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, and Institute for Early Life Adversity Research, University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, and Institute for Early Life Adversity Research, University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| | - Ned Kalin
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, and Institute for Early Life Adversity Research, University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison (Kalin)
| |
Collapse
|
10
|
Fonzo GA, Wolfgang AS, Barksdale BR, Krystal JH, Carpenter LL, Kraguljac NV, Grzenda A, McDonald WM, Widge AS, Rodriguez CI, Nemeroff CB. Psilocybin: From Psychiatric Pariah to Perceived Panacea. Am J Psychiatry 2025; 182:54-78. [PMID: 39741437 PMCID: PMC11694823 DOI: 10.1176/appi.ajp.20230682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
OBJECTIVE The authors critically examine the evidence base for psilocybin administered with psychological support/therapy (PST) in the treatment of psychiatric disorders and offer practical recommendations to guide future research endeavors. METHODS PubMed was searched for English-language articles from January 1998 to November 2023, using the search term "psilocybin." A total of 1,449 articles were identified and screened through titles and abstracts. Of these, 21 unique open-label or randomized controlled trials (RCTs) were identified that examine psilocybin for the treatment of obsessive-compulsive and related disorders (N=2), anxiety/depression associated with a cancer diagnosis (N=5), major depressive disorder (MDD; N=8), substance use disorders (N=4), anorexia (N=1), and demoralization (i.e., hopelessness, helplessness, and poor coping) in AIDS survivors (N=1). RESULTS The most developed evidence base is for the treatment of MDD (three double-blind RCTs with positive signals spanning a range of severities). However, the evidence is tempered by threats to internal and external validity, including unsuccessful blinding, small samples, large variability in dosing and PST procedures, limited sample diversity, and possibly large expectancy effects. Knowledge of mechanisms of action and predictors of response is currently limited. CONCLUSIONS The evidence is currently insufficient to recommend psilocybin with PST as a psychiatric treatment. Additional rigorously designed clinical trials are needed to definitively establish efficacy in larger and more diverse samples, address dosing considerations, improve blinding, and provide information on mechanisms of action and moderators of clinical response. Head-to-head comparisons with other evidence-based treatments will better inform the potential future role of psilocybin with PST in the treatment of major psychiatric disorders.
Collapse
Affiliation(s)
- Gregory A. Fonzo
- Department of Psychiatry and Behavioral Sciences, The
University of Texas at Austin Dell Medical School, Austin, TX, USA
- Center for Psychedelic Research and Therapy, The
University of Texas at Austin Dell Medical School, Austin, TX, USA
- Institute for Early Life Adversity Research, The
University of Texas at Austin, Austin, TX, USA
| | - Aaron S. Wolfgang
- Department of Behavioral Health, Walter Reed National
Military Medical Center, Bethesda, MD, USA
- Department of Psychiatry, Uniformed Services University of
the Health Sciences, Bethesda, MD, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Bryan R. Barksdale
- Department of Psychiatry and Behavioral Sciences, The
University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Linda L. Carpenter
- Butler Hospital, Department of Psychiatry and Human
Behavior, Alpert Medical School at Brown University
| | - Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology,
Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Adrienne Grzenda
- Department of Psychiatry and Biobehavioral Sciences, David
Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory
University School of Medicine, Atlanta, GA, USA
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences,
University of Minnesota, Minneapolis, MN, USA
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences,
Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto,
CA, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, The
University of Texas at Austin Dell Medical School, Austin, TX, USA
- Center for Psychedelic Research and Therapy, The
University of Texas at Austin Dell Medical School, Austin, TX, USA
- Institute for Early Life Adversity Research, The
University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
11
|
Koning E, Chaves C, Kirkpatrick RH, Brietzke E. Exploring the neurobiological correlates of psilocybin-assisted psychotherapy in eating disorders: a review of potential methodologies and implications for the psychedelic study design. J Eat Disord 2024; 12:214. [PMID: 39731144 DOI: 10.1186/s40337-024-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Eating disorders (EDs) are a group of debilitating mental illnesses characterized by maladaptive eating behaviors and severe cognitive-emotional dysfunction, directly affecting 1-3% of the population. Standard treatments are not effective in approximately one third of ED cases, representing the need for scientific advancement. There is emerging evidence for the safety and efficacy of psilocybin-assisted psychotherapy (PAP) to improve treatment outcomes in individuals with EDs. However, the limited knowledge of the neurobiological mechanisms underlying the therapeutic effects of PAP restricts the ability to confirm its clinical utility. This narrative review presents an overview of methodologies used to elucidate the pathophysiological mechanisms of EDs or the effects of psilocybin that could be employed to probe the neurobiological correlates of PAP in EDs, including magnetic resonance imaging and molecular neuroimaging techniques, electrophysiological approaches, and neuroplasticity markers. Finally, the implications of these methodologies are described in relation to the unique features of the psychedelic study design, challenges, limitations, and future directions to advance the field. This paper represents a valuable resource for scientists during study conceptualization and design phases and stimulates advancement in the identification of effective therapeutic interventions for EDs.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- , 76 Stuart Street, Kingston, ON, K7L 2V7, Canada.
| | - Cristiano Chaves
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Ryan H Kirkpatrick
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| |
Collapse
|
12
|
Enriquez-Geppert S, Krc J, O’Higgins FJ, Lietz M. Psilocybin-assisted neurofeedback for the improvement of executive functions: a randomized semi-naturalistic-lab feasibility study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230095. [PMID: 39428872 PMCID: PMC11513162 DOI: 10.1098/rstb.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024] Open
Abstract
Executive function deficits, common in psychiatric disorders, hinder daily activities and may be linked to diminished neural plasticity, affecting treatment and training responsiveness. In this pioneering study, we evaluated the feasibility and preliminary efficacy of psilocybin-assisted frontal-midline theta neurofeedback (NF), a neuromodulation technique leveraging neuroplasticity, to improve executive functions (EFs). Thirty-seven eligible participants were randomized into an experimental group (n = 18) and a passive control group (n = 19). The experimental group underwent three microdose sessions and then three psilocybin-assisted NF sessions, without requiring psychological support, demonstrating the approach's feasibility. NF learning showed a statistical trend for increases in frontal-midline theta from session to session with a large effect size and non-significant but medium effect size dynamical changes within sessions. Placebo effects were consistent across groups, with no tasks-based EF improvements, but significant self-reported gains in daily EFs-working memory, shifting, monitoring and inhibition-showing medium and high effect sizes. The experimental group's significant gains in their key training goals underscored the approach's external relevance. A thorough study with regular sessions and an active control group is crucial to evaluate EFs improvement and their specificity in future. Psilocybin-enhanced NF could offer significant, lasting benefits across diagnoses, improving daily functioning. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- S. Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - J. Krc
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - F. J. O’Higgins
- Trinity College Institute of Neuroscience, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - M. Lietz
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Meshkat S, Tello‐Gerez TJ, Gholaminezhad F, Dunkley BT, Reichelt AC, Erritzoe D, Vermetten E, Zhang Y, Greenshaw A, Burback L, Winkler O, Jetly R, Mayo LM, Bhat V. Impact of psilocybin on cognitive function: A systematic review. Psychiatry Clin Neurosci 2024; 78:744-764. [PMID: 39354706 PMCID: PMC11612538 DOI: 10.1111/pcn.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024]
Abstract
Psilocybin is a classic psychedelic with demonstrated preliminary clinical efficacy in a range of psychiatric disorders. Evaluating the impact of psilocybin on cognitive function is essential to unravel its potential benefits and risks. In this systematic review, we assessed psilocybin's effect on cognitive function through a comprehensive search of electronic databases from inception to January 2024, identifying 20 articles involving 2,959 participants. While 85% of studies were conducted in healthy volunteers, most of these studies (85%) used macrodoses, ranging from 45 μg/kg to 30 mg/70 kg. Various cognitive aspects were evaluated and yielded mixed results. Global cognitive function, and processing speed remained mostly unchanged in healthy individuals; However, a limited number of studies reported improvements in certain areas such as sustained attention, working memory, and executive function especially in patients with treatment-resistant depression (TRD). Emotional processing was positively modified, particularly in TRD patients. Psilocybin was observed to enhance emotional empathy without significantly altering cognitive empathy and social cognition. Cognitive flexibility and creative cognition were noted to initially decline but could potentially improve over time. Additionally, with respect to learning and memory skills, psilocybin showed promise in improving specific memory types such as semantic associations and associative learning, while its effects on episodic and verbal memory have been less pronounced compared to other cognitive enhancers. The observed mixed findings underscore the complexity of psilocybin's cognitive influence. Further research is essential to provide a clearer understanding of psilocybin's impact on cognitive domains and to guide the development of safe and effective interventions.
