1
|
Sadowski K, Ploch W, Downar A, Giza W, Szcześ D, Olejarz W, Jędrzejczak WW, Małyszko J, Basak G. Nephrotoxicity in CAR-T cell therapy. Transplant Cell Ther 2025:S2666-6367(25)01095-4. [PMID: 40107382 DOI: 10.1016/j.jtct.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a novel therapy for the treatment of different hematologic malignancies. Besides its efficiency, CAR-T cell therapy is associated with significant toxicity, primarily manifested as cytokine release syndrome (CRS) and neurotoxicity. However, there are reports that CAR-T cell therapy is also nephrotoxic and this aspect has attracted less attention to date. In this review, we focus on the incidence and association between CAR-T cell therapy and kidney injury. Here, we describe risk factors, biomarkers, and potential reasons for acute kidney injury (AKI) and chronic kidney disease (CKD) related to CAR-T cell therapy to shed light on pathomechanisms leading to renal impairment as well as to the association of kidney failure with other side effects of CAR-T cell therapy. We also review the toxicity of different types of CAR-T cell products, the impact of nephrotoxicity on CAR-T cell therapy efficacy, and the safety of lymphodepletion in patients with baseline AKI or CKD.
Collapse
Affiliation(s)
- Karol Sadowski
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Weronika Ploch
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Downar
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wiktoria Giza
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Szcześ
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wiesław W Jędrzejczak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Panopoulou A, Mehra V, Cwynarski K, Morley‐Smith A, Hwang A, O'Reilly M, Roddy H, Roddie C. CAR-T Cell Therapy for PTLD: Analysis of CAR-T Product, Engraftment, and Outcomes in Patients Receiving Parallel Immunosuppression. EJHAEM 2025; 6:e70006. [PMID: 39981112 PMCID: PMC11840709 DOI: 10.1002/jha2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025]
Affiliation(s)
| | - Vedika Mehra
- University College London Cancer InstituteLondonUK
| | - Kate Cwynarski
- University College London Hospital NHS Foundation TrustLondonUK
| | | | - Angela Hwang
- University College London Hospital NHS Foundation TrustLondonUK
| | - Maeve O'Reilly
- University College London Hospital NHS Foundation TrustLondonUK
| | | | - Claire Roddie
- University College London Hospital NHS Foundation TrustLondonUK
- University College London Cancer InstituteLondonUK
| |
Collapse
|
3
|
Wu H, Cao H, Gao X, Shi C, Wang L, Gao B. The role of metagenomic next-generation sequencing in diagnosing and managing post-kidney transplantation infections. Front Cell Infect Microbiol 2025; 14:1473068. [PMID: 39839264 PMCID: PMC11747774 DOI: 10.3389/fcimb.2024.1473068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Kidney transplantation (KT) is a life-saving treatment for patients with end-stage renal disease, but post-transplant infections remain one of the most significant challenges. These infections, caused by a variety of pathogens, can lead to prolonged hospitalization, graft dysfunction, and even mortality, particularly in immunocompromised patients. Traditional diagnostic methods often fail to identify the causative organisms in a timely manner, leading to delays in treatment and poorer patient outcomes. This review explores the application of metagenomic next-generation sequencing (mNGS) in the diagnosis of post-KT infections. mNGS allows for the rapid, comprehensive detection of a wide range of pathogens, including bacteria, viruses, fungi, and parasites, without the need for culture-based techniques. We discuss the advantages of mNGS in early and accurate pathogen identification, its role in improving patient management, and the potential challenges in its clinical implementation. Additionally, we consider the future prospects of mNGS in overcoming current diagnostic limitations and its potential for guiding targeted therapies, particularly in detecting antimicrobial resistance and emerging pathogens. This review emphasizes the promise of mNGS as an essential tool in improving the diagnosis and treatment of infections in KT recipients.
