1
|
Qin L, Li B, Wang S, Tang Y, Fahira A, Kou Y, Li T, Hu Z, Huang Z. Construction of an immune-related prognostic signature and lncRNA-miRNA-mRNA ceRNA network in acute myeloid leukemia. J Leukoc Biol 2024; 116:146-165. [PMID: 38393298 DOI: 10.1093/jleuko/qiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The progression of acute myeloid leukemia (AML) is influenced by the immune microenvironment in the bone marrow and dysregulated intracellular competing endogenous RNA (ceRNA) networks. Our study utilized data from UCSC Xena, The Cancer Genome Atlas Program, the Gene Expression Omnibus, and the Immunology Database and Analysis Portal. Using Cox regression analysis, we identified an immune-related prognostic signature. Genomic analysis of prognostic messenger RNA (mRNA) was conducted through Gene Set Cancer Analysis (GSCA), and a prognostic ceRNA network was constructed using the Encyclopedia of RNA Interactomes. Correlations between signature mRNAs and immune cell infiltration, checkpoints, and drug sensitivity were assessed using R software, gene expression profiling interactive analysis (GEPIA), and CellMiner, respectively. Adhering to the ceRNA hypothesis, we established a potential long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA regulatory axis. Our findings pinpointed 9 immune-related prognostic mRNAs (KIR2DL1, CSRP1, APOBEC3G, CKLF, PLXNC1, PNOC, ANGPT1, IL1R2, and IL3RA). GSCA analysis revealed the impact of copy number variations and methylation on AML. The ceRNA network comprised 14 prognostic differentially expressed lncRNAs (DE-lncRNAs), 6 prognostic DE-miRNAs, and 3 prognostic immune-related DE-mRNAs. Correlation analyses linked these mRNAs' expression to 22 immune cell types and 6 immune checkpoints, with potential sensitivity to 27 antitumor drugs. Finally, we identified a potential LINC00963/hsa-miR-431-5p/CSRP1 axis. This study offers innovative insights for AML diagnosis and treatment through a novel immune-related signature and ceRNA axis. Identified novel biomarkers, including 2 mRNAs (CKLF, PNOC), 1 miRNA (hsa-miR-323a-3p), and 10 lncRNAs (SNHG25, LINC01857, AL390728.6, AC127024.5, Z83843.1, AP002884.1, AC007038.1, AC112512, AC020659.1, AC005921.3) present promising candidates as potential targets for precision medicine, contributing to the ongoing advancements in the field.
Collapse
Affiliation(s)
- Ling Qin
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Boya Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Shijie Wang
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Yulai Tang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Yanqi Kou
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Tong Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, No.263 Kaiyuan Avenue, Luolong District, Luoyang 471000, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Konova ZV, Parovichnikova EN, Galtseva IV, Khamaganova EG. Impact of natural killer cell’s functional reconstruction on the results of allogeneic hematopoietic stem cell transplantation. RUSSIAN JOURNAL OF HEMATOLOGY AND TRANSFUSIOLOGY 2022. [DOI: 10.35754/0234-5730-2022-67-4-551-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction. Currently, more and more attention is being paid to possible strategies for preventing the development of graft-versus-host disease (GVHD) and reducing the risk of infections while maintaining the antitumor effect — graft-versus-leukemia effect (GVL). In this context, the study of natural killer cells (NK-cells) seems to be quite promising.Aim – to analyze the biological and functional properties of NK-cells after allo-HSCT, their reconstitution after transplantation and factors affecting this process, as well as the mechanisms of alloreactivity of NK cells in patients after allo-HSCT. Main findings. Various types of activating or inhibiting receptors, which are expressed on NK-cells, regulate the functions of NK-cells. Among them, the main role is played by the killer immunoglobin-like receptor (KIR-receptor), which mediates tolerance to one’s own cells and the immune response, both antitumor and directed against infectious agents. NK-cells can play a decisive role in preventing early relapses and infectious complications, as they are among the first to recover after allo-HSCT. They also have the ability to eliminate the recipient’s T-cells and antigen presenting cells (APCs), thereby preventing the development of graft failure and GVHD. There are several models of NK alloreactivity based on KIR; however, the results of studies in this area are contradictory. This review summarizes the available literature data.