Collapse
Affiliation(s)
- Shakila Meshkat
- Interventional Psychiatry ProgramSt. Michael's Hospital, Unity Health TorontoTorontoOntarioCanada
| | | | - Fatemeh Gholaminezhad
- Interventional Psychiatry ProgramSt. Michael's Hospital, Unity Health TorontoTorontoOntarioCanada
| | - Benjamin T. Dunkley
- Neurosciences and Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
- Institute of Medical Science, University of TorontoTorontoOntarioCanada
| | - Amy C. Reichelt
- Department of Physiology and PharmacologyWestern UniversityLondonOntarioCanada
- School of Biomedicine, Adelaide Medical School, University of AdelaideAdelaideSouth AustraliaAustralia
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain SciencesImperial College LondonLondonUK
| | - Eric Vermetten
- Department of PsychiatryLeiden University Medical CenterLeidenNetherlands
| | - Yanbo Zhang
- Department of PsychiatryUniversity of AlbertaEdmontonAlbertaCanada
| | - Andrew Greenshaw
- Department of PsychiatryUniversity of AlbertaEdmontonAlbertaCanada
| | - Lisa Burback
- Department of PsychiatryUniversity of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health Institute (NMHI), University of AlbertaEdmontonAlbertaCanada
| | - Olga Winkler
- Department of PsychiatryUniversity of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health Institute (NMHI), University of AlbertaEdmontonAlbertaCanada
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa HospitalOttawaOntarioCanada
| | - Leah M. Mayo
- Department of PsychiatryMathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of CalgaryCalgaryAlbertaCanada
| | - Venkat Bhat
- Interventional Psychiatry ProgramSt. Michael's Hospital, Unity Health TorontoTorontoOntarioCanada
- Neuroscience Research ProgramSt. Michael's Hospital, Unity Health TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
14
|
Kazmierska-Grebowska P, Żakowski W, Myślińska D, Sahu R, Jankowski MM. Revisiting serotonin's role in spatial memory: A call for sensitive analytical approaches. Int J Biochem Cell Biol 2024; 176:106663. [PMID: 39321568 DOI: 10.1016/j.biocel.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The serotonergic system is involved in various psychiatric and neurological conditions, with serotonergic drugs often used in treatment. These conditions frequently affect spatial memory, which can serve as a model of declarative memory due to well-known cellular components and advanced methods that track neural activity and behavior with high temporal resolution. However, most findings on serotonin's effects on spatial learning and memory come from studies lacking refined analytical techniques and modern approaches needed to uncover the underlying neuronal mechanisms. This In Focus review critically investigates available studies to identify areas for further exploration. It finds that well-established behavioral models could yield more insights with modern tracking and data analysis approaches, while the cellular aspects of spatial memory remain underexplored. The review highlights the complex role of serotonin in spatial memory, which holds the potential for better understanding and treating memory-related disorders.
Collapse
Affiliation(s)
| | - Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Ravindra Sahu
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
15
|
Muchimapura S, Thukham-mee W, Tong-un T, Sangartit W, Phuthong S. Effects of a Functional Cone Mushroom ( Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024; 16:3616. [PMID: 39519449 PMCID: PMC11548036 DOI: 10.3390/nu16213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Due to the rising prevalence of cognitive impairment in the middle-aged and elderly population, combined with consumer demand for functional foods to improve health and well-being. Objective: This study aimed to formulate a functional cone mushroom (Termitomyces fuliginosus) (FCM) protein snack bar and evaluate its amino acid profile, phytochemical contents, biological activity and impact on cognitive function. Methods: A total of 26 middle-aged male and female participants were randomized and divided into placebo, FCM1 and FCM2 groups. Continuous consumption was performed for 6 weeks. Demographic data, body composition, cognitive function and memory were evaluated at baseline and at the end of the study period (6 weeks). Results: The event-related potential (ERP) analysis results showed a significant increase in N100 and P300 amplitude at the Fz location in participants who consumed the functional cone mushroom protein snack bar at a dose of 1 g compared to the placebo group (p = 0.015). Additionally, subjects who consumed the functional cone mushroom protein snack bar at a dose of 2 g showed a significantly increased P300 amplitude and percent accuracy of numeric working memory (p = 0.048) compared to those in the placebo group (p = 0.044). The possible underlying mechanism may involve AChE and MAO suppression activity alongside antioxidant activity. Conclusions: These data suggest that FCM can improve cognitive function and memory and may be considered for use in natural supplementation products with possible health benefits.
Collapse
Affiliation(s)
- Supaporn Muchimapura
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Savides IA, Outhoff K. Less is more? A review of psilocybin microdosing. J Psychopharmacol 2024; 38:846-860. [PMID: 39282928 DOI: 10.1177/02698811241278769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
BACKGROUND The applications of psilocybin, derived from 'magic mushrooms,' are vast, including a burgeoning practice known as microdosing, which refers to the administration of sub-hallucinogenic doses of psychedelic substances to obtain benefits without experiencing significant cognitive and perceptual distortion. However, current research is fairly new with several limitations and gaps that hinder adequate conclusions on its efficacy. AIMS This semi-structured review aimed to identify and highlight research gaps in the field of psilocybin microdosing for future research. METHODS A Preferred Reporting Items for Systematic Reviews and Meta-Analyses based strategy was employed, utilizing a chain of keywords and key phrases across multiple databases, augmented by a cross-sectional Google search for relevant grey literature in the form of the top 10 search results. A total of 40 studies and 8 unique websites were identified, summarized and tabulated into four distinct categories, namely non-clinical, clinical, observational and anecdotal evidence. RESULTS The majority of available evidence originates from observational studies, while non-clinical and clinical study findings remain comparatively sparse and inconsistent. Web-based findings were consistent with current research findings. Key research gaps were highlighted: the imperative for more randomized placebo-controlled trials, exploration of dose-response ranges, psychological and personality testing of participants, utilization of active placebos, greater diversity in study populations, an increase in psilocybin-exclusive microdosing studies and the refinement of animal models. CONCLUSION Definitive conclusions regarding the efficacy of psilocybin microdosing remain elusive, emphasizing the need for further study. Numerous research gaps necessitate consideration for future investigations.
Collapse
Affiliation(s)
- Isabella A Savides
- Department of Pharmacology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Kim Outhoff
- Department of Pharmacology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
17
|
Carroll T. The Psychedelic Renaissance: A Catholic Perspective. LINACRE QUARTERLY 2024:00243639241274818. [PMID: 39544399 PMCID: PMC11559537 DOI: 10.1177/00243639241274818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
After being outlawed in 1970, psychedelics have reemerged in the consciousness of Western society in the form of the so-called psychedelic renaissance. This has led to widespread interest in psychedelic compounds being used for recreation, treatment of mental illness and addiction, and even the so-called "enhancement" of individuals and society. This renewed interest in psychedelics has resulted in seemingly endless publications in both the popular and the academic press, including authors from fields as diverse as philosophy, theology, pharmacology, neuroscience, and clinical medicine. A common thread in this developing literature is the claim that psychedelic compounds mediate their reported benefits by inducing the so-called psychedelic mystical experience (PME). The nature of PME is hotly debated, with some claiming that it is entirely psychological and others proposing that it involves contact with extramental reality. This raises a number of important questions for Catholics, especially whether PME should be considered properly "mystical," how PME compares with traditionally understood Catholic mysticism, and whether, and if so under what conditions, psychedelics could be licitly used by the Catholic faithful. This paper is an attempt to begin the process of reconciling empiric scientific data regarding psychedelics generally, and PME specifically, with Catholic philosophical and theological considerations, with the goal of both providing recommendations regarding the licitness of the use of psychedelic compounds and inviting conversation about this important and challenging topic. Summary Over the past 20 years, there has been a renewed interest in of psychedelics. Many articles have been published extoling the benefits of psychedelics, including for the treatment of mental illness and addiction, recreation, and "enhancement" of individuals and society. A common claim is that the benefits of psychedelics are a result of the psychedelic mystical experience (PME). This paper considers both the use of psychedelics and PME from the perspective of Catholic theology, provides recommendations about their use for the Catholic faithful, and invites further conversation about this important and challenging topic. Short Summary This paper considers challenges posed by psychedelics, considers licitness of use, and calls for further discussion.