Collapse
Affiliation(s)
| | | | | | | | | | - Baoshan Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Li W, Huang Y, Zhou X, Cheng B, Wang H, Wang Y. CAR-T therapy for gastrointestinal cancers: current status, challenges, and future directions. Braz J Med Biol Res 2024; 57:e13640. [PMID: 39417449 PMCID: PMC11484376 DOI: 10.1590/1414-431x2024e13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary immunotherapeutic strategy that has shown efficacy in hematological malignancies. However, its application in solid tumors, particularly gastrointestinal cancers, faces significant challenges. These include the selection of target antigens, the complexity of the tumor microenvironment, and safety and toxicity concerns. This review provides a current overview of CAR-T therapy in various gastrointestinal cancers, such as esophageal, gastric, colorectal, pancreatic, and liver cancers. It discusses the limitations and future directions of CAR-T therapy in this context. This review highlights innovative strategies, including novel target antigens, multispecific CAR-T cells, armored CAR-T cells, and the development of universal CAR-T cells. These insights aim to inform ongoing research and foster advancements in CAR-T therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Weidong Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yueming Huang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Xinhao Zhou
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Bohao Cheng
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
5
|
Bigotte Vieira M, Arai H, Nicolau C, Murakami N. Cancer Screening and Cancer Treatment in Kidney Transplant Recipients. KIDNEY360 2024; 5:1569-1583. [PMID: 39480669 PMCID: PMC11556922 DOI: 10.34067/kid.0000000000000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
As the population ages and post-transplant survival improves, pretransplant and post-transplant malignancy are becoming increasingly common. In addition, rapid advances in cancer therapies and improving outcomes prompt us to rethink pretransplant cancer-free wait time and screening strategies. Although kidney transplant recipients (KTRs) are at higher risk of developing cancer, epidemiological data on how to best screen and treat cancers in KTRs are incomplete. Thus, current recommendations are still largely on the basis of studies in the general population, and their validity in KTRs is uncertain. Kidney transplant candidates without prior cancer should be evaluated for latent malignancies even in the absence of symptoms. Conversely, individuals with a history of malignancy require thorough monitoring to detect potential recurrences or de novo malignancies. When treating KTRs with cancer, reducing immunosuppression can enhance antitumor immunity, yet this also increases the risk of graft rejection. Optimal treatment and immunosuppression management remains undefined. As the emergence of novel cancer therapies adds complexity to this challenge, individualized risk-benefit assessment is crucial. In this review, we discuss up-to-date data on pretransplant screening and cancer-free wait time, as well as post-transplant cancer screening, prevention strategies, and treatment, including novel therapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies.
Collapse
Affiliation(s)
- Miguel Bigotte Vieira
- Nephrology Department, Hospital Curry Cabral, Unidade Local de Saúde São José, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Carla Nicolau
- Nephrology Department, Hospital Curry Cabral, Unidade Local de Saúde São José, Lisbon, Portugal
| | - Naoka Murakami
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Del Duca F, Napoletano G, Volonnino G, Maiese A, La Russa R, Di Paolo M, De Matteis S, Frati P, Bonafè M, Fineschi V. Blood-brain barrier breakdown, central nervous system cell damage, and infiltrated T cells as major adverse effects in CAR-T-related deaths: a literature review. Front Med (Lausanne) 2024; 10:1272291. [PMID: 38259840 PMCID: PMC10800871 DOI: 10.3389/fmed.2023.1272291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND CAR-T-related deaths observed worldwide are rare. The underlying pathogenetic mechanisms are the subject of study, as are the findings that enable diagnosis. A systematic literature search of the PubMed database and a critical review of the collected studies were conducted from the inception of this database until January 2023. The aim of the study is to determine when death is related to CAR-T cell therapy and to develop a shareable diagnostic algorithm. METHODS The database was searched by combining and meshing the terms ("CAR-t" OR "CART") AND ("Pathology" OR "Histology" OR "Histological" OR "Autopsy") AND ("Heart" OR "Cardiac" OR "Nervous System" OR "Kidney" OR "Liver") with 34 results and also the terms: [(Lethal effect) OR (Death)] AND (CAR-T therapy) with 52 results in titles, abstracts, and keywords [all fields]. One hundred scientific articles were examined, 14 of which were additional records identified through other sources. Fifteen records were included in the review. RESULTS Neuronal death, neuronal edema, perivascular edema, perivascular and intraparenchymal hemorrhagic extravasation, as well as perivascular plasmatodendrosis, have been observed in cases with fatal cerebral edema. A cross-reactivity of CAR-T cells in cases of fatal encephalopathy can be hypothesized when, in addition to the increased vascular permeability, there is also a perivascular lymphocyte infiltrate, which appears to be a common factor among most authors. CONCLUSION Most CAR-T-related deaths are associated with blood-brain barrier breakdown, central nervous system cell damage, and infiltrated T cells. Further autopsies and microscopic investigations would shed more light on the lethal toxicity related to CAR-T cells. A differential diagnosis of CAR-T-related death is crucial to identifying adverse events. In this article, we propose an algorithm that could facilitate the comparison of findings through a systematic approach. Despite toxicity cases, CAR-T therapy continues to stand out as the most innovative treatment within the field of oncology, and emerging strategies hold the promise of delivering safer therapies in future.