Collapse
|
3
|
Dynamic Changes of Inhibitory Killer-Immunoglobulin-Like Receptors on NK Cells after Allogeneic Hematopoietic Stem Cell Transplantation: An Initial Study. J Clin Med 2020; 9:jcm9113502. [PMID: 33138211 PMCID: PMC7692795 DOI: 10.3390/jcm9113502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Killer-immunoglobulin-like receptors (KIRs) are critical natural killer (NK) cell regulators. The expression of KIRs is a dynamic process influenced by many factors. Their ligands-HLA(Human Leukocyte Antigen) class I molecules-are expressed on all nucleated cells that keep NK cells under control. In hematopoietic stem cell transplantation (HSCT), NK cells play an essential role in relapse protection. In the presented pilot study, we characterized the dynamic expression of inhibitory KIRS (iKIRs), which protect cells against untoward lysis, in donors and patients during the first three months after HSCT using flow cytometry. The expression of all iKIRs was highly variable and sometimes correlated with patients' clinical presentation and therapy regiment. Cyclophosphamide (Cy) in the graft-versus-host disease (GvHD) prevention protocol downregulated KIR2DL1 to just 25% of the original donor value, and the FEAM (Fludarabine + Etoposid + Ara-C + Melphalan) conditioning protocol reduced KIR2DL3. In lymphoid neoplasms, there was a slightly increased KIR2DL3 expression compared to myeloid malignancies. Additionally, we showed that the ex vivo activation of NK cells did not alter the level of iKIRs. Our study shows the influence of pre- and post-transplantation protocols on iKIR expression on the surface of NK cells and the importance of monitoring their cell surface.
Collapse
|
4
|
Gao F, Ye Y, Gao Y, Huang H, Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:2022. [PMID: 32983145 PMCID: PMC7493622 DOI: 10.3389/fimmu.2020.02022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells play a significant role in immune tolerance and immune surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous studies have suggested that, in the setting of hematopoietic stem cell transplantation (HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient tumor cells and the residual immune cells. Subsequently, several clinical models were established to determine the optimal donors who would exhibit a graft-vs. -leukemia (GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses about specific beneficial receptor-ligand pairs and KIR genes have been raised and the favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper understanding of the process of NK cell reconstitution post-HSCT, new factors involved in this process and the defects of previous models have been observed. In this review, we summarize the most relevant literatures about the impact of NK cell alloreactivity on transplant outcomes and the factors affecting NK cell reconstitution.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yang Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
5
|
Fang TT, Zhu XY, Tang BL, Liu HL, Wan X, Song KD, Yao W, Sun GY, Fang XC, Sun ZM. [Effect of KIR/HLA receptor-ligand mode on prognosis of single unrelated cord blood transplantation in patients with hematological malignancies]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:204-209. [PMID: 32311889 PMCID: PMC7357922 DOI: 10.3760/cma.j.issn.0253-2727.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