Collapse
Affiliation(s)
- Thomas Carroll
- Department of Medicine, University of Rochester Medicine, Rochester, NY, USA
| |
Collapse
|
18
|
Sharma E, Bairwa R, Lal P, Pattanayak S, Chakrapani K, Poorvasandhya R, Kumar A, Altaf MA, Tiwari RK, Lal MK, Kumar R. Edible mushrooms trending in food: Nutrigenomics, bibliometric, from bench to valuable applications. Heliyon 2024; 10:e36963. [PMID: 39281488 PMCID: PMC11399639 DOI: 10.1016/j.heliyon.2024.e36963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The worldwide consumption, health-promoting and nutritional properties of mushrooms have been extensively researched over a decade. Although, wide range of edible mushrooms is still unexplored, which can be a valuable source of bioactive compounds in dietary supplements and biopharma industry. Mushrooms represent as dynamic source of nutrients lacking in food from plant or animal origin thus, considered as vital functional food utilized for prevention of numerous diseases. The unique bioactive compounds in mushroom and their anti-inflammatory, anti-tumour and other health attributes have been discussed. The preventive action of mushroom on maintaining the gut health and their property to act as pro, pre or symbiotic is also elucidated. The direct prebiotic activity of mushroom affects gut haemostasis and enhances the gut microbiota. Recent reports on role in improving the brain health and neurological impact by mushroom are mentioned. The role of bioactive components in mushroom with relation to nutrigenomics have been explored. The nutrigenomics has become a crucial tool to assess individuals' diet according its genetic make-up and thus, cure of several diseases. Undeniably, mushroom in present time is regarded as next-generation wonder food, playing crucial role in sustaining health, thus, an active ingredient of food and nutraceutical industries.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rakesh Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | | | - Kota Chakrapani
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Rajendra Poorvasandhya
- Department of Plant Pathology, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia District, West Bengal, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Crop Protection, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
- ICAR-Central Potato Research Institute, Shimla, 171001, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
19
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Psilocybin as a lead candidate molecule in preclinical therapeutic studies of psychiatric disorders: A systematic review. J Neurochem 2024; 168:1687-1720. [PMID: 38019032 DOI: 10.1111/jnc.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Polito V, Liknaitzky P. Is microdosing a placebo? A rapid review of low-dose LSD and psilocybin research. J Psychopharmacol 2024; 38:701-711. [PMID: 38877715 PMCID: PMC11311906 DOI: 10.1177/02698811241254831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Some recent research and commentary have suggested that most or all the effects reported by people who microdose psychedelics may be explained by expectations or placebo effects. In this rapid review, we aimed to evaluate the strength of evidence for a placebo explanation of the reported effects of microdosing. We conducted a PubMed search for all studies investigating psychedelic microdosing with controlled doses and a placebo comparator. We identified 19 placebo-controlled microdosing studies and summarised all positive and null findings across this literature. Risk of bias was assessed using the Cochrane risk-of-bias tool for randomised trials. The reviewed papers indicated that microdosing with LSD and psilocybin leads to changes in neurobiology, physiology, subjective experience, affect, and cognition relative to placebo. We evaluate methodological gaps and challenges in microdosing research and suggest eight reasons why current claims that microdosing is predominately a placebo are premature and possibly wrong: (1) there have been only a small number of controlled studies; (2) studies have had small sample sizes; (3) there is evidence of dose-dependent effects; (4) studies have only investigated the effects of a small number of doses; (5) the doses investigated may have been too small; (6) studies have looked only at non-clinical populations; (7) studies so far have been susceptible to selection bias; and (8) the measured impact of expectancy is small. Considering the available evidence, we conclude that it is not yet possible to determine whether microdosing is a placebo.
Collapse
Affiliation(s)
- Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul Liknaitzky
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Australia
| |
Collapse
|
21
|
Hutten NRPW, Quaedflieg CWEM, Mason NL, Theunissen EL, Liechti ME, Duthaler U, Kuypers KPC, Bonnelle V, Feilding A, Ramaekers JG. Inter-individual variability in neural response to low doses of LSD. Transl Psychiatry 2024; 14:288. [PMID: 39009578 PMCID: PMC11251148 DOI: 10.1038/s41398-024-03013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
The repeated use of small doses of psychedelics (also referred to as "microdosing") to facilitate benefits in mental health, cognition, and mood is a trending practice. Placebo-controlled studies however have largely failed to demonstrate strong benefits, possibly because of large inter-individual response variability. The current study tested the hypothesis that effects of low doses of LSD on arousal, attention and memory depend on an individual's cognitive state at baseline. Healthy participants (N = 53) were randomly assigned to receive repeated doses of LSD (15 mcg) or placebo on 4 occasions divided over 2 weeks. Each treatment condition also consisted of a baseline and a 1-week follow-up visit. Neurophysiological measures of arousal (resting state EEG), pre-attentive processing (auditory oddball task), and perceptual learning and memory (visual long-term potentiation (LTP) paradigm) were assessed at baseline, dosing session 1 and 4, and follow-up. LSD produced stimulatory effects as reflected by a reduction in resting state EEG delta, theta, and alpha power, and enhanced pre-attentive processing during the acute dosing sessions. LSD also blunted the induction of LTP on dosing session 4. Stimulatory effects of LSD were strongest in individuals with low arousal and attention at baseline, while inhibitory effects were strongest in high memory performers at baseline. Decrements in delta EEG power and enhanced pre-attentive processing in the LSD treatment condition were still present during the 1-week follow-up. The current study demonstrates across three cognitive domains, that acute responses to low doses of LSD depend on the baseline state and provides some support for LSD induced neuroadaptations that sustain beyond treatment.
Collapse
Affiliation(s)
- Nadia R P W Hutten
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Conny W E M Quaedflieg
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Natasha L Mason
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Eef L Theunissen
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Kim P C Kuypers
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | | | - Johannes G Ramaekers
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Zheng S, Ma R, Yang Y, Li G. Psilocybin for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1420601. [PMID: 39050672 PMCID: PMC11266071 DOI: 10.3389/fnins.2024.1420601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment and a prominent contributor to dementia. The scarcity of available therapies for AD accentuates the exigency for innovative treatment modalities. Psilocybin, a psychoactive alkaloid intrinsic to hallucinogenic mushrooms, has garnered attention within the neuropsychiatric realm due to its established safety and efficacy in treating depression. Nonetheless, its potential as a therapeutic avenue for AD remains largely uncharted. This comprehensive review endeavors to encapsulate the pharmacological effects of psilocybin while elucidating the existing evidence concerning its potential mechanisms contributing to a positive impact on AD. Specifically, the active metabolite of psilocybin, psilocin, elicits its effects through the modulation of the 5-hydroxytryptamine 2A receptor (5-HT2A receptor). This modulation causes heightened neural plasticity, diminished inflammation, and improvements in cognitive functions such as creativity, cognitive flexibility, and emotional facial recognition. Noteworthy is psilocybin's promising role in mitigating anxiety and depression symptoms in AD patients. Acknowledging the attendant adverse reactions, we proffer strategies aimed at tempering or mitigating its hallucinogenic effects. Moreover, we broach the ethical and legal dimensions inherent in psilocybin's exploration for AD treatment. By traversing these avenues, We propose therapeutic potential of psilocybin in the nuanced management of Alzheimer's disease.
Collapse
Affiliation(s)
- Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of General Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Basedow LA, Majić T, Hafiz NJ, Algharably EAE, Kreutz R, Riemer TG. Cognitive functioning associated with acute and subacute effects of classic psychedelics and MDMA - a systematic review and meta-analysis. Sci Rep 2024; 14:14782. [PMID: 38926480 PMCID: PMC11208433 DOI: 10.1038/s41598-024-65391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Classic psychedelics and MDMA have a colorful history of recreational use, and both have recently been re-evaluated as tools for the treatment of psychiatric disorders. Several studies have been carried out to assess potential long-term effects of a regular use on cognition, delivering distinct results for psychedelics and MDMA. However, to date knowledge is scarce on cognitive performance during acute effects of those substances. In this systematic review and meta-analysis, we investigate how cognitive functioning is affected by psychedelics and MDMA during the acute drug effects and the sub-acute ("afterglow") window. Our quantitative analyses suggest that acute cognitive performance is differentially affected by psychedelics when compared to MDMA: psychedelics impair attention and executive function, whereas MDMA primarily affects memory, leaving executive functions and attention unaffected. Our qualitative analyses reveal that executive functioning and creativity may be increased during a window of at least 24 h after the acute effects of psychedelics have subsided, whereas no such results have been observed for MDMA. Our findings may contribute to inform recommendations on harm reduction for recreational settings and to help fostering differential approaches for the use of psychedelics and MDMA within a therapeutic framework.
Collapse
Affiliation(s)
- Lukas A Basedow
- Department of Psychology, Clinical Psychology and Psychotherapy, Philipps-Universität Marburg, Gutenbergstraße 18, 35037, Marburg, Germany.
| | - Tomislav Majić
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry und Neurosciences, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicklas Jakob Hafiz
- Institute for Educational Quality Improvement (IQB), Humboldt-Universität zu Berlin, Berlin, Germany
| | - Engi A E Algharably
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas G Riemer
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
24
|
Le GH, Wong S, Badulescu S, Au H, Di Vincenzo JD, Gill H, Phan L, Rhee TG, Ho R, Teopiz KM, Kwan ATH, Rosenblat JD, Mansur RB, McIntyre RS. Spectral signatures of psilocybin, lysergic acid diethylamide (LSD) and ketamine in healthy volunteers and persons with major depressive disorder and treatment-resistant depression: A systematic review. J Affect Disord 2024; 355:342-354. [PMID: 38570038 DOI: 10.1016/j.jad.2024.03.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Electrophysiologic measures provide an opportunity to inform mechanistic models and possibly biomarker prediction of response. Serotonergic psychedelics (SPs) (i.e., psilocybin, lysergic acid diethylamide (LSD)) and ketamine represent new investigational and established treatments in mood disorders respectively. There is a need to better characterize the mechanism of action of these agents. METHODS We conducted a systematic review investigating the spectral signatures of psilocybin, LSD, and ketamine in persons with major depressive disorder (MDD), treatment-resistant depression (TRD), and healthy controls. RESULTS Ketamine and SPs are associated with increased theta power in persons with depression. Ketamine and SPs are also associated with decreased spectral power in the alpha, beta and delta bands in healthy controls and persons with depression. When administered with SPs, theta power was increased in persons with MDD when administered with SPs. Ketamine is associated with increased gamma band power in both healthy controls and persons with MDD. LIMITATIONS The studies included in our review were heterogeneous in their patient population, exposure, dosing of treatment and devices used to evaluate EEG and MEG signatures. Our results were extracted entirely from persons who were either healthy volunteers or persons with MDD or TRD. CONCLUSIONS Extant literature evaluating EEG and MEG spectral signatures indicate that ketamine and SPs have reproducible effects in keeping with disease models of network connectivity. Future research vistas should evaluate whether observed spectral signatures can guide further discovery of therapeutics within the psychedelic and dissociative classes of agents, and its prediction capability in persons treated for depression.
