1
|
Northoff G, Ventura B. Bridging the gap of brain and experience - Converging Neurophenomenology with Spatiotemporal Neuroscience. Neurosci Biobehav Rev 2025; 173:106139. [PMID: 40204159 DOI: 10.1016/j.neubiorev.2025.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Neuroscience faces the challenge of connecting brain and mind, with the mind manifesting in first-person experience while the brain's neural activity can only be investigated in third-person perspective. To connect neural and mental states, Neurophenomenology provides a methodological toolkit for systematically linking first-person subjective experience with third-person objective observations of the brain's neural activity. However, beyond providing a systematic methodological strategy ('disciplined circularity'), it leaves open how neural activity and subjective experience are related among themselves, independent of our methodological strategy. The recently introduced Spatiotemporal Neuroscience suggests that neural activity and subjective experience share a commonly underlying feature as their "common currency", notably analogous spatiotemporal dynamics. Can Spatiotemporal Neuroscience inform Neurophenomenology to allow for a deeper and more substantiative connection of first-person experience and third-person neural activity? The goal of our paper is to show how Spatiotemporal Neuroscience and Neurophenomenology can be converged and integrated with each other to gain better understanding of the brain-mind connection. We describe their convergence on theoretical grounds which, subsequently, is illustrated by empirical examples like self, meditation, and depression. In conclusion, we propose that the integration of Neurophenomenology and Spatiotemporal Neuroscience can provide complementary insights, enrich both fields, allows for deeper understanding of brain-mind connection, and opens the door for developing novel methodological approaches in their empirical investigation.
Collapse
Affiliation(s)
- Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada.
| | - Bianca Ventura
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
2
|
Lu CJ, Goheen J, Wolman A, Lucherini Angeletti L, Arantes-Gonçalves F, Hirjak D, Wolff A, Northoff G. Scale for time and space experience in anxiety (STEA): Phenomenology and its clinical relevance. J Affect Disord 2024; 358:192-204. [PMID: 38703910 DOI: 10.1016/j.jad.2024.04.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Anxiety is a pervasive emotional state where, phenomenologically, subjects often report changes in their experience of time and space. However, a systematic and quantified examination of time and space experience in terms of a self-report scale is still missing which eventually could also be used for clinical differential diagnosis. Based on historical phenomenological literature and patients' subjective reports, we here introduce, in a first step, the Scale for Time and Space Experience of Anxiety (STEA) in a smaller sample of 19 subjects with anxiety disorders and, in a second step, validate its shorter clinical version (cSTEA) in a larger sample of 48 anxiety subjects. The main findings are (i) high convergent and divergent validity of STEA with both Beck Anxiety Inventory (BAI) (r = 0.7325; p < 0.001) and Beck Depression Inventory (BDI) (r = 0.7749; p < 0.0001), as well as with spontaneous mind wandering (MWS) (r = 0.7343; p < 0.001) and deliberate mind wandering (MWD) (r = 0.1152; p > 0.05), (ii) statistical feature selection shows 8 key items for future clinical usage (cSTEA) focusing on the experience of temporal and spatial constriction, (iii) the effects of time and space experience (i.e., for both STEA and cSTEA scores) on the level of anxiety (BAI) are mediated by the degree of spontaneous mind wandering (MWS), (iv) cSTEA allows for differentiating high levels of anxiety from the severity of comorbid depressive symptoms, and (v) significant reduction in the cSTEA scores after a therapeutic intervention (breathing therapy). Together, our study introduces a novel fully quantified and highly valid self-report instrument, the STEA, for measuring time-space experiences in anxiety. Further we develop a shorter clinical version (cSTEA) which allows assessing time space experience in a valid, quick, and simple way for diagnosis, differential diagnosis, and therapeutic monitoring of anxiety.
