1
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Ma G, Cheng S, Han Y, Tang W, Pang W, Chen L, Ding Z, Cao H. The p53-miR17 family-Rankl axis bridges liver-bone communication. Mol Ther 2025; 33:631-648. [PMID: 40308192 PMCID: PMC11853355 DOI: 10.1016/j.ymthe.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025] Open
Abstract
Our study elucidates the crucial role of the liver in bone homeostasis through the p53-miR17 family (miR17-miR20/miR20-miR106/miR93-miR106)-Rankl axis. We demonstrate the enhanced hepatocyte Rankl expression in inflammaging conditions, such as aging, ovariectomized (OVX) mice, and elderly humans. Mice with hepatocyte-specific Rankl deletion exhibit significant resistance to bone mass loss associated with aging, lipopolysaccharide (LPS)-induced inflammation, or estrogen deficiency, compared with controls. Our study highlights hepatocytes as the primary source of Rankl in the liver and serum under these conditions. We identify the p53-miR17 family axis as a crucial regulator for hepatocyte Rankl expression, with p53 inhibiting the miR17 family transcription. Through bioinformatics analysis and in vitro validation, we identify Rankl mRNA as a direct target of the miR17 family. Targeting this axis via CasRx-mediated mRNA editing or miRNA interference significantly attenuates bone mass loss in mice. Our investigation underscores the pivotal significance and therapeutic potential of modulating the p53-miR17 family-Rankl axis in the treatment of inflammaging-associated osteoporosis.
Collapse
Affiliation(s)
- Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Palmisano B, Vecchio AD, Passaretti A, Stefano A, Miracolo G, Farinacci G, Corsi A, Riminucci M, Romeo U, Cicconetti A. Potential of combined red and near-infrared photobiomodulation to mitigate pro-osteoclastic and inflammatory gene expression in human mandibular osteogenic cells. Lasers Med Sci 2024; 39:247. [PMID: 39349883 PMCID: PMC11442520 DOI: 10.1007/s10103-024-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Appropriate regeneration of jawbone after dental or surgical procedures relies on the recruitment of osteoprogenitor cells able to differentiate into matrix-producing osteoblasts. In this context, photobiomodulation (PBM) has emerged as promising therapy to improve tissue regeneration and to facilitate wound healing processes. The aim of this study was to determine the effect of PBM on human osteoprogenitor cells isolated from mandibular trabecular bone.Bone marrow stromal cell cultures were established from 4 donors and induced toward osteogenic differentiation for 14 days in a standard osteogenic assay. Cells were irradiated with a combined red/near-infrared (NIR) laser following different schedules and expression of osteogenic, matrix-related, osteoclastogenic and inflammatory genes was analyzed by quantitative PCR.Gene expression analysis revealed no overall effects of PBM on osteogenic differentiation. However, a statistically significant reduction was observed in the transcripts of COL1A1 and MMP13, two important genes involved in the bone matrix homeostasis. Most important, PBM significantly downregulated the expression of RANKL, IL6 and IL1B, three genes that are involved in both osteoclastogenesis and inflammation.In conclusion, PBM with a red/NIR laser did not modulate the osteogenic phenotype of mandibular osteoprogenitors but markedly reduced their expression of matrix-related genes and their pro-osteoclastogenic and pro-inflammatory profile.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Del Vecchio
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy.