Collapse
Affiliation(s)
- Gia Han Le
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Sabrina Wong
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Sebastian Badulescu
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Hezekiah Au
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Joshua D Di Vincenzo
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| | - Hartej Gill
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Lee Phan
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, Farmington, CT, USA.
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Joshua D Rosenblat
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Rodrigo B Mansur
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Roger S McIntyre
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
25
|
Yang KH, Satybaldiyeva N, Allen MR, Ayers JW, Leas EC. State Cannabis and Psychedelic Legislation and Microdosing Interest in the US. JAMA HEALTH FORUM 2024; 5:e241653. [PMID: 38941086 PMCID: PMC11214114 DOI: 10.1001/jamahealthforum.2024.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Importance Despite growing interest in psychedelics, there is a lack of routine population-based surveillance of psychedelic microdosing (taking "subperceptual" doses of psychedelics, approximately one-twentieth to one-fifth of a full dose, over prolonged periods). Analyzing Google search queries can provide insights into public interest and help address this gap. Objective To analyze trends in public interest in microdosing in the US through Google search queries and assess their association with cannabis and psychedelic legislative reforms. Design, Setting, and Participants In this cross-sectional study, a dynamic event-time difference-in-difference time series analysis was used to assess the impact of cannabis and psychedelic legislation on microdosing search rates from January 1, 2010, to December 31, 2023. Google search rates mentioning "microdosing," "micro dosing," "microdose," or "micro dose" within the US and across US states were measured in aggregate. Exposure Enactment of (1) local psychedelic decriminalization laws; (2) legalization of psychedelic-assisted therapy and statewide psychedelic decriminalization; (3) statewide medical cannabis use laws; (4) statewide recreational cannabis use laws; and (5) all cannabis and psychedelic use restricted. Main Outcome and Measures Microdosing searches per 10 million Google queries were measured, examining annual and monthly changes in search rates across the US, including frequency and nature of related searches. Results Searches for microdosing in the US remained stable until 2014, then increased annually thereafter, with a cumulative increase by a factor of 13.4 from 2015 to 2023 (7.9 per 10 million to 105.6 per 10 million searches, respectively). In 2023, there were 3.0 million microdosing searches in the US. Analysis at the state level revealed that local psychedelic decriminalization laws were associated with an increase in search rates by 22.4 per 10 million (95% CI, 7.5-37.2), statewide psychedelic therapeutic legalization and decriminalization were associated with an increase in search rates by 28.9 per 10 million (95% CI, 16.5-41.2), statewide recreational cannabis laws were associated with an increase in search rates by 40.9 per 10 million (95% CI, 28.6-53.3), and statewide medical cannabis laws were associated with an increase in search rates by 11.5 per 10 million (95% CI, 6.0-16.9). From August through December 2023, 27.0% of the variation in monthly microdosing search rates between states was explained by differences in cannabis and psychedelics legal status. Conclusion and Relevance This cross-sectional study found that state-led legislative reforms on cannabis and psychedelics were associated with increased public interest in microdosing psychedelics.
Collapse
Affiliation(s)
- Kevin H. Yang
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla
| | - Nora Satybaldiyeva
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla
| | - Matthew R. Allen
- University of California San Diego School of Medicine, La Jolla
- Qualcomm Institute, University of California San Diego, La Jolla
| | - John W. Ayers
- Qualcomm Institute, University of California San Diego, La Jolla
- Altman Clinical Translational Research Institute, University of California San Diego, La Jolla
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla
| | - Eric C. Leas
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla
- Qualcomm Institute, University of California San Diego, La Jolla
| |
Collapse
|
26
|
Soliman PS, Curley DE, Capone C, Eaton E, Haass-Koffler CL. In the new era of psychedelic assisted therapy: A systematic review of study methodology in randomized controlled trials. Psychopharmacology (Berl) 2024; 241:1101-1110. [PMID: 38683460 PMCID: PMC11529604 DOI: 10.1007/s00213-024-06598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Recent years have seen a resurgence in randomized, placebo controlled trials (RCTs) utilizing non-classical psychedelics (e.g. 3,4-methyl enedioxy methamphetamine [MDMA]), and classical psychedelics (e.g. psilocybin, lysergic acid diethylamide [LSD], and N,N-dimethyltryptamine [DMT/ayahuasca]) in conjunction with assisted therapy (AT) for psychiatric disorders. A notable methodological challenge in psychedelic AT, however, is the complexity of blinding procedures. The lack of efficacious blinding can introduce considerable response bias, reduce internal validity, and compromise participant retention. This systematic review examines design and blinding techniques in RCTs utilizing psychedelics and placebo for the treatment of psychiatric disorders. The aim of this work is to identify factors that may inform future RTC design for conducting psychedelics research. We conducted a systematic review of PubMed, MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials (CENTRAL), Psycinfo, Embase, and Web of Science Core Collection to examine: (1) placebo selection, (2) study design, and (3) integrity of blinding measures. Sixteen publications were identified as meeting the criteria for a systematic review. Our findings suggest that traditional placebo administration is insufficient to control for expectancy confounds. Consequently, experimental methodology that limits personnel unblinding and the use of an active placebo are important considerations when designing prospective clinical studies involving psychedelics.
Collapse
Affiliation(s)
- Paul S Soliman
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Christy Capone
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Providence Veteran Administration Medical Center, Providence, RI, USA
| | - Erica Eaton
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Providence Veteran Administration Medical Center, Providence, RI, USA
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
27
|
Szigeti B, Weiss B, Rosas FE, Erritzoe D, Nutt D, Carhart-Harris R. Assessing expectancy and suggestibility in a trial of escitalopram v. psilocybin for depression. Psychol Med 2024; 54:1717-1724. [PMID: 38247730 DOI: 10.1017/s0033291723003653] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND To investigate the association between pre-trial expectancy, suggestibility, and response to treatment in a trial of escitalopram and investigational drug, COMP360, psilocybin, in the treatment of major depressive disorder (ClinicalTrials.gov registration: NCT03429075). METHODS We used data (n = 55) from our recent double-blind, parallel-group, randomized head-to-head comparison trial of escitalopram and investigational drug, COMP360, psilocybin. Mixed linear models were used to investigate the association between pre-treatment efficacy-related expectations, as well as baseline trait suggestibility and absorption, and therapeutic response to both escitalopram and COMP360 psilocybin. RESULTS Patients had significantly higher expectancy for psilocybin relative to escitalopram; however, expectancy for escitalopram was associated with improved therapeutic outcomes to escitalopram, expectancy for psilocybin was not predictive of response to psilocybin. Separately, we found that pre-treatment trait suggestibility was associated with therapeutic response in the psilocybin arm, but not in the escitalopram arm. CONCLUSIONS Overall, our results suggest that psychedelic therapy may be less vulnerable to expectancy biases than previously suspected. The relationship between baseline trait suggestibility and response to psilocybin therapy implies that highly suggestible individuals may be primed for response to this treatment.
