1
|
Kiltschewskij DJ, Reay WR, Cairns MJ. Schizophrenia is associated with altered DNA methylation variance. Mol Psychiatry 2025; 30:1383-1395. [PMID: 39271751 PMCID: PMC11919772 DOI: 10.1038/s41380-024-02749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Varying combinations of genetic and environmental risk factors are thought to underpin phenotypic heterogeneity between individuals in psychiatric conditions such as schizophrenia. While epigenome-wide association studies in schizophrenia have identified extensive alteration of mean DNA methylation levels, less is known about the location and impact of DNA methylation variance, which could contribute to phenotypic and treatment response heterogeneity. To explore this question, we conducted the largest meta-analysis of blood DNA methylation variance in schizophrenia to date, leveraging three cohorts comprising 1036 individuals with schizophrenia and 954 non-psychiatric controls. Surprisingly, only a small proportion (0.1%) of the 213 variably methylated positions (VMPs) associated with schizophrenia (Benjamini-Hochberg FDR < 0.05) were shared with differentially methylated positions (DMPs; sites with mean changes between cases and controls). These blood-derived VMPs were found to be overrepresented in genes previously associated with schizophrenia and amongst brain-enriched genes, with evidence of concordant changes at VMPs in the cerebellum, hippocampus, prefrontal cortex, or striatum. Epigenetic covariance was also observed with respect to clinically significant metrics including age of onset, cognitive deficits, and symptom severity. We also uncovered a significant VMP in individuals with first-episode psychosis (n = 644) from additional cohorts and a non-psychiatric comparison group (n = 633). Collectively, these findings suggest schizophrenia is associated with significant changes in DNA methylation variance, which may contribute to individual-to-individual heterogeneity.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
2
|
Yin KF, Gu XJ, Su WM, Chen T, Long J, Gong L, Ying ZY, Dou M, Jiang Z, Duan QQ, Cao B, Gao X, Chi LY, Chen YP. Causal association and mediating effect of blood biochemical metabolic traits and brain image-derived endophenotypes on Alzheimer's disease. Heliyon 2024; 10:e27422. [PMID: 38644883 PMCID: PMC11033073 DOI: 10.1016/j.heliyon.2024.e27422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
Background Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.
Collapse
Affiliation(s)
- Kang-Fu Yin
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Chen
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiang Long
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Gong
- Rare Diseases Center, Outpatient Department, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhi-Ye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Meng Dou
- Chengdu institute of computer application, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xia Gao
- Department of Geriatrics, Dazhou central hospital, Dazhou, 635000, Sichuan, China
| | - Li-Yi Chi
- Department of Neurology, First Affiliated Hospital of Air Force Military Medical University, Xi'an, 710072, Shanxi, China
| | - Yong-Ping Chen
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
3
|
Kiltschewskij DJ, Reay WR, Geaghan MP, Atkins JR, Xavier A, Zhang X, Watkeys OJ, Carr VJ, Scott RJ, Green MJ, Cairns MJ. Alteration of DNA Methylation and Epigenetic Scores Associated With Features of Schizophrenia and Common Variant Genetic Risk. Biol Psychiatry 2024; 95:647-661. [PMID: 37480976 DOI: 10.1016/j.biopsych.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Unpacking molecular perturbations associated with features of schizophrenia is a critical step toward understanding phenotypic heterogeneity in this disorder. Recent epigenome-wide association studies have uncovered pervasive dysregulation of DNA methylation in schizophrenia; however, clinical features of the disorder that account for a large proportion of phenotypic variability are relatively underexplored. METHODS We comprehensively analyzed patterns of DNA methylation in a cohort of 381 individuals with schizophrenia from the deeply phenotyped Australian Schizophrenia Research Bank. Epigenetic changes were investigated in association with cognitive status, age of onset, treatment resistance, Global Assessment of Functioning scores, and common variant polygenic risk scores for schizophrenia. We subsequently explored alterations within genes previously associated with psychiatric illness, phenome-wide epigenetic covariance, and epigenetic scores. RESULTS Epigenome-wide association studies of the 5 primary traits identified 662 suggestively significant (p < 6.72 × 10-5) differentially methylated probes, with a further 432 revealed after controlling for schizophrenia polygenic risk on the remaining 4 traits. Interestingly, we uncovered many probes within genes associated with a variety of psychiatric conditions as well as significant epigenetic covariance with phenotypes and exposures including acute myocardial infarction, C-reactive protein, and lung cancer. Epigenetic scores for treatment-resistant schizophrenia strikingly exhibited association with clozapine administration, while epigenetic proxies of plasma protein expression, such as CCL17, MMP10, and PRG2, were associated with several features of schizophrenia. CONCLUSIONS Our findings collectively provide novel evidence suggesting that several features of schizophrenia are associated with alteration of DNA methylation, which may contribute to interindividual phenotypic variation in affected individuals.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Michael P Geaghan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Xiajie Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Oliver J Watkeys
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Melissa J Green
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| |
Collapse
|
4
|