Collapse
Affiliation(s)
- Cheng-Ju Lu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Josh Goheen
- Department of Cognitive Science, Carleton University, Ottawa, Canada
| | - Angelika Wolman
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | | | | | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Annemarie Wolff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Northoff G, Hirjak D. Is depression a global brain disorder with topographic dynamic reorganization? Transl Psychiatry 2024; 14:278. [PMID: 38969642 PMCID: PMC11226458 DOI: 10.1038/s41398-024-02995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Major depressive disorder (MDD) is characterized by a multitude of psychopathological symptoms including affective, cognitive, perceptual, sensorimotor, and social. The neuronal mechanisms underlying such co-occurrence of psychopathological symptoms remain yet unclear. Rather than linking and localizing single psychopathological symptoms to specific regions or networks, this perspective proposes a more global and dynamic topographic approach. We first review recent findings on global brain activity changes during both rest and task states in MDD showing topographic reorganization with a shift from unimodal to transmodal regions. Next, we single out two candidate mechanisms that may underlie and mediate such abnormal uni-/transmodal topography, namely dynamic shifts from shorter to longer timescales and abnormalities in the excitation-inhibition balance. Finally, we show how such topographic shift from unimodal to transmodal regions relates to the various psychopathological symptoms in MDD including their co-occurrence. This amounts to what we describe as 'Topographic dynamic reorganization' which extends our earlier 'Resting state hypothesis of depression' and complements other models of MDD.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner Site Mannheim, Mannheim, Germany.
| |
Collapse
|
4
|
Yang C, Biswal B, Cui Q, Jing X, Ao Y, Wang Y. Frequency-dependent alterations of global signal topography in patients with major depressive disorder. Psychol Med 2024; 54:2152-2161. [PMID: 38362834 DOI: 10.1017/s0033291724000254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated not only with disorders in multiple brain networks but also with frequency-specific brain activities. The abnormality of spatiotemporal networks in patients with MDD remains largely unclear. METHODS We investigated the alterations of the global spatiotemporal network in MDD patients using a large-sample multicenter resting-state functional magnetic resonance imaging dataset. The spatiotemporal characteristics were measured by the variability of global signal (GS) and its correlation with local signals (GSCORR) at multiple frequency bands. The association between these indicators and clinical scores was further assessed. RESULTS The GS fluctuations were reduced in patients with MDD across the full frequency range (0-0.1852 Hz). The GSCORR was also reduced in the MDD group, especially in the relatively higher frequency range (0.0728-0.1852 Hz). Interestingly, these indicators showed positive correlations with depressive scores in the MDD group and relative negative correlations in the control group. CONCLUSION The GS and its spatiotemporal effects on local signals were weakened in patients with MDD, which may impair inter-regional synchronization and related functions. Patients with severe depression may use the compensatory mechanism to make up for the functional impairments.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiujuan Jing
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yujia Ao
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
5
|
Fan Z, Liu Z, Yang J, Yang J, Sun F, Tang S, Wu G, Guo S, Ouyang X, Tao H. Hypoactive Visual Cortex, Prefrontal Cortex and Insula during Self-Face Recognition in Adults with First-Episode Major Depressive Disorder. Biomedicines 2023; 11:2200. [PMID: 37626697 PMCID: PMC10452386 DOI: 10.3390/biomedicines11082200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Self-face recognition is a vital aspect of self-referential processing, which is closely related to affective states. However, neuroimaging research on self-face recognition in adults with major depressive disorder is lacking. This study aims to investigate the alteration of brain activation during self-face recognition in adults with first-episode major depressive disorder (FEMDD) via functional magnetic resonance imaging (fMRI); FEMDD (n = 59) and healthy controls (HC, n = 36) who performed a self-face-recognition task during the fMRI scan. The differences in brain activation signal values between the two groups were analyzed, and Pearson correlation analysis was used to evaluate the relationship between the brain activation of significant group differences and the severity of depressive symptoms and negative self-evaluation; FEMDD showed significantly decreased brain activation in the bilateral occipital cortex, bilateral fusiform gyrus, right inferior frontal gyrus, and right insula during the task compared with HC. No significant correlation was detected between brain activation with significant group differences and the severity of depression and negative self-evaluation in FEMDD or HC. The results suggest the involvement of the malfunctioning visual cortex, prefrontal cortex, and insula in the pathophysiology of self-face recognition in FEMDD, which may provide a novel therapeutic target for adults with FEMDD.
Collapse
Affiliation(s)
- Zebin Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Fuping Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Guowei Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Shuixia Guo
- Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
- Key Laboratory of Applied Statistics and Data Science, College of Hunan Province, Hunan Normal University, Changsha 410006, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| | - Haojuan Tao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Z.F.)
| |
Collapse
|