Collapse
Affiliation(s)
- Balázs Szigeti
- Centre for Psychedelic Research, Imperial College London, UK
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, USA
| | - Brandon Weiss
- Centre for Psychedelic Research, Imperial College London, UK
| | - Fernando E Rosas
- Centre for Psychedelic Research, Imperial College London, UK
- Centre for Complexity Science, Imperial College London, UK
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK
| | - David Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - Robin Carhart-Harris
- Depts. of Neurology, Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, USA
| |
Collapse
|
28
|
Murray CH, Frohlich J, Haggarty CJ, Tare I, Lee R, de Wit H. Neural complexity is increased after low doses of LSD, but not moderate to high doses of oral THC or methamphetamine. Neuropsychopharmacology 2024; 49:1120-1128. [PMID: 38287172 PMCID: PMC11109226 DOI: 10.1038/s41386-024-01809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Neural complexity correlates with one's level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15 mg) and methamphetamine (MA; 10 and 20 mg). In three separate studies (N = 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power, and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral, or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of Los Angeles, California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076, Tübingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, California; 2811 Wilshire Blvd # 510, Santa Monica, CA, 90403, USA
| | - Connor J Haggarty
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Ilaria Tare
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Atiq MA, Baker MR, Voort JLV, Vargas MV, Choi DS. Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06599-5. [PMID: 38743110 DOI: 10.1007/s00213-024-06599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Recent research with classic psychedelics suggests significant therapeutic potential, particularly for neuropsychiatric disorders. A mediating influence behind symptom resolution is thought to be the personal insight - at times, bordering on the mystical - one acquires during the acute phase of a psychedelic session. Indeed, current clinical trials have found strong correlations between the acute subjective effects (ASE) under the influence of psychedelics and their enduring therapeutic properties. However, with potential barriers to widespread clinical implementation, including the healthcare resource-intensive nature of psychedelic sessions and the exclusion of certain at-risk patient groups, there is an active search to determine whether ASE elimination can be accompanied by the retention of persisting therapeutic benefits of these class of compounds. Recognizing the aberrant underlying neural circuitry that characterizes a range of neuropsychiatric disorders, and that classic psychedelics promote neuroplastic changes that may correct abnormal circuitry, investigators are rushing to design and discover compounds with psychoplastogenic, but not hallucinogenic (i.e., ASE), therapeutic potential. These efforts have paved the discovery of 'non-psychedelic/subjective psychedelics', or compounds that lack hallucinogenic activity but with therapeutic efficacy in preclinical models. This review aims to distill the current evidence - both clinical and preclinical - surrounding the question: can the ASE of classic psychedelics be dissociated from their sustained therapeutic properties? Several plausible clinical scenarios are then proposed to offer clarity on and potentially answer this question.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| | - Matthew R Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Maxemiliano V Vargas
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
30
|
Szigeti B, Heifets BD. Expectancy Effects in Psychedelic Trials. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:512-521. [PMID: 38387698 DOI: 10.1016/j.bpsc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Clinical trials of psychedelic compounds like psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltrptamine (DMT) have forced a reconsideration of how nondrug factors, such as participant expectations, are measured and controlled in mental health research. As doses of these profoundly psychoactive substances increase, so does the difficulty in concealing the treatment condition in the classic double-blind, placebo-controlled trial design. As widespread public enthusiasm for the promise of psychedelic therapy grows, so do questions regarding whether and how much trial results are biased by positive expectancy. First, we review the key concepts related to expectancy and its measurement. Then, we review expectancy effects that have been reported in both micro- and macrodose psychedelic trials from the modern era. Finally, we consider expectancy as a discrete physiological process that can be independent of, or even interact with, the drug effect. Expectancy effects can be harnessed to improve treatment outcomes and can also be actively managed in controlled studies to enhance the rigor and generalizability of future psychedelic trials.
Collapse
Affiliation(s)
- Balázs Szigeti
- Translational Psychedelic Research Program, University of California San Francisco, San Francisco, California; Centre for Psychedelic Research, Imperial College London, London, UK
| | - Boris D Heifets
- Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
31
|
Whelan TP, Daly E, Puts NA, Smith P, Allison C, Baron-Cohen S, Malievskaia E, Murphy DGM, McAlonan GM. The 'PSILAUT' protocol: an experimental medicine study of autistic differences in the function of brain serotonin targets of psilocybin. BMC Psychiatry 2024; 24:319. [PMID: 38658877 PMCID: PMC11044362 DOI: 10.1186/s12888-024-05768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION NCT05651126.
Collapse
Affiliation(s)
- Tobias P Whelan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- COMPASS Pathfinder Ltd, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
- NIHR-Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- NIHR-Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
32
|
Allen N, Jeremiah A, Murphy R, Sumner R, Forsyth A, Hoeh N, Menkes DB, Evans W, Muthukumaraswamy S, Sundram F, Roop P. LSD increases sleep duration the night after microdosing. Transl Psychiatry 2024; 14:191. [PMID: 38622150 PMCID: PMC11018829 DOI: 10.1038/s41398-024-02900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Microdosing psychedelic drugs at a level below the threshold to induce hallucinations is an increasingly common lifestyle practice. However, the effects of microdosing on sleep have not been previously reported. Here, we report results from a Phase 1 randomized controlled trial in which 80 healthy adult male volunteers received a 6-week course of either LSD (10 µg) or placebo with doses self-administered every third day. Participants used a commercially available sleep/activity tracker for the duration of the trial. Data from 3231 nights of sleep showed that on the night after microdosing, participants in the LSD group slept an extra 24.3 min per night (95% Confidence Interval 10.3-38.3 min) compared to placebo-with no reductions of sleep observed on the dosing day itself. There were no changes in the proportion of time spent in various sleep stages or in participant physical activity. These results show a clear modification of the physiological sleep requirements in healthy male volunteers who microdose LSD. The clear, clinically significant changes in objective measurements of sleep observed are difficult to explain as a placebo effect. Trial registration: Australian New Zealand Clinical Trials Registry: A randomized, double-blind, placebo-controlled trial of repeated microdoses of lysergic acid diethylamide (LSD) in healthy volunteers; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=381476 ; ACTRN12621000436875.
Collapse
Affiliation(s)
- Nathan Allen
- Faculty of Engineering, University of Auckland, Auckland, 1010, New Zealand.
| | - Aron Jeremiah
- Faculty of Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Robin Murphy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Rachael Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Nicholas Hoeh
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - David B Menkes
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - William Evans
- Mana Health, 7 Ruskin St, Parnell, Auckland, 1052, New Zealand
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Partha Roop
- Faculty of Engineering, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
33
|
Molla H, Lee R, Tare I, de Wit H. Greater subjective effects of a low dose of LSD in participants with depressed mood. Neuropsychopharmacology 2024; 49:774-781. [PMID: 38042914 PMCID: PMC10948752 DOI: 10.1038/s41386-023-01772-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Recent studies and anecdotal reports suggest that psychedelics can improve mood states, even at low doses. However, few placebo-controlled studies have examined the acute effects of low doses of LSD in individuals with psychiatric symptoms. In the current study, we examined the acute and sub-acute effect of a low dose of LSD (26 µg) on subjective effects and mood in volunteers with mild depressed mood. The study used a randomized, double-blind, crossover design to compare the effects of LSD in two groups of adults: participants who scored high (≥17; n = 20) or low (<17; n = 19) on the Beck Depression-II inventory (BDI) at screening. Participants received a single low dose of LSD (26 µg) and placebo during two 5-h laboratory sessions, separated by at least one week. Subjective, physiological, and mood measures were assessed at regular intervals throughout the sessions, and behavioral measures of creativity and emotion recognition were obtained at expected peak effect. BDI depression scores and mood ratings were assessed 48-h after each session. Relative to placebo, LSD (26 µg) produced expected, mild physiological and subjective effects on several measures in both groups. However, the high BDI group reported significantly greater drug effects on several indices of acute effects, including ratings of vigor, elation, and affectively positive scales of a measure of psychedelic effects (5D-ASC). The high BDI group also reported a greater decline in BDI depression scores 48-h after LSD, compared to placebo. These findings suggest that an acute low dose of LSD (26 µg) elicits more pronounced positive mood and stimulant-like effects, as well as stronger altered states of consciousness in individuals with depressive symptoms, compared to non-depressed individuals.
Collapse
Affiliation(s)
- Hanna Molla
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave MC3077, Chicago, IL, 60637, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave MC3077, Chicago, IL, 60637, USA
| | - Ilaria Tare
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave MC3077, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave MC3077, Chicago, IL, 60637, USA.
| |
Collapse
|
34
|
Rouaud A, Calder AE, Hasler G. Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins. J Psychopharmacol 2024; 38:217-224. [PMID: 38214279 PMCID: PMC10944580 DOI: 10.1177/02698811231225609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Though microdosing psychedelics has become increasingly popular, its long-term effects on cardiac health remain unknown. Microdosing most commonly involves ingesting sub-threshold doses of lysergic acid diethylamide (LSD), psilocybin, or other psychedelic drugs 2-4 times a week for at least several weeks, but potentially months or years. Concerningly, both LSD and psilocybin share structural similarities with medications which raise the risk of cardiac fibrosis and valvulopathy when taken regularly, including methysergide, pergolide, and fenfluramine. 3,4-Methylenedioxymethamphetamine, which is also reportedly used for microdosing, is likewise associated with heart valve damage when taken chronically. In this review, we evaluate the evidence that microdosing LSD, psilocybin, and other psychedelics for several months or more could raise the risk of cardiac fibrosis. We discuss the relationship between drug-induced cardiac fibrosis and the 5-HT2B receptor, and we make recommendations for evaluating the safety of microdosing psychedelics in future studies.