Hatzimanolis A, Tosato S, Ruggeri M, Cristofalo D, Mantonakis L, Xenaki LA, Dimitrakopoulos S, Selakovic M, Foteli S, Kosteletos I, Vlachos I, Soldatos RF, Nianiakas N, Ralli I, Kollias K, Ntigrintaki AA, Stefanatou P, Murray RM, Vassos E, Stefanis NC. Diminished social motivation in early psychosis is associated with polygenic liability for low vitamin D. Transl Psychiatry 2024; 14:36. [PMID: 38238289 PMCID: PMC10796745 DOI: 10.1038/s41398-024-02750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Insufficiency of vitamin D levels often occur in individuals with schizophrenia and first-episode psychosis (FEP). However, it is unknown whether this represents a biological predisposition, or it is essentially driven by illness-related alterations in lifestyle habits. Lower vitamin D has also been associated with adverse neurodevelopmental outcomes and predominant negative psychotic symptoms. This study aimed to investigate the contribution of polygenic risk score for circulating 25-hydroxyvitamin D concentration (PRS-vitD) to symptom presentation among individuals with FEP enrolled in the Athens First-Episode Psychosis Research Study (AthensFEP n = 205) and the Psychosis Incident Cohort Outcome Study (PICOS n = 123). The severity of psychopathology was evaluated using the Positive and Negative Syndrome Scale at baseline and follow-up assessments (AthensFEP: 4-weeks follow-up, PICOS: 1-year follow-up). Premorbid intelligence and adjustment domains were also examined as proxy measures of neurodevelopmental deviations. An inverse association between PRS-vitD and severity of negative symptoms, in particular lack of social motivation, was detected in the AthensFEP at baseline (adjusted R2 = 0.04, p < 0.001) and follow-up (adjusted R2 = 0.03, p < 0.01). The above observation was independently validated in PICOS at follow-up (adjusted R2 = 0.06, p < 0.01). No evidence emerged for a relationship between PRS-vitD and premorbid measures of intelligence and adjustment, likely not supporting an impact of lower PRS-vitD on developmental trajectories related to psychotic illness. These findings suggest that polygenic vulnerability to reduced vitamin D impairs motivation and social interaction in individuals with FEP, thereby interventions that encourage outdoor activities and social engagement in this patient group might attenuate enduring negative symptoms.
Collapse
Affiliation(s)
- Alex Hatzimanolis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece.
- Neurobiology Research Institute, Theodore-Theohari Cozzika Foundation, Athens, Greece.
| | - Sarah Tosato
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Doriana Cristofalo
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Leonidas Mantonakis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Lida-Alkisti Xenaki
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Stefanos Dimitrakopoulos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Mirjana Selakovic
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Stefania Foteli
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Ioannis Kosteletos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Ilias Vlachos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Rigas-Filippos Soldatos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Nikos Nianiakas
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Irene Ralli
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Konstantinos Kollias
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Angeliki-Aikaterini Ntigrintaki
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Pentagiotissa Stefanatou
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health Research, Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College, London, UK
| | - Evangelos Vassos
- National Institute for Health Research, Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College, London, UK
- Department of Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nikos C Stefanis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
- Neurobiology Research Institute, Theodore-Theohari Cozzika Foundation, Athens, Greece
| |
Collapse
|
5
|
Li C, Chen Z, He S, Chen Y, Liu J. Unveiling the influence of daily dietary patterns on brain cortical structure: insights from bidirectional Mendelian randomization. Food Funct 2023; 14:10418-10429. [PMID: 37960880 DOI: 10.1039/d3fo02879h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cognitive impairment is a significant concern in aging populations. This study utilized Mendelian randomization analysis to explore the impact of dietary habits and macro-nutrients on cortical structure. A bidirectional Mendelian randomization approach was employed, incorporating large-scale genetic data on dietary habits and brain cortical structure. The results did not reveal significant causal relationships between dietary factors and overall cortical structure and thickness. However, specific dietary factors showed associations with cortical structure in certain regions. For instance, fat intake affected six cortical regions, while milk, protein, fruits, and water were associated with changes in specific regions. Reverse analysis suggested that cortical thickness influenced the consumption of alcohol, carbohydrates, coffee, and fish. These findings contribute to understanding the potential mechanisms underlying the role of dietary factors in cognitive function changes and provide evidence supporting the existence of the gut-brain axis.
Collapse
Affiliation(s)
- Cong Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Zhe Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shaqi He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan Province, 410011, People's Republic of China
| |
Collapse
|
6
|
Steen NE, Rahman Z, Szabo A, Hindley GFL, Parker N, Cheng W, Lin A, O’Connell KS, Sheikh MA, Shadrin A, Bahrami S, Karthikeyan S, Hoseth EZ, Dale AM, Aukrust P, Smeland OB, Ueland T, Frei O, Djurovic S, Andreassen OA. Shared Genetic Loci Between Schizophrenia and White Blood Cell Counts Suggest Genetically Determined Systemic Immune Abnormalities. Schizophr Bull 2023; 49:1345-1354. [PMID: 37319439 PMCID: PMC10483470 DOI: 10.1093/schbul/sbad082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandeep Karthikeyan
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eva Z Hoseth
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen—Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|