Collapse
Affiliation(s)
- Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Aniello Maiese
- Section of Legal Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Di Paolo
- Section of Legal Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Serena De Matteis
- Immunobiology of Transplants and Advanced Cellular Therapies Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Bonafè
- Immunobiology of Transplants and Advanced Cellular Therapies Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Schreiber B, Tripathi S, Nikiforow S, Chandraker A. Adoptive Immune Effector Cell Therapies in Cancer and Solid Organ Transplantation: A Review. Semin Nephrol 2024; 44:151498. [PMID: 38555223 DOI: 10.1016/j.semnephrol.2024.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cancer is one of the most devastating complications of kidney transplantation and constitutes one of the leading causes of morbidity and mortality among solid organ transplantation (SOT) recipients. Immunosuppression, although effective in preventing allograft rejection, inherently inhibits immune surveillance against oncogenic viral infections and malignancy. Adoptive cell therapy, particularly immune effector cell therapy, has long been a modality of interest in both cancer and transplantation, though has only recently stepped into the spotlight with the development of virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. Although these modalities are best described in hematopoietic cell transplantation and hematologic malignancies, their potential application in the SOT setting may hold tremendous promise for those with limited therapeutic options. In this review, we provide a brief overview of the development of adoptive cell therapies with a focus on virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. We also describe the current experience of these therapies in the SOT setting as well as the challenges in their application and future directions in their development.
Collapse
Affiliation(s)
- Brittany Schreiber
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sudipta Tripathi
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sarah Nikiforow
- Division of Medical Oncology, Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anil Chandraker
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Renal Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA.
| |
Collapse
|
8
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Amengual JE, Pro B. How I treat posttransplant lymphoproliferative disorder. Blood 2023; 142:1426-1437. [PMID: 37540819 PMCID: PMC10731918 DOI: 10.1182/blood.2023020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is an important and potentially life-threatening complication of solid organ transplant and hematopoietic stem cell transplant (HSCT). Given the heterogeneity of PTLD and the risk of infectious complications in patients with immunosuppression, the treatment of this disease remains challenging. Monomorphic PTLD and lymphoma of B-cell origin account for the majority of cases. Treatment strategies for PTLD consist of response-adapted, risk-stratified methods using immunosuppression reduction, immunotherapy, and/or chemotherapy. With this approach, ∼25% of the patients do not need chemotherapy. Outcomes for patients with high risk or those who do not respond to frontline therapies remain dismal, and novel treatments are needed in this setting. PTLD is associated with Epstein-Barr virus (EBV) infection in 60% to 80% of cases, making EBV-directed therapy an attractive treatment modality. Recently, the introduction of adoptive immunotherapies has become a promising option for refractory cases; hopefully, these treatment strategies can be used as earlier lines of therapy in the future.
