1
|
Milani L, Alver M, Laur S, Reisberg S, Haller T, Aasmets O, Abner E, Alavere H, Allik A, Annilo T, Fischer K, Hofmeister R, Hudjashov G, Jõeloo M, Kals M, Karo-Astover L, Kasela S, Kolde A, Krebs K, Krigul KL, Kronberg J, Kruusmaa K, Kukuškina V, Kõiv K, Lehto K, Leitsalu L, Lind S, Luitva LB, Läll K, Lüll K, Metsalu K, Metspalu M, Mõttus R, Nelis M, Nikopensius T, Nurm M, Nõukas M, Oja M, Org E, Palover M, Palta P, Pankratov V, Pantiukh K, Pervjakova N, Pujol-Gualdo N, Reigo A, Reimann E, Smit S, Rogozina D, Särg D, Taba N, Talvik HA, Teder-Laving M, Tõnisson N, Vaht M, Vainik U, Võsa U, Yelmen B, Esko T, Kolde R, Mägi R, Vilo J, Laisk T, Metspalu A. The Estonian Biobank's journey from biobanking to personalized medicine. Nat Commun 2025; 16:3270. [PMID: 40188112 PMCID: PMC11972354 DOI: 10.1038/s41467-025-58465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/04/2025] [Indexed: 04/07/2025] Open
Abstract
Large biobanks have set a new standard for research and innovation in human genomics and implementation of personalized medicine. The Estonian Biobank was founded a quarter of a century ago, and its biological specimens, clinical, health, omics, and lifestyle data have been included in over 800 publications to date. What makes the biobank unique internationally is its translational focus, with active efforts to conduct clinical studies based on genetic findings, and to explore the effects of return of results on participants. In this review, we provide an overview of the Estonian Biobank, highlight its strengths for studying the effects of genetic variation and quantitative phenotypes on health-related traits, development of methods and frameworks for bringing genomics into the clinic, and its role as a driving force for implementing personalized medicine on a national level and beyond.
Collapse
Affiliation(s)
- Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sven Laur
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Sulev Reisberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Oliver Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik Abner
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helene Alavere
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Annely Allik
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tarmo Annilo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Robin Hofmeister
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maarja Jõeloo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Liis Karo-Astover
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anastassia Kolde
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kertu Liis Krigul
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Karoliina Kruusmaa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Viktorija Kukuškina
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kadri Kõiv
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kelli Lehto
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Liis Leitsalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sirje Lind
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Laura Birgit Luitva
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kreete Lüll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kristjan Metsalu
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - René Mõttus
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mari Nelis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Miriam Nurm
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Margit Nõukas
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marek Oja
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Elin Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marili Palover
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Vasili Pankratov
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kateryna Pantiukh
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natalia Pervjakova
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Steven Smit
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Diana Rogozina
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Dage Särg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Nele Taba
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Harry-Anton Talvik
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Maris Teder-Laving
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Uku Vainik
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Burak Yelmen
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Raivo Kolde
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Yermakovich D, André M, Brucato N, Kariwiga J, Leavesley M, Pankratov V, Mondal M, Ricaut FX, Dannemann M. Denisovan admixture facilitated environmental adaptation in Papua New Guinean populations. Proc Natl Acad Sci U S A 2024; 121:e2405889121. [PMID: 38889149 PMCID: PMC11214076 DOI: 10.1073/pnas.2405889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.
Collapse
Affiliation(s)
- Danat Yermakovich
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mathilde André
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Nicolas Brucato
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- School of Social Science, University of Queensland, St. Lucia, QLD4072, Australia
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- The Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage & College of Arts, Society and Education, James Cook University, Cairns, QLD4870, Australia
| | - Vasili Pankratov
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mayukh Mondal
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel24118, Germany
| | - François-Xavier Ricaut
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Michael Dannemann
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| |
Collapse
|
4
|
Edenhofer FC, Térmeg A, Ohnuki M, Jocher J, Kliesmete Z, Briem E, Hellmann I, Enard W. Generation and characterization of inducible KRAB-dCas9 iPSCs from primates for cross-species CRISPRi. iScience 2024; 27:110090. [PMID: 38947524 PMCID: PMC11214527 DOI: 10.1016/j.isci.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Comparisons of molecular phenotypes across primates provide unique information to understand human biology and evolution, and single-cell RNA-seq CRISPR interference (CRISPRi) screens are a powerful approach to analyze them. Here, we generate and validate three human, three gorilla, and two cynomolgus iPS cell lines that carry a dox-inducible KRAB-dCas9 construct at the AAVS1 locus. We show that despite variable expression levels of KRAB-dCas9 among lines, comparable downregulation of target genes and comparable phenotypic effects are observed in a single-cell RNA-seq CRISPRi screen. Hence, we provide valuable resources for performing and further extending CRISPRi in human and non-human primates.
Collapse
Affiliation(s)
- Fiona C. Edenhofer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Anita Térmeg
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Jessica Jocher
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| |
Collapse
|
5
|
Chen Z, Reynolds RH, Pardiñas AF, Gagliano Taliun SA, van Rheenen W, Lin K, Shatunov A, Gustavsson EK, Fogh I, Jones AR, Robberecht W, Corcia P, Chiò A, Shaw PJ, Morrison KE, Veldink JH, van den Berg LH, Shaw CE, Powell JF, Silani V, Hardy JA, Houlden H, Owen MJ, Turner MR, Ryten M, Al-Chalabi A. The contribution of Neanderthal introgression and natural selection to neurodegenerative diseases. Neurobiol Dis 2023; 180:106082. [PMID: 36925053 DOI: 10.1016/j.nbd.2023.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK; Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK.
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sarah A Gagliano Taliun
- Department of Medicine & Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada; Montréal Heart Institute, Montréal, Québec, Canada
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Kuang Lin
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wim Robberecht
- Department of Neurology, University Hospital Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease, Leuven, Belgium; Vesalius Research Center, Laboratory of Neurobiology, Leuven, Belgium
| | - Philippe Corcia
- ALS Center, Department of Neurology, CHRU Bretonneau, Tours, France
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy; Azienda Ospedaliera Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Pamela J Shaw
- Academic Neurology Unit, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Karen E Morrison
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John F Powell
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, 20122 Milano, Italy
| | - John A Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK; Reta Lila Weston Institute, Queen Square Institute of Neurology, UCL, London, UK; UK Dementia Research Institute, Queen Square Institute of Neurology, UCL, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|