目的 探讨自然杀伤细胞免疫球蛋白样受体(KIR)与人类白细胞抗原(HLA)受配体模式对血液病患者单份非血缘脐血移植(sUCBT)预后的影响。 方法 回顾性分析2012年7月至2018年6月270例接受sUCBT的血液病患者。移植前脐血及患者均进行HLA12个位点高分辨配型,选择移植物(脐血)的KIR均同时表达2DL1和2DL2/2DL3抑制性基因,根据患者KIR配体情况分为缺失组(C1/C1或C2/C2)和无缺失组(C1/C2)。 结果 270例血液病患者中男146例(54.1%),女124例(45.9%),中位年龄13(1~62)岁;缺失组174例(64.4%),无缺失组96例(35.6%)。全部患者均采用不含抗胸腺细胞球蛋白(ATG)清髓性预处理方案。缺失组、无缺失组粒细胞植入率均为98.9%(172/174、95/96),中位植入时间分别为16(10~41)d、17(11~33)d(P=0.705);血小板植入率分别为88.5%(154/174)、87.5%(84/96),中位植入时间分别为35(11~113)d、38.5(13~96)d(P=0.317);缺失组、无缺失组Ⅱ~Ⅳ级急性GVHD发生率分别为38.7%(95%CI 31.4%~45.9%)、50.0%(95%CI 39.6%~59.6%)(P=0.075),多因素分析显示KIR配体缺失是影响Ⅱ~Ⅳ度急性GVHD发生的独立保护性因素(P=0.036)。移植后3年累积复发率分别为17.7%(95%CI 11.7%~24.9%)、22.7%(95%CI14.4%~32.2%)(P=0.288)。中位随访时间742(335~2 512)d,缺失组、无缺失组3年总生存率分别为72.1%(95%CI 64.1%~78.6%)、60.5%(95%CI 47.9%~69.2%)(χ2=3.629,P=0.079),3年无病生存率分别为64.9%(95%CI 56.2%~72.3%)、55.4%(95%CI 44.4%~65.0%)(χ2=3.027,P=0.082),移植后180 d 非复发死亡率分别为12.1%(95%CI 7.7%~17.4%)、16.7%(95%CI 10.0%~24.8%)(P=0.328)。 结论 在不含ATG清髓性预处理sUCBT血液病治疗体系中,缺失抑制性KIR配体患者移植后急性GVHD发生率更低。
Collapse
Affiliation(s)
- T T Fang
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - X Y Zhu
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - B L Tang
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - H L Liu
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - X Wan
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - K D Song
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - W Yao
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - G Y Sun
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - X C Fang
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| | - Z M Sun
- Department of Hematology, Anhui Provincial Hospital of Anhui Medical University, Hefei 230001, China
| |
Collapse
|
6
|
Mansouri M, Villard J, Ramzi M, Alavianmehr A, Farjadian S. Impact of donor KIRs and recipient KIR/HLA class I combinations on GVHD in patients with acute leukemia after HLA-matched sibling HSCT. Hum Immunol 2020; 81:285-292. [PMID: 32199702 DOI: 10.1016/j.humimm.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
In addition to T cells, NK cells can also participate in the outcome of hematopoietic stem cell transplantation (HSCT) mainly through the interaction between donor killer cell immunoglobulin-like receptors (KIRs) and recipient human leukocyte antigen (HLA) class I molecules. There is a risk of GVHD other than leukemia relapse after allogeneic HSCT that activation of donor NK cells in the absence of appropriate inhibitory ligands will be one of the reasons. To investigate the impact of donor KIRs and recipient KIR/HLA class I combinations on GVHD and leukemia relapse in patients with acute leukemia after HSCT, 100 patients with acute leukemia who received HSCT from their HLA-matched siblings were included in this study. Genotypes of 16 KIR genes and two 2DS4 variants (full length and deleted alleles), along with HLA-A/B genotypes, were determined by PCR-SSP. HLA-C genotyping was done with the SSO-Luminex method. Chimerism analysis was done using 16 short tandem repeats (STRs) to detect early leukemia relapse. Acute (a)GVHD occurred in 38 patients, and 16 of them died during the study. None of the recipients showed any sign of leukemia relapse after HSCT. Full donor chimerism was observed in all tested patients during the first year after HSCT. Our results also indicated an increased risk of aGVHD in AA recipients with the C2/Cx, Bw4+ (or A-Bw4+) or HLA-A3-/A11- genotypes who received HSCT from Bx donors. Our results showed that donor selection based on donor-recipient KIR genotypes and recipient HLA class I status can improve the outcome of HSCT.