Collapse
Affiliation(s)
- Antonin Rouaud
- University of Fribourg Center for Psychiatric Research, Fribourg, Switzerland
| | - Abigail E. Calder
- University of Fribourg Center for Psychiatric Research, Fribourg, Switzerland
| | - Gregor Hasler
- University of Fribourg Center for Psychiatric Research, Fribourg, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
| |
Collapse
|
35
|
Hernandez-Leon A, Escamilla-Orozco RI, Tabal-Robles AR, Martínez-Vargas D, Romero-Bautista L, Escamilla-Soto G, González-Romero OS, Torres-Valencia M, González-Trujano ME. Antidepressant- and anxiolytic-like activities and acute toxicity evaluation of the Psilocybe cubensis mushroom in experimental models in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117415. [PMID: 37977425 DOI: 10.1016/j.jep.2023.117415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Central nervous system (CNS) diseases can be diverse and usually present with comorbidity, as in the case of depression and anxiety. Despite alternatives like Psilocybe mushrooms for mental health there is no basic research to evidence their CNS benefits. AIM OF THE STUDY To evaluate the anxiolytic- and antidepressant-like effects, as well as the acute toxicity of P. cubensis mushroom. MATERIAL AND METHODS First, the acute toxicity (LD50) of P. cubensis (2000 mg/kg) was determined after the esophageal (p.o.) and intraperitoneal (i.p.) route of administration. The rota-rod test and electroencephalogram (EEG) were included to assess CNS toxicity in free moving mice. Anxiolytic (ambulatory or exploratory and rearing behaviors) and antidepressant behavioral responses were assayed in the open-field, plus-maze, and forced swimming test, respectively, after administration of 1000 mg/kg, p.o., of the whole P. cubensis mushroom or the polar aqueous (AQ) or methanolic (MeOH) extractions (1, 10, and/or 100 mg/kg, i.p.) in comparison to the reference drugs buspirone (4 mg/kg, i.p.), fluoxetine and/or imipramine (10 mg/kg, s.c. and i.p., respectively). A chemical analysis of the AQ and MeOH extractions was performed to detect psilocybin and/or psilocin by using UHPLC. RESULTS Neurotoxic effects of P. cubensis mushroom administered at high doses were absent in mice assessed in the rota-rod test or for EEG activity. A LD50 > 2000 mg/kg was calculated by p.o. or i.p. administration. While significant and/or dose-response antidepressant-like effects were produced with the whole P. cubensis mushroom, p.o., and after parenteral administration of the AQ or MeOH extractions resembling the effects of the reference drugs. Behavioral responses were associated with an anxiolytic-like effect in the open-field as corroborated in the plus-maze tests. The presence of psilocybin and psilocin was mainly characterized in the AQ extraction. CONCLUSION Our results provide preclinical evidence of the anxiolytic- and antidepressant-like effects of the P. cubensis mushroom without producing neurotoxicity after enteral or parenteral administration, where psilocybin and psilocin were identified mainly after AQ extraction. This study reinforces the benefits of the P. cubensis mushroom in mental health and therapy for anxiety and depression.
Collapse
Affiliation(s)
- Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Colonia Huipulco, Alcaldía Tlalpan, C.P. 14370, Ciudad de México, Mexico.
| | - Raúl Iván Escamilla-Orozco
- Servicios Clínicos, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Colonia Huipulco, Alcaldía Tlalpan, C.P. 14370, Ciudad de México, Mexico.
| | - Aylín R Tabal-Robles
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico.
| | - David Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco 101, Colonia Huipulco, Alcaldía Tlalpan, C.P. 14370, Ciudad de México, Mexico.
| | - Leticia Romero-Bautista
- Laboratorio de Micología Integral, Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico.
| | - Gerson Escamilla-Soto
- Universidad Virtual del Estado de Michoacán, Defensor de Chapultepec 1175, Reserva de Guadalupe, Morelia, Michoacán, C.P. 58147, Mexico.
| | - Osiris S González-Romero
- University of Saskatchewan, Department of History, Research Group "History of Medicine", 5A5, 9 Campus Dr. #619, Saskatoon, SK, S7N 4L3, Canada.
| | - Martín Torres-Valencia
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Colonia Huipulco, Alcaldía Tlalpan, C.P. 14370, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Murphy RJ, Godfrey K, Shaw AD, Muthukumaraswamy S, Sumner RL. Modulation of long-term potentiation following microdoses of LSD captured by thalamo-cortical modelling in a randomised, controlled trial. BMC Neurosci 2024; 25:7. [PMID: 38317077 PMCID: PMC10845757 DOI: 10.1186/s12868-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Microdosing psychedelics is a phenomenon with claimed cognitive benefits that are relatively untested clinically. Pre-clinically, psychedelics have demonstrated enhancing effects on neuroplasticity, which cannot be measured directly in humans, but may be indexed by non-invasive electroencephalography (EEG) paradigms. This study used a visual long-term potentiation (LTP) EEG paradigm to test the effects of microdosed lysergic acid diethylamide (LSD) on neural plasticity, both acutely while on the drug and cumulatively after microdosing every third day for six weeks. Healthy adult males (n = 80) completed the visual LTP paradigm at baseline, 2.5 h following a dose of 10 µg of LSD or inactive placebo, and 6 weeks later after taking 14 repeated microdoses. Visually induced LTP was used as indirect index of neural plasticity. Surface level event-related potential (ERPs) based analyses are presented alongside dynamic causal modelling of the source localised data using a generative thalamocortical model (TCM) of visual cortex to elucidate underlying synaptic circuitry. RESULTS Event-related potential (ERP) analyses of N1b and P2 components did not show evidence of changes in visually induced LTP by LSD either acutely or after 6 weeks of regular dosing. However modelling the complete timecourse of the ERP with the TCM demonstrated changes in laminar connectivity in primary visual cortex. This primarily included changes to self-gain and inhibitory input parameters acutely. Layer 2/3 to layer 5 excitatory connectivity was also different between LSD and placebo groups. After regular dosing only excitatory input from layer 2/3 into layer 5 and inhibitory input into layer 4 were different between groups. CONCLUSIONS Without modulation of the ERPs it is difficult to relate the findings to other studies visually inducing LTP. It also indicates the classic peak analysis may not be sensitive enough to demonstrate evidence for changes in LTP plasticity in humans at such low doses. The TCM provides a more sensitive approach to assessing changes to plasticity as differences in plasticity mediated laminar connectivity were found between the LSD and placebo groups. TRIAL REGISTRATION ANZCTR registration number ACTRN12621000436875; Registered 16/04/2021 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=381476 .
Collapse
Affiliation(s)
- Robin J Murphy
- School of Pharmacy, University of Auckland, Auckland, New Zealand.
| | - Kate Godfrey
- Centre for Psychedelic Research, Department of Psychiatry, Imperial College London, London, UK
| | | | | | - Rachael L Sumner
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
37
|
Foster K, Morrison I, Tyler M, Delgoda R. The effect of casing and gypsum on the yield and psychoactive tryptamine content of Psilocybe cubensis (Earle) Singer. Fungal Biol 2024; 128:1590-1595. [PMID: 38341264 DOI: 10.1016/j.funbio.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
Psychedelic fungi have experienced a surge in interest in recent years. Most notably, the fungal secondary metabolite psilocybin has shown tremendous promise in the treatment of various psychiatric disorders. The mushroom species that produce this molecule are poorly understood. Here we sought to examine for the first time, the response of a psilocybin-producing species Psilocybe cubensis to casing (peat moss and vermiculite) and supplementation with gypsum (calcium sulfate dihydrate), two common practices in commercial mushroom cultivation. Mycelial samples of genetically authenticated P. cubensis were used to inoculate popcorn grain bags. The fully colonized bags of popcorn grain (0.15 kg) were transferred to bins of 0.85 kg pasteurized horse manure, with or without 1 cm thick layer of casing and/or 5 % gypsum. Our results indicate that the use of a casing layer significantly increases the biological efficiency (161.5 %), by approximately four fold, in comparison to control (40.5 %), albeit with a slight delay (∼2 days) for obtaining fruiting bodies and a somewhat reduced total tryptamine content (0.85 %) as gauged by High Performance Liquid Chromatography measurements. Supplementation with both casing and gypsum, however, appears to promote maximal yields (896.6 g/kg of dried substrate), with a biological efficiency of 89.6 %, while also maintaining high total tryptamine expressions (0.95 %). These findings, revealing methods for maximizing yield of harvest and expressions of psychoactive tryptamines, may prove useful for both home growers and commercial cultivators of this species, and ultimately support the growth of a robust industry with high quality natural products.
Collapse
Affiliation(s)
- Kimberley Foster
- Natural Products Institute, 6 Belmopan Close, University of the West Indies, Mona, Kingston 7, Jamaica; Future Wellness (formerly Field Trip Natural Products), 2 St. George's Close, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Isaac Morrison
- Natural Products Institute, 6 Belmopan Close, University of the West Indies, Mona, Kingston 7, Jamaica; Future Wellness (formerly Field Trip Natural Products), 2 St. George's Close, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Marshall Tyler
- Future Wellness (formerly Field Trip Natural Products), 2 St. George's Close, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Rupika Delgoda
- Natural Products Institute, 6 Belmopan Close, University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
38
|
Wsół A. Cardiovascular safety of psychedelic medicine: current status and future directions. Pharmacol Rep 2023; 75:1362-1380. [PMID: 37874530 PMCID: PMC10661823 DOI: 10.1007/s43440-023-00539-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Psychedelics are powerful psychoactive substances that alter perception and mood processes. Their effectiveness in the treatment of psychiatric diseases was known before their prohibition. An increasing number of recent studies, due to the indisputable resurgence of serotonergic hallucinogens, have shown their efficacy in alleviating depression, anxiety, substance abuse therapies, and existential distress treatment in patients facing life-threatening illness. Psychedelics are generally considered to be physiologically safe with low toxicity and low addictive potential. However, their agonism at serotonergic receptors should be considered in the context of possible serotonin-related cardiotoxicity (5-HT2A/2B and 5-HT4 receptors), influence on platelet aggregation (5-HT2A receptor), and their proarrhythmic potential. The use of psychedelics has also been associated with significant sympathomimetic effects in both experimental and clinical studies. Therefore, the present review aims to provide a critical discussion of the cardiovascular safety of psilocybin, d-lysergic acid diethylamide (LSD), N,N-dimethyltryptamine, ayahuasca, and mescaline, based on the results of experimental research and clinical trials in humans. Experimental studies provide inconsistent information on the potential cardiovascular effects and toxicity of psychedelics. Data from clinical trials point to the relative cardiovascular safety of psychedelic-assisted therapies in the population of "healthy" volunteers. However, there is insufficient evidence from therapies carried out with microdoses of psychedelics, and there is still a lack of data on the safety of psychedelics in the population of patients with cardiovascular disease. Therefore, the exact determination of the cardiovascular safety of psychedelic therapies (especially long-term therapies) requires further research.