Collapse
Affiliation(s)
- Jennifer E. Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Barbara Pro
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| |
Collapse
|
11
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
12
|
McKenna M, Epperla N, Ghobadi A, Liu J, Lazaryan A, Ibrahim U, Jacobson CA, Naik SG, Nastoupil L, Chowdhury SM, Voorhees TJ, Jacobs MT, Farooq U, Osman K, Olszewski AJ, Ahmed S, Evens AM. Real-world evidence of the safety and survival with CD19 CAR-T cell therapy for relapsed/refractory solid organ transplant-related PTLD. Br J Haematol 2023. [PMID: 37129856 DOI: 10.1111/bjh.18828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The use of CD19 chimeric antigen receptor T-cell (CAR-T) therapy for relapsed/refractory solid organ transplantation (SOT)-related post-transplant lymphoproliferative disorder (PTLD) is not well studied. We conducted a multicentre, retrospective analysis of adults with relapsed/refractory SOT-associated PTLD. Among 22 relapsed/refractory SOT-PTLD patients, the pathology was monomorphic B cell. Prior SOTs included 14 kidney (64%), three liver (14%), two heart (9%), one intestinal (5%), one lung (5%), and one pancreas after kidney transplant (5%). The median time from SOT to PTLD diagnosis was 107 months. Pre-CAR-T bridging therapy was used in 55% of patients, and immunosuppression was stopped completely before CAR-T infusion in 64%. Eighteen (82%) patients experienced cytokine release syndrome: one (5%) each grade (G) 3 and G4. The immune effector cell-associated neurotoxicity syndrome was observed in 16 (73%) patients: six (27%) G3 and two (9%) G4. The overall response rate was 64% (55% complete response). Three patients (14%) experienced allograft rejection after CAR-T. The two-year progression-free survival and overall survival rates were 35% and 58%, respectively. Additionally, the achievement of CR post-CAR-T was strongly associated with survival. Collectively, the safety and efficacy of CD19 CAR-T therapy in relapsed/refractory SOT-related PTLD appeared similar to pivotal CAR-T data, including approximately one-third of patients achieving sustained remission.
Collapse
Affiliation(s)
- Marshall McKenna
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Narendranath Epperla
- Division of Hematology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Armin Ghobadi
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jieqi Liu
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Aleksandr Lazaryan
- Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Uroosa Ibrahim
- Department of Hematology and Oncology, Bone Marrow Transplantation and Cellular Therapy Program, Mount Sinai Hospital, New York, New York, USA
| | - Caron A Jacobson
- Division of Hematologic Malignancies, Harvard Medical School, Dana Faber Cancer Institute, Boston, Massachusetts, USA
| | - Seema G Naik
- Penn State Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sayan Mullick Chowdhury
- Division of Hematology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Timothy J Voorhees
- Division of Hematology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Miriam T Jacobs
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Umar Farooq
- Division of Hematology, Oncology and Blood & Marrow Transplantation, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
| | - Keren Osman
- Department of Hematology and Oncology, Bone Marrow Transplantation and Cellular Therapy Program, Mount Sinai Hospital, New York, New York, USA
| | - Adam J Olszewski
- Lifespan Cancer Institute, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
13
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Blosser CD, Portuguese AJ, Santana C, Murakami N. Transplant Onconephrology: An Update. Semin Nephrol 2022; 42:151348. [PMID: 37209580 PMCID: PMC10330527 DOI: 10.1016/j.semnephrol.2023.151348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transplant onconephrology is a growing specialty focused on the health care of kidney transplant recipients with cancer. Given the complexities associated with the care of transplant patients, along with the advent of novel cancer therapies such as immune checkpoint inhibitors and chimeric antigen-receptor T cells, there is a dire need for the subspecialty of transplant onconephrology. The management of cancer in the setting of kidney transplantation is best accomplished by a multidisciplinary team, including transplant nephrologists, oncologists, and patients. This review addresses the current state and future opportunities for transplant onconephrology, including the roles of the multidisciplinary team, and related scientific and clinical knowledge.
Collapse
Affiliation(s)
- Christopher D Blosser
- Division of Nephrology, University of Washington, Seattle, WA; Division of Nephrology, Seattle Children's Hospital, Seattle, WA.
| | | | | | - Naoka Murakami
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA.; Harvard Medical School, Boston, MA
| |
Collapse
|