Collapse
Affiliation(s)
- Marzieh Mansouri
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jean Villard
- Immunology and Transplant Unit, National Reference Laboratory for Histocompatibility (LNRH), Geneva, Switzerland
| | - Mani Ramzi
- Hematology and Bone Marrow Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alavianmehr
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Tordai A, Bors A, Kiss KP, Balassa K, Andrikovics H, Batai A, Szilvasi A, Rajczy K, Inotai D, Torbagyi E, Lengyel L, Barta A, Remenyi P, Masszi T. Donor KIR2DS1 reduces the risk of transplant related mortality in HLA-C2 positive young recipients with hematological malignancies treated by myeloablative conditioning. PLoS One 2019; 14:e0218945. [PMID: 31237928 PMCID: PMC6592561 DOI: 10.1371/journal.pone.0218945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/12/2019] [Indexed: 01/12/2023] Open
Abstract
Background Recognition of HLA-C2 group alleles on recipient cells by activating killer immunoglobulin like receptors, KIR2DS1 on donor natural killer cells may lead to increased graft-versus-leukemia effect or immunomodulation in patients treated by allogeneic hematopoietic stem cell transplantation (allo-HSCT) influencing disease free and overall survival (OS). Objective In the present study, 314 consecutive, allo-HSCT recipient and donor pairs were included with retrospective donor KIR-genotyping and clinical parameters analyzes. Results After a median follow-up of 23.6 months, recipients with HLA-C2 group allele (rC2) showed improved (p = 0.046) OS if transplanted with KIR2DS1 positive donors (d2DS1) compared to those without one or both of this genetic attribute. Within the myeloablative conditioning (MAC) subgroup (n = 227), rC2 homozygous+d2DS1 patients (n = 14) showed a 5 years OS of 93% followed by rC2 heterozygous+d2DS1 patients (n = 48, 65%) compared to rC2 and/or d2DS1 negatives (47%, p = 0.018). Multivariate analyses indicated rC2+d2DS1 positivity as an independent predictor of OS (HR:0.47, 0.26–0.86, p = 0.014) besides donor type, presence of CMV-reactivation or chemoresistant disease. Among MAC-treated patients, the combined rC2+d2DS1 presence was associated with a markedly decreased cumulative incidence of transplant related mortality (p = 0.0045). Conclusion The combination of rC2+d2DS1 may be a favorable genetic constellation in allo-HSCT with MAC potentially reducing transplant related mortality.
Collapse
Affiliation(s)
- Attila Tordai
- Laboratory of Molecular Diagnostics, Hungarian National Blood Transfusion Service, Budapest, Hungary
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Andras Bors
- Laboratory of Molecular Diagnostics, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Katalin Piroska Kiss
- Laboratory of Molecular Diagnostics, Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Katalin Balassa
- Laboratory of Molecular Diagnostics, Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Hajnalka Andrikovics
- Laboratory of Molecular Diagnostics, Hungarian National Blood Transfusion Service, Budapest, Hungary
- Laboratory of Molecular Diagnostics, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Arpad Batai
- Department of Haematology and Stem Cell Transplantation, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Aniko Szilvasi
- Transplantation Immunogenetics Laboratory, Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Katalin Rajczy
- Hungarian Stem Cell Donor Registry, Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Dora Inotai
- Transplantation Immunogenetics Laboratory, Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Eva Torbagyi
- Department of Haematology and Stem Cell Transplantation, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Lilla Lengyel
- Department of Haematology and Stem Cell Transplantation, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Aniko Barta
- Department of Haematology and Stem Cell Transplantation, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Peter Remenyi
- Department of Haematology and Stem Cell Transplantation, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
| | - Tamas Masszi
- Department of Haematology and Stem Cell Transplantation, South-Pest Central Hospital–National Institute of Haematology and Infectology, Budapest, Hungary
- 3 Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Gwozdowicz S, Nestorowicz K, Graczyk-Pol E, Szlendak U, Rogatko-Koros M, Mika-Witkowska R, Pawliczak D, Zubala M, Malinowska A, Witkowska A, Nowak J. KIR specificity and avidity of standard and unusual C1, C2, Bw4, Bw6 and A3/11 amino acid motifs at entire HLA:KIR interface between NK and target cells, the functional and evolutionary classification of HLA class I molecules. Int J Immunogenet 2019; 46:217-231. [PMID: 31210416 DOI: 10.1111/iji.12433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells make vital contributions to the immune system and the reproductive system. Notably, NK cells of donor origin can recognize and kill residual leukaemic cells and cure malignant patients in hematopoietic stem cell (HSC) transplant setting. NK cell function is regulated by KIRs