| | - Alfredo Passaretti
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Alessia Stefano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanna Miracolo
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Umberto Romeo
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Andrea Cicconetti
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| |
Collapse
|
4
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Palmisano B, Farinacci G, Campolo F, Tavanti C, Stefano A, Donsante S, Ippolito E, Giannicola G, Venneri MA, Corsi A, Riminucci M. A pathogenic role for brain-derived neurotrophic factor (BDNF) in fibrous dysplasia of bone. Bone 2024; 181:117047. [PMID: 38331308 DOI: 10.1016/j.bone.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Brain derived neurotrophic factor (BDNF) is a neurotrophin, expressed in the central nervous system and in peripheral tissues, that is regulated by the Gsα/cAMP pathway. In bone, it regulates osteogenesis and stimulates RANKL secretion and osteoclast formation in osteolytic tumors such as Multiple Myeloma. Fibrous dysplasia (FD) of bone is a rare genetic disease of the skeleton caused by gain-of-function mutations of the Gsα gene in which RANKL-dependent enhanced bone resorption is a major cause of bone fragility and clinical morbidity. We observed that BDNF transcripts are expressed in human FD lesions. Specifically, immunolocalization studies performed on biopsies obtained from FD patients revealed the expression of BDNF in osteoblasts and, to a lower extent, in the spindle-shaped cells within the fibrous tissue. Therefore, we hypothesized that BDNF can play a role in the pathogenesis of FD by stimulating RANKL secretion and bone resorption. To test this hypothesis, we used the EF1α-GsαR201C mouse model of the human disease (FD mice). Western blot analysis revealed a higher expression of BDNF in bone segments of FD mice compared to WT mice and the immunolabeling pattern within mouse FD lesions was similar to that observed in human FD. Treatment of FD mice with a monoclonal antibody against BDNF reduced the fibrous tissue along with the number of osteoclasts and osteoblasts within femoral lesions. These results reveal BDNF as a new player in the pathogenesis of FD and a potential molecular mechanism by which osteoclastogenesis may be nourished within FD bone lesions. They also suggest that BDNF inhibition may be a new approach to reduce abnormal bone remodeling in FD.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Tavanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessia Stefano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ernesto Ippolito
- Department of Orthopaedic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Giannicola
- Department of Anatomical, Histological, Medico Legal and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
6
|
Amorim T, Trivanovic D, Benova A, Li H, Tencerova M, Palmisano B. Young minds, deeper insights: a recap of the BMAS Summer School 2023, ranging from basic research to clinical implications of bone marrow adipose tissue. Biol Open 2024; 13:bio060263. [PMID: 38288785 PMCID: PMC10855210 DOI: 10.1242/bio.060263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Bone marrow adiposity (BMA) is a rapidly growing yet very young research field that is receiving worldwide attention based on its intimate relationship with skeletal and metabolic diseases, as well as hematology and cancer. Moreover, increasing numbers of young scientists and students are currently and actively working on BMA within their research projects. These developments led to the foundation of the International Bone Marrow Adiposity Society (BMAS), with the goal to promote BMA knowledge worldwide, and to train new generations of researchers interested in studying this field. Among the many initiatives supported by BMAS, there is the BMAS Summer School, inaugurated in 2021 and now at its second edition. The aim of the BMAS Summer School 2023 was to educate and train students by disseminating the latest advancement on BMA. Moreover, Summer School 2023 provided suggestions on how to write grants, deal with negative results in science, and start a laboratory, along with illustrations of alternative paths to academia. The event was animated by constructive and interactive discussions between early-career researchers and more senior scientists. In this report, we highlight key moments and lessons learned from the event.
Collapse
Affiliation(s)
- Tânia Amorim
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh 15206, USA
| | - Drenka Trivanovic
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade 11000, Serbia
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Hongshuai Li
- Department of Orthopaedics & Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City 52246, USA
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Biagio Palmisano
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Rome 00158, Italy
| |
Collapse
|
7
|
Palmisano B, Riminucci M, Karsenty G. Interleukin-6 signaling in osteoblasts regulates bone remodeling during exercise. Bone 2023; 176:116870. [PMID: 37586472 DOI: 10.1016/j.bone.2023.116870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Aerobic exercise has many beneficial effects on human health. One of them, is to influence positively bone remodeling through, however, incompletely understood mechanisms. Given its recently demonstrated role as a mediator of the bone to muscle to bone crosstalk during exercise, we hypothesized that interleukin-6 (IL-6) signaling in bone may contribute to the beneficial effect that exercise has on bone homeostasis. In this study, we first show that aerobic exercise increases the expression of Il6r in bones of WT mice. Then, we analyzed a mutant mouse strain that lacks the IL-6 receptor alpha specifically in osteoblasts (Il6rosb-/-). As it has been reported in the case of Il6-/- mice, in sedentary conditions, bone mass and remodeling were normal in adult Il6rosb-/- mice when compared to controls. In contrast, Il6rosb-/- mice that were subjected to aerobic exercise did not show the increase in bone mass and remodeling parameters that control littermates demonstrated. Moreover, Il6rosb-/- mice undergoing aerobic exercise showed a severe impairment in bone formation, indicating that activation of bone-forming cells is defective when IL-6 signaling in osteoblasts is disrupted. In sum, this study provides evidence that a function of IL-6 signaling in osteoblasts is to promote high bone turnover during aerobic exercise.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, 701 W 168th street, New York, NY 10032, United States of America.