Collapse
Affiliation(s)
- Agnieszka Wsół
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
39
|
Pepe M, Hesami M, de la Cerda KA, Perreault ML, Hsiang T, Jones AMP. A journey with psychedelic mushrooms: From historical relevance to biology, cultivation, medicinal uses, biotechnology, and beyond. Biotechnol Adv 2023; 69:108247. [PMID: 37659744 DOI: 10.1016/j.biotechadv.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.
Collapse
Affiliation(s)
- Marco Pepe
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Karla A de la Cerda
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Melissa L Perreault
- Departments of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | | |
Collapse
|
40
|
Rahbarnia A, Li Z, Fletcher PJ. Effects of psilocybin, the 5-HT 2A receptor agonist TCB-2, and the 5-HT 2A receptor antagonist M100907 on visual attention in male mice in the continuous performance test. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06474-9. [PMID: 37855864 DOI: 10.1007/s00213-023-06474-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
RATIONALE Neuropsychiatric disorders such as depression are characterized in part by attention deficits. Attention is modulated by the serotonin (5-HT) neurotransmitter system. The 5-HT2A agonist and hallucinogen psilocybin (PSI) is a promising treatment for disorders characterized by attention changes. However, few studies have investigated PSI's direct effect on attention. OBJECTIVE Using the rodent continuous performance task (CPT), we assessed PSI's effect on attention. We also evaluated the impact of 5-HT2A receptor agonist TCB-2 and antagonist M100907 for comparative purposes. METHODS In the CPT, mice learned to distinguish visual targets from non-targets for milkshake reward. Performance was then tested following injections of PSI (0.3, 1, and 3 mg/kg), TCB-2 (0.3, 1, and 3 mg/kg), or M100907 (0.1, 0.3, and 1 mg/kg). Subsequently, drug effects were then evaluated using a more difficult CPT with variable stimulus durations. Mice were then tested on the CPT following repeated PSI injections. Drug effects on locomotor activity were also measured. RESULTS In the CPT, all three drugs reduced hit and false alarm rate and induced conservative responding. PSI also reduced target discrimination. These effects were seen primarily at doses that also significantly reduced locomotor activity. No drug effects were seen on the more difficult CPT or following repeated PSI injections. CONCLUSIONS Psilocybin, TCB-2, and M100907 impaired performance of the CPT. However, this may be in part due to drug-induced locomotor changes. The results provide little support for the idea that psilocybin alters visual attention, or that 5-HT2A receptors modulate this process.
Collapse
Affiliation(s)
- Arya Rahbarnia
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Zhaoxia Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Garel N, Drury J, Thibault Lévesque J, Goyette N, Lehmann A, Looper K, Erritzoe D, Dames S, Turecki G, Rej S, Richard-Devantoy S, Greenway KT. The Montreal model: an integrative biomedical-psychedelic approach to ketamine for severe treatment-resistant depression. Front Psychiatry 2023; 14:1268832. [PMID: 37795512 PMCID: PMC10546328 DOI: 10.3389/fpsyt.2023.1268832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Background Subanesthetic ketamine has accumulated meta-analytic evidence for rapid antidepressant effects in treatment-resistant depression (TRD), resulting in both excitement and debate. Many unanswered questions surround ketamine's mechanisms of action and its integration into real-world psychiatric care, resulting in diverse utilizations that variously resemble electroconvulsive therapy, conventional antidepressants, or serotonergic psychedelics. There is thus an unmet need for clinical approaches to ketamine that are tailored to its unique therapeutic properties. Methods This article presents the Montreal model, a comprehensive biopsychosocial approach to ketamine for severe TRD refined over 6 years in public healthcare settings. To contextualize its development, we review the evidence for ketamine as a biomedical and as a psychedelic treatment of depression, emphasizing each perspectives' strengths, weaknesses, and distinct methods of utilization. We then describe the key clinical experiences and research findings that shaped the model's various components, which are presented in detail. Results The Montreal model, as implemented in a recent randomized clinical trial, aims to synergistically pair ketamine infusions with conventional and psychedelic biopsychosocial care. Ketamine is broadly conceptualized as a brief intervention that can produce windows of opportunity for enhanced psychiatric care, as well as powerful occasions for psychological growth. The model combines structured psychiatric care and concomitant psychotherapy with six ketamine infusions, administered with psychedelic-inspired nonpharmacological adjuncts including rolling preparative and integrative psychological support. Discussion Our integrative model aims to bridge the biomedical-psychedelic divide to offer a feasible, flexible, and standardized approach to ketamine for TRD. Our learnings from developing and implementing this psychedelic-inspired model for severe, real-world patients in two academic hospitals may offer valuable insights for the ongoing roll-out of a range of psychedelic therapies. Further research is needed to assess the Montreal model's effectiveness and hypothesized psychological mechanisms.
Collapse
Affiliation(s)
- Nicolas Garel
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Jessica Drury
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | - Nathalie Goyette
- McGill Group for Suicide Studies, Douglas Mental Health Research Institute, Montreal, QC, Canada
| | - Alexandre Lehmann
- International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
- Department of Otolaryngology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Karl Looper
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - David Erritzoe
- Division of Psychiatry, Department of Brain Sciences, Centres for Neuropsychopharmacology and Psychedelic Research, Imperial College London, London, United Kingdom
| | - Shannon Dames
- Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health Research Institute, Montreal, QC, Canada
| | - Soham Rej
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Geri-PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada
| | - Stephane Richard-Devantoy
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health Research Institute, Montreal, QC, Canada
| | - Kyle T. Greenway
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Psychiatry, Department of Brain Sciences, Centres for Neuropsychopharmacology and Psychedelic Research, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R. The risk of chronic psychedelic and MDMA microdosing for valvular heart disease. J Psychopharmacol 2023; 37:876-890. [PMID: 37572027 DOI: 10.1177/02698811231190865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Psychedelic microdosing is the practice of taking very low doses of psychedelic substances, typically over a longer period of time. The long-term safety of chronic microdosing is relatively uncharacterized, but valvular heart disease (VHD) has been proposed as a potential risk due to activation of the serotonin 5-HT2B receptor. However, this risk has not yet been comprehensively assessed. This analysis searched for all relevant in vitro, animal, and clinical studies related to the VHD risk of lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT), and the non-psychedelic 3,4-methylenedioxymethamphetamine (MDMA). All five compounds and some metabolites could bind to the 5-HT2B receptor with potency equal to or greater than that of the 5-HT2A receptor, the primary target of psychedelics. All compounds were partial agonists at the 5-HT2B receptor with the exception of mescaline, which could not be adequately assessed due to low potency. Safety margins relative to the maximum plasma concentrations from typical microdoses were greater than known valvulopathogens, but not without potential risk. No animal or clinical studies appropriately designed to evaluate VHD risk were found for the four psychedelics. However, there is some clinical evidence that chronic ingestion of full doses of MDMA is associated with VHD. We conclude that VHD is a potential risk with chronic psychedelic microdosing, but further studies are necessary to better define this risk.