that recognize cognate HLA class I molecules on target cells, depending on their amino acid residues. In review, we addressed the question of binding capacity and avidity of HLA class I molecules to different killer cell immunoglobulin-like receptors (KIRs) depending on all interacting amino acid residues both on HLA and KIR side. We searched PubMed database and analysed available HLA:KIR crystallographic data for amino acid residues in HLA molecules, those physically involved in binding KIRs (termed here the "entire KIR interface"). Within entire KIR interface, we selected five functional sequence motifs (14-19, 66-76, 77-84, 88-92 and 142-151) and classified them according to the conservation of their amino acid sequences among 8,942 HLA class I molecules. Although some conserved amino acid motifs were shared by different groups of KIR ligands, the HLA motif combinations were exclusive for the ligand groups. In 135 common HLA class I molecules with known HLA:KIR recognition, we found 54 combinations of five motifs in each of the KIR-binding interfaces (C1, C2, Bw4, A3/11) and conserved non-KIR-binding interfaces. Based on the entire KIR interface, this analysis allowed to classify 8,942 HLA class I molecules into KIR specificity groups. This functional and evolutionary classification of entire KIR interfaces provides a tool for unambiguously predicting HLA:KIR interactions for common and those HLA molecules that have not yet been functionally tested. Considering the entire KIR interface in HLA class I molecules, functional interactions of HLA and KIR can be predicted in immune responses, reproduction and allotransplantation. Further functional studies are needed on the HLA:KIR interaction variations caused by the repertoires of peptides presented by HLA molecules and KIR polymorphisms at allelic level.
Collapse
Affiliation(s)
- Slawomir Gwozdowicz
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Klaudia Nestorowicz
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Elzbieta Graczyk-Pol
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Urszula Szlendak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Rogatko-Koros
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Renata Mika-Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Daria Pawliczak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Zubala
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Malinowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jacek Nowak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
9
|
Hamers AAJ, Joshi SK, Pillai AB. Innate Immune Determinants of Graft-Versus-Host Disease and Bidirectional Immune Tolerance in Allogeneic Transplantation. ACTA ACUST UNITED AC 2019; 3. [PMID: 33511333 PMCID: PMC7839993 DOI: 10.21926/obm.transplant.1901044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of tissue transplantation from a healthy donor to a diseased individual (allo-transplantation) is regulated by the immune systems of both donor and recipient. Developing a state of specific non-reactivity between donor and recipient, while maintaining the salutary effects of immune function in the recipient, is called “immune (transplantation) tolerance”. In the classic early post-transplant period, minimizing bidirectional donor ←→ recipient reactivity requires the administration of immunosuppressive drugs, which have deleterious side effects (severe immunodeficiency, opportunistic infections, and neoplasia, in addition to drug-specific reactions and organ toxicities). Inducing immune tolerance directly through donor and recipient immune cells, particularly via subsets of immune regulatory cells, has helped to significantly reduce side effects associated with multiple immunosuppressive drugs after allo-transplantation. The innate and adaptive arms of the immune system are both implicated in inducing immune tolerance. In the present article, we will review innate immune subset manipulations and their potential applications in hematopoietic stem cell transplantation (HSCT) to cure malignant and non-malignant hematological disorders by inducing long-lasting donor ←→ recipient (bidirectional) immune tolerance and reduced graft-versus-host disease (GVHD). These innate immunotherapeutic strategies to promote long-term immune allo-transplant tolerance include myeloid-derived suppressor cells (MDSCs), regulatory macrophages, tolerogenic dendritic cells (tDCs), Natural Killer (NK) cells, invariant Natural Killer T (iNKT) cells, gamma delta T (γδ-T) cells and mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Asha B Pillai
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
González-Quezada B, Sánchez-Fernández M, Munguía-Saldaña A, Valencia-Macedo M, Flores-Aguilar H, Bonilla-Galán E, Rodríguez-Gómez A, Díaz-Rivera A, Gorodezky C. Allele diversity of the killer cell immunoglobulin-like receptors KIR3DL1/S1 and the combination with their HLA ligands in Mexican Mestizos from Mexico City. Hum Immunol 2018; 79:834-838. [DOI: 10.1016/j.humimm.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/04/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
|