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, 701 W 168th street, New York, NY 10032, United States of America.
| |
Collapse
|
8
|
Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10531-3. [PMID: 36930385 DOI: 10.1007/s12015-023-10531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Bone marrow adipose tissue (BMAT) creates a specific microniche within multifunctional bone marrow (BM) ecosystem which imposes changes in surrounding cells and at systemic level. Moreover, BMAT contributes to spatial and temporal separation and metabolic compartmentalization of BM, thus regulating BM homeostasis and diseases. Recent findings have identified novel progenitor subsets of bone marrow adipocytes (BMAd)s recruited during the BM adipogenesis within different skeletal and hematopoietic stem cell niches. Potential of certain mesenchymal BM cells to differentiate into both osteogenic and adipogenic lineages, contributes to the complex interplay of BMAT with endosteal (osteoblastic) niche compartments as an important cellular player in bone tissue homeostasis. Targeting and ablation of BMAT cells at certain states might be an optional and promising strategy for improvement of bone health. Additionally, recent findings demonstrated spatial distribution of BMAds related to hematopoietic cells and pointed out important functional roles in the vital processes such as long-term hematopoiesis. BM adipogenesis appears to be an emergency phenomenon that follows the production of hematopoietic stem and progenitor cell niche factors, thus regulating physiological, stressed, and malignant hematopoiesis. Lipolytic and secretory activity of BMAds can influence survival and proliferation of hematopoietic cells at different maturation stages. Due to their different lipid status, constitutive and regulated BMAds are important determinants of normal and malignant hematopoietic cells. Further elucidation of cellular and molecular players involved in BMAT expansion and crosstalk with malignant cells is of paramount importance for conceiving the new therapies for improvement of BM health.
Collapse
|
9
|
Donsante S, Siciliano G, Ciardo M, Palmisano B, Messina V, de Turris V, Farinacci G, Serafini M, Silvestrini F, Corsi A, Riminucci M, Alano P. An in vivo humanized model to study homing and sequestration of Plasmodium falciparum transmission stages in the bone marrow. Front Cell Infect Microbiol 2023; 13:1161669. [PMID: 37153157 PMCID: PMC10154621 DOI: 10.3389/fcimb.2023.1161669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Siciliano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Messina
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | | | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| | - Pietro Alano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| |
Collapse
|
10
|
Angiotensin II Modulates Calcium/Phosphate Excretion in Experimental Model of Hypertension: Focus on Bone. Biomedicines 2022; 10:biomedicines10112928. [PMID: 36428495 PMCID: PMC9687632 DOI: 10.3390/biomedicines10112928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
A link between hypertension and long-term bone health has been suggested. The aim of this study was to investigate the effects of chronic angiotensin II administration on urinary calcium/phosphate excretion, bone mineral density, bone remodeling and osteoblast population in a well-established experimental model of hypertension, in the absence of possible confounding factors that could affect bone metabolism. Male Sprague-Dawley rats, divided in the following groups: (a) Angiotensin II (Ang II, 200 ng/kg/min, osmotic minipumps, sub cutis, n = 8); (b) Ang II+losartan (Los, 50 mg/kg/day, per os, n = 6); (c) control group (physiological saline, sub cutis, n = 9); and (d) control+losartan (n = 6) were treated for four weeks. During the experimental period, 24-hour diuresis, urinary calcium, phosphate and sodium excretion were measured prior to the treatment, at two weeks of treatment, and at the end of the treatment. Systolic blood pressure was measured by plethysmography technique (tail cuff method). At the end of the experimental protocol, the rats were euthanized and peripheral quantitative computed tomography at the proximal metaphysis and at the diaphysis of the tibiae and quantitative bone histomorphometry on distal femora were performed. Angiotensin II-dependent hypertension is associated with increased calcium and phosphate excretion. AT1 receptor blockade prevented the increase of blood pressure and phosphate excretion but did not affect the increase of calcium excretion. These changes took place without significantly affecting bone density, bone histology or osteoblast population. In conclusion, in our experimental conditions, angiotensin II-dependent hypertension gave rise to an increased urinary excretion of calcium and phosphate without affecting bone density.
Collapse
|
11
|
Abstract
The tissue-resident skeletal stem cells (SSCs), which are self-renewal and multipotent, continuously provide cells (including chondrocytes, bone cells, marrow adipocytes, and stromal cells) for the development and homeostasis of the skeletal system. In recent decade, utilizing fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing, studies have identified various types of SSCs, plotted the lineage commitment trajectory, and partially revealed their properties under physiological and pathological conditions. In this review, we retrospect to SSCs identification and functional studies. We discuss the principles and approaches to identify bona fide SSCs, highlighting pioneering findings that plot the lineage atlas of SSCs. The roles of SSCs and progenitors in long bone, craniofacial tissues, and periosteum are systematically discussed. We further focus on disputes and challenges in SSC research.
Collapse
|