Collapse
Affiliation(s)
| | - Daniel Mantuani
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| | - Liron van Heerden
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| | - Alex Holstein
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| | - Linda E Klumpers
- Verdient Science LLC, Englewood, CO, USA
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard Knowles
- Delos Psyche Research Group, Mountain View, CA, USA
- Delos Therapeutics, Mountain View, CA, USA
| |
Collapse
|
43
|
Kiilerich KF, Lorenz J, Scharff MB, Speth N, Brandt TG, Czurylo J, Xiong M, Jessen NS, Casado-Sainz A, Shalgunov V, Kjaerby C, Satała G, Bojarski AJ, Jensen AA, Herth MM, Cumming P, Overgaard A, Palner M. Repeated low doses of psilocybin increase resilience to stress, lower compulsive actions, and strengthen cortical connections to the paraventricular thalamic nucleus in rats. Mol Psychiatry 2023; 28:3829-3841. [PMID: 37783788 DOI: 10.1038/s41380-023-02280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Psilocybin (a classic serotonergic psychedelic drug) has received appraisal for use in psychedelic-assisted therapy of several psychiatric disorders. A less explored topic concerns the use of repeated low doses of psychedelics, at a dose that is well below the psychedelic dose used in psychedelic-assisted therapy and often referred to as microdosing. Psilocybin microdose users frequently report increases in mental health, yet such reports are often highly biased and vulnerable to placebo effects. Here we establish and validate a psilocybin microdose-like regimen in rats with repeated low doses of psilocybin administration at a dose derived from occupancy at rat brain 5-HT2A receptors in vivo. The rats tolerated the repeated low doses of psilocybin well and did not manifest signs of anhedonia, anxiety, or altered locomotor activity. There were no deficits in pre-pulse inhibition of the startle reflex, nor did the treatment downregulate or desensitize the 5-HT2A receptors. However, the repeated low doses of psilocybin imparted resilience against the stress of multiple subcutaneous injections, and reduced the frequency of self-grooming, a proxy for human compulsive actions, while also increasing 5-HT7 receptor expression and synaptic density in the paraventricular nucleus of the thalamus. These results establish a well-validated regimen for further experiments probing the effects of repeated low doses of psilocybin. Results further substantiate anecdotal reports of the benefits of psilocybin microdosing as a therapeutic intervention, while pointing to a possible physiological mechanism.
Collapse
Affiliation(s)
- Kat F Kiilerich
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joe Lorenz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Malthe B Scharff
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias G Brandt
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Julia Czurylo
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mengfei Xiong
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Naja S Jessen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Agata Casado-Sainz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Agnete Overgaard
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
44
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
45
|
Szigeti B, Nutt D, Carhart-Harris R, Erritzoe D. The difference between 'placebo group' and 'placebo control': a case study in psychedelic microdosing. Sci Rep 2023; 13:12107. [PMID: 37495637 PMCID: PMC10371989 DOI: 10.1038/s41598-023-34938-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/10/2023] [Indexed: 07/28/2023] Open
Abstract
In medical trials, 'blinding' ensures the equal distribution of expectancy effects between treatment arms in theory; however, blinding often fails in practice. We use computational modelling to show how weak blinding, combined with positive treatment expectancy, can lead to an uneven distribution of expectancy effects. We call this 'activated expectancy bias' (AEB) and show that AEB can inflate estimates of treatment effects and create false positive findings. To counteract AEB, we introduce the Correct Guess Rate Curve (CGRC), a statistical tool that can estimate the outcome of a perfectly blinded trial based on data from an imperfectly blinded trial. To demonstrate the impact of AEB and the utility of the CGRC on empirical data, we re-analyzed the 'self-blinding psychedelic microdose trial' dataset. Results suggest that observed placebo-microdose differences are susceptible to AEB and are at risk of being false positive findings, hence, we argue that microdosing can be understood as active placebo. These results highlight the important difference between 'trials with a placebo-control group', i.e., when a placebo control group is formally present, and 'placebo-controlled trials', where patients are genuinely blind. We also present a new blinding integrity assessment tool that is compatible with CGRC and recommend its adoption.
Collapse
Affiliation(s)
- Balázs Szigeti
- Centre for Psychedelic Research, Imperial College London, London, UK.
| | - David Nutt
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Robin Carhart-Harris
- Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - David Erritzoe
- Centre for Psychedelic Research, Imperial College London, London, UK
| |
Collapse
|
46
|
Bonnieux JN, VanderZwaag B, Premji Z, Garcia-Romeu A, Garcia-Barrera MA. Psilocybin's effects on cognition and creativity: A scoping review. J Psychopharmacol 2023; 37:635-648. [PMID: 37395359 PMCID: PMC10350723 DOI: 10.1177/02698811231179801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Research on psilocybin has become increasingly popular during the current psychedelic renaissance, which began in the early 1990s. Psilocybin's effects on mental health are promising and there are ongoing efforts to investigate its clinical implementation and its effects on cognition. AIMS The purpose of this study is to report trends in publications, methods, and findings from research examining the effects of psilocybin on cognition and creativity in adults. METHODS We conducted an Open Science Framework preregistered scoping review, guided by the JBI Manual for Evidence Synthesis, on literature pertaining to psilocybin's effects on cognition and creativity. RESULTS/OUTCOMES In the 42 included studies, psilocybin was primarily administered orally (83%) in a bodyweight-adjusted manner (74%) to healthy participants (90%). Of the few studies that explicitly reported safety outcomes (26%), only one reported serious adverse reactions. During the acute phase post-intake (i.e., minutes to hours), macrodoses tended to impair cognitive performance and creativity, whereas microdoses tended toward creative enhancement. The few macrodosing studies that included post-acute measures (i.e., 1-85 days) reported primarily null but some positive effects. CONCLUSIONS/INTERPRETATION This scoping review identified a time-based variation of psilocybin macrodosing effects on cognition and creativity, in which impairment may be observed early post-intake but withdraw over time, and some positive effects may emerge afterward. These findings are limited by methodological concerns and inadequate assessment of long-term effects. We therefore recommend that future psilocybin research be conducted according to existing guidelines and include well-validated measures of cognition and creativity at multiple timepoints.
Collapse
Affiliation(s)
- Justin N Bonnieux
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Baeleigh VanderZwaag
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Institute on Aging & Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Zahra Premji
- University of Victoria Libraries, University of Victoria, Victoria, BC, Canada
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mauricio A Garcia-Barrera
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Institute on Aging & Lifelong Health, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
47
|
Witkin JM, Golani LK, Smith JL. Clinical pharmacological innovation in the treatment of depression. Expert Rev Clin Pharmacol 2023; 16:349-362. [PMID: 37000975 DOI: 10.1080/17512433.2023.2198703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Deficiencies in standard of care antidepressants are driving novel drug discovery. A new age of antidepressant medications has emerged with the introduction of rapid-acting antidepressants with efficacy in treatment-resistant patients. AREAS COVERED The newly approved medicines and those in clinical development for major depressive disorder (MDD) are documented in this scoping review of newly approved and emerging antidepressants. Compounds are evaluated for clinical efficacy, tolerability, and safety and compared to those of standard of care medicines. EXPERT OPINION A new age of antidepressant discovery relies heavily on glutamatergic mechanisms. New medicines based upon the model of ketamine have been delivered and are in clinical development. Rapid onset and the ability to impact treatment-resistant depression, raises the question of the best first-line medicines for patients. Drugs with improvements in tolerability are being investigated (e.g. mGlu2/3 receptor antagonists, AMPA receptor potentiators, and novel NMDA receptor modulators). Multiple companies are working toward the identification of novel psychedelic drugs where the requirement for psychedelic activity is not fully known. Gaps still exist - methods for matching patients with specific medicines are needed, and medicines for the prevention of MDD and its disease progression need research attention.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN USA
| | - Lalit K Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| |
Collapse
|
48
|
Pedicini M, Cordner ZA. Utility of preclinical models in the study of psilocybin - A comprehensive review. Neurosci Biobehav Rev 2023; 146:105046. [PMID: 36646257 DOI: 10.1016/j.neubiorev.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Interest in the therapeutic potential of psilocybin across a broad range of neuropsychiatric disorders is rapidly expanding. Despite promising clinical data and tremendous public enthusiasm, complimentary basic and translational studies - which are critical for advancing our understanding of psilocybin's biological effects and promoting innovation - have been relatively few. As with all work involving the study of complex neuropsychopharmacology, the search for deeper understanding of biological mechanisms, and the need for nuanced behavioral analyses in the context of both normal and diseased states, the roles for preclinical models are clear. A systematic search of the literature identified 57 articles involving the study of psilocybin in preclinical rodent models. A comprehensive review and thematic analysis identified 4 broad areas of investigation - pharmacology, toxicity, effects on disease models, and molecular mechanisms - with pharmacology studies accounting for the majority. Though these papers represent a still remarkably small body of literature, several important conclusions can already be drawn, and several areas of high priority for future work can be identified.
Collapse
Affiliation(s)
- Megan Pedicini
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD 21287, USA.
| | - Zachary A Cordner
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD 21287, USA.
| |
Collapse
|
49
|
Kinderlehrer DA. The Effectiveness of Microdosed Psilocybin in the Treatment of Neuropsychiatric Lyme Disease: A Case Study. Int Med Case Rep J 2023; 16:109-115. [PMID: 36896410 PMCID: PMC9990519 DOI: 10.2147/imcrj.s395342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Lyme disease can result in severe neuropsychiatric symptoms that may be resistant to treatment. The pathogenesis of neuropsychiatric Lyme disease is associated with autoimmune induced neuroinflammation. This case report describes an immunocompetent male with serologically positive neuropsychiatric Lyme disease who did not tolerate antimicrobial or psychotropic medications and whose symptoms remitted when he began psilocybin in microdosed (sub-hallucinogenic) amounts. A literature review of its therapeutic benefits reveals that psilocybin is both serotonergic and anti-inflammatory and therefore may offer significant therapeutic benefits to patients with mental illness secondary to autoimmune inflammation. The role of microdosed psilocybin in the treatment of neuropsychiatric Lyme disease and autoimmune encephalopathies warrants further study.
Collapse
|
50
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|