1
|
Wang M, Wu Z, Zheng X, Huang Y, Jin Y, Song J, Lei W, Liu H, Yu R, Yang H, Gao R. Betaine enhances SCAPs chondrogenic differentiation and promotes cartilage repair in TMJOA through WDR81. Stem Cell Res Ther 2025; 16:55. [PMID: 39920811 PMCID: PMC11806766 DOI: 10.1186/s13287-025-04161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The cartilage tissue regeneration mediated with mesenchymal stem cells (MSCs) is considered as a viable strategy for temporomandibular joint osteoarthritis (TMJOA). Betaine has been confirmed to modulate the multidirectional differentiation of MSCs, while its effect on chondrogenic differentiation of Stem Cells from the Apical Papilla (SCAPs) is unknown. Here, we explored the effects and underlying mechanisms of betaine on chondrogenic differentiation of SCAPs. METHODS Betaine was added for SCAPs chondrogenic induction. The chondrogenic differentiation potential was assessed using Alcian Blue staining, Sirius Red staining and the main chondrogenic markers. In vivo cartilage regeneration effects were evaluated by the rat TMJOA model. RNA-sequencing and biological analyses were performed to select target genes and biological processes involved. The mechanism betaine acts on chondrogenic differentiation of SCAPs was further explored. RESULTS Betain-treated SCAPs demonstrated stronger cartilage regeneration in vitro and promoted cartilage repair of TMJOA in vivo. Betaine enhanced the expression of WDR81 in SCAPs during chondrogenesis. WDR81 overexpression promoted chondrogenic differentiation of SCAPs, while WDR81 depletion inhibited chondrogenic differentiation. In addition, both betaine treatment and WDR81 overexpression reduced intracellular reactive oxygen species levels and increased mitochondrial membrane potential in SCAPs. CONCLUSION Betaine promotes SCAPs chondrogenic differentiation and provided an effective candidate for TMJOA treatment. WDR81 may serve as the potential drug target through mitophagy.
Collapse
Affiliation(s)
- Meiyue Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zejie Wu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Zheng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yishu Huang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Yizhou Jin
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Jiaxin Song
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Wanzhen Lei
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Hua Liu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Riyue Yu
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Haoqing Yang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Runtao Gao
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
2
|
Kulthanaamondhita P, Kornsuthisopon C, Chansaenroj A, Phattarataratip E, Sappayatosok K, Samaranayake L, Osathanon T. Betaine Induces Apoptosis and Inhibits Invasion in OSCC Cell Lines. Int J Mol Sci 2024; 25:10295. [PMID: 39408625 PMCID: PMC11476985 DOI: 10.3390/ijms251910295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Betaine, known as trimethylglycine, is a non-toxic natural substance reported to affect cancer cell responses. This study delves into the impact of betaine on the survival, proliferation, and invasion of oral squamous cell carcinoma (OSCC) cells in vitro. Human OSCC cells (HSC-4 and HSC-7) were subjected to varying concentrations of betaine, and their viability and proliferation were assessed through colourimetric MTT and colony-forming unit assays. Cell cycle progression and cell apoptosis were also investigated using flow cytometry, while cell migration and invasion were examined using a transwell migration assay, and the mRNA expression was evaluated by a quantitative polymerase chain reaction. Finally, proteomic analysis was conducted through liquid chromatography-tandem mass spectrometry on the extracted protein component of the cells. Results indicate that betaine effectively suppressed OSCC proliferation and colony formation. It triggered early apoptosis without disrupting cell cycle progression, reduced cell migration, and inhibited invasion. Betaine exposure led to significantly decreased mRNA levels of MMP1, MMP2, and MMP9 while downregulating FN1, a gene linked to epithelial-to-mesenchymal transition. Proteomic analysis revealed 9240 differentially expressed up/downregulated proteins in cells treated with betaine. The significantly upregulated proteins were associated with ATP-binding cassette (ABC) transporters, while the down-regulated proteins were associated with G protein-coupled receptors (GPCR) ligand binding. In conclusion, betaine exhibits potent anti-cancer properties by attenuating OSCC cell proliferation and mitigating invasion. Exploring this natural product as an adjunct for managing oral squamous cell carcinoma shows promise, although further investigations are needed to fully elucidate its functionality.
Collapse
Affiliation(s)
- Promphakkon Kulthanaamondhita
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (C.K.); (A.C.)
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
- College of Dental Medicine, Rangsit University, Pathum Thani 12000, Thailand;
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (C.K.); (A.C.)
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (C.K.); (A.C.)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekarat Phattarataratip
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | | | - Lakshman Samaranayake
- Faculty of Dentistry, University of Hong Kong, Hospital Road, Hong Kong, China
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (C.K.); (A.C.)
| |
Collapse
|
3
|
Wang X, Li F, Wu S, Xing W, Fu J, Wang R, He Y. Research progress on optimization of in vitro isolation, cultivation and preservation methods of dental pulp stem cells for clinical application. Front Bioeng Biotechnol 2024; 12:1305614. [PMID: 38633667 PMCID: PMC11021638 DOI: 10.3389/fbioe.2024.1305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fenyao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shuting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Uma Maheswari G, Yamini B, Dhandapani V, Almutairi BO, Arokiyaraj S, Karuppiah KM. Methylenetetrahydrofolate reductase polymorphisms in dental caries-induced pulp inflammation and regeneration of dentine-pulp complex: Future perspectives. Saudi Dent J 2023; 35:1029-1038. [PMID: 38170041 PMCID: PMC10759554 DOI: 10.1016/j.sdentj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 01/05/2024] Open
Abstract
Dental caries (DC)-induced pulp infections usually undergo the common endodontic treatment, root canal therapy (RCT). Endodontically treated teeth are devitalized, become brittle and susceptible for re-infection which eventually results in dental loss. These complications arise because the devitalized pulp losses its ability for innate homeostasis, repair and regeneration. Therefore, restoring the vitality, structure and function of the inflamed pulp and compromised dentin have become the focal points in regenerative endodontics. There are very few evidences, so far, that connect methylenetetrahydrofolate reductase single nucleotide polymorphisms (MTHFR-SNPs) and dental disorders. However, the primary consequences of MTHFR-SNPs, in terms of excessive homocysteine and folate deficiency, are well-known contributors to dental diseases. This article identifies the possible mechanisms by which MTHFR-SNP-carriers are susceptible for DC-induced pulp inflammation (PI); and discusses a cell-homing based strategy for in vivo transplantation in an orthotopic model to regenerate the functional dentine-pulp complex which includes dentinogenesis, neurogenesis and vasculogenesis, in the SNP-carriers.
Collapse
Affiliation(s)
- G. Uma Maheswari
- Department of Cardiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - B. Yamini
- Department of Cardiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - V.E. Dhandapani
- Department of Cardiology, SRM Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O.Box 2455, 11451 Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Kanchana M. Karuppiah
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Jing Y, Zhou J, Guo F, Yu L, Ren X, Yin X. Betaine regulates adipogenic and osteogenic differentiation of hAD-MSCs. Mol Biol Rep 2023; 50:5081-5089. [PMID: 37101008 DOI: 10.1007/s11033-023-08404-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND With an ageing population, the incidence of bone loss and obesity are increasing. Numerous studies emphasized the multidirectional differentiation ability of mesenchymal stem cells (MSCs), and reported betaine modulated the osteogenic differentiation and adipogenic differentiation of MSCs in vitro. We wondered how betaine affected the differentiation of hAD-MSCs and hUC-MSCs. METHODS AND RESULTS ALP staining and alizarin red S (ARS) staining were proved 10 mM betaine significantly increased the number of ALP-positive cells and plaque calcified extracellular matrices, accompanying by the up-regulation of OPN, Runx-2 and OCN. Oil red O staining demonstrated the number and size of lipid droplets were reduced, the expression of adipogenic master genes such as PPARγ, CEBPα and FASN were down-regulated simultaneously. For further investigating the mechanism of betaine on hAD-MSCs, RNA-seq was performed in none-differentiation medium. The Gene Ontology (GO) analysis showed fat cell differentiation and bone mineralization function terms were enriched, and KEGG showed PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and ECM-receptor interaction pathways were enriched in betaine treated hAD-MSCs, demonstrated betaine had a positive inducing effect on osteogenic of hAD-MSCs in the non-differentiation medium in vitro, which is opposite to the effect on adipogenic differentiation. CONCLUSIONS Our study demonstrated that betaine promoted osteogenic and compromised adipogenic differentiation of hUC-MSCs and hAD-MSCs upon low concentration administration. PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and ECM-receptor interaction were significantly enriched under betaine-treated. We showed hAD-MSCs were more sensitive to betaine stimulation and have a better differentiation ability than hUC-MSCs. Our results contributed to the exploration of betaine as an aiding agent for MSCs therapy.
Collapse
Affiliation(s)
- Yue Jing
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Jian Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Fenghua Guo
- Jiangsu Pulu Rui Medical Technology Co., Ltd, Xuzhou, Jiangsu Province, China
| | - Lin Yu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Xiaomeng Ren
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China.
| |
Collapse
|