1
|
Deng H, Malsiu F, Ge H, Losmanova T, Medová M, Zamboni N, Wang W, Peng RW, Tang J, Dorn P, Marti TM. LDHB silencing enhances the effects of radiotherapy by impairing nucleotide metabolism and promoting persistent DNA damage. Sci Rep 2025; 15:10897. [PMID: 40158058 PMCID: PMC11954946 DOI: 10.1038/s41598-025-95633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally, with radiotherapy as a key treatment modality for inoperable cases. Lactate, once considered a by-product of anaerobic cellular metabolism, is now considered critical for cancer progression. Lactate dehydrogenase B (LDHB) converts lactate to pyruvate and supports mitochondrial metabolism. In this study, a re-analysis of our previous transcriptomic data revealed that LDHB silencing in the NSCLC cell lines A549 and H358 dysregulated 1789 genes, including gene sets associated with cell cycle and DNA repair pathways. LDHB silencing increased H2AX phosphorylation, a surrogate marker of DNA damage, and induced cell cycle arrest at the G1/S or G2/M checkpoint depending on the p53 status. Long-term LDHB silencing sensitized A549 cells to radiotherapy, resulting in increased DNA damage and genomic instability as evidenced by increased H2AX phosphorylation levels and micronuclei accumulation, respectively. The combination of LDHB silencing and radiotherapy increased protein levels of the senescence marker p21, accompanied by increased phosphorylation of Chk2, suggesting persistent DNA damage. Metabolomics analysis revealed that LDHB silencing decreased nucleotide metabolism, particularly purine and pyrimidine biosynthesis, in tumor xenografts. Nucleotide supplementation partially attenuated DNA damage caused by combined LDHB silencing and radiotherapy. These findings suggest that LDHB supports metabolic homeostasis and DNA damage repair in NSCLC, while its silencing enhances the effects of radiotherapy by impairing nucleotide metabolism and promoting persistent DNA damage.
Collapse
Affiliation(s)
- Haibin Deng
- Department of General Thoracic Surgery, Inselspital Bern University Hospital, Murtenstrasse 28, 3008, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- 2nd Department of Thoracic Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital Hunan, 582 Xianjiahu Rd, Yuelu, Changsha, 410013, Hunan, China
| | - Fatlind Malsiu
- Department of General Thoracic Surgery, Inselspital Bern University Hospital, Murtenstrasse 28, 3008, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital Bern University Hospital, Murtenstrasse 28, 3008, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tereza Losmanova
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Wenxiang Wang
- 2nd Department of Thoracic Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital Hunan, 582 Xianjiahu Rd, Yuelu, Changsha, 410013, Hunan, China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital Bern University Hospital, Murtenstrasse 28, 3008, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jinming Tang
- 2nd Department of Thoracic Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital Hunan, 582 Xianjiahu Rd, Yuelu, Changsha, 410013, Hunan, China.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital Bern University Hospital, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital Bern University Hospital, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Lai SY, Sandulache VC, Schellingerhout D, Fuller CD, Chen Y, Walker CM, Bankson JA. First-in-Human Hyperpolarized MRI for Tumor Metabolism in HNSCC. JAMA Otolaryngol Head Neck Surg 2024; 150:628-630. [PMID: 38780963 PMCID: PMC11349323 DOI: 10.1001/jamaoto.2024.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This case report describes the use of hyperpolarized magnetic resonance imaging (MRI) in a patient with head and neck squamous cell carcinoma (HNSCC) to demonstrate its translational viability.
Collapse
Affiliation(s)
- Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Dawid Schellingerhout
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Christopher M Walker
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
4
|
Dhawan A, Pifer PM, Sandulache VC, Skinner HD. Metabolic targeting, immunotherapy and radiation in locally advanced non-small cell lung cancer: Where do we go from here? Front Oncol 2022; 12:1016217. [PMID: 36591457 PMCID: PMC9794617 DOI: 10.3389/fonc.2022.1016217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
In the US, there are ~250,000 new lung cancer diagnoses and ~130,000 deaths per year, and worldwide there are an estimated 1.6 million deaths per year from this deadly disease. Lung cancer is the most common cause of cancer death worldwide, and it accounts for roughly a quarter of all cancer deaths in the US. Non-small cell lung cancer (NSCLC) represents 80-85% of these cases. Due to an enormous tobacco cessation effort, NSCLC rates in the US are decreasing, and the implementation of lung cancer screening guidelines and other programs have resulted in a higher percentage of patients presenting with potentially curable locoregional disease, instead of distant disease. Exciting developments in molecular targeted therapy and immunotherapy have resulted in dramatic improvement in patients' survival, in combination with new surgical, pathological, radiographical, and radiation techniques. Concurrent platinum-based doublet chemoradiation therapy followed by immunotherapy has set the benchmark for survival in these patients. However, despite these advances, ~50% of patients diagnosed with locally advanced NSCLC (LA-NSCLC) survive long-term. In patients with local and/or locoregional disease, chemoradiation is a critical component of curative therapy. However, there remains a significant clinical gap in improving the efficacy of this combined therapy, and the development of non-overlapping treatment approaches to improve treatment outcomes is needed. One potential promising avenue of research is targeting cancer metabolism. In this review, we will initially provide a brief general overview of tumor metabolism as it relates to therapeutic targeting. We will then focus on the intersection of metabolism on both oxidative stress and anti-tumor immunity. This will be followed by discussion of both tumor- and patient-specific opportunities for metabolic targeting in NSCLC. We will then conclude with a discussion of additional agents currently in development that may be advantageous to combine with chemo-immuno-radiation in NSCLC.
Collapse
Affiliation(s)
- Annika Dhawan
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Phillip M. Pifer
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Heath D. Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Heath D. Skinner,
| |
Collapse
|
5
|
Nagayama Y, Hamada K. Reprogramming of Cellular Metabolism and Its Therapeutic Applications in Thyroid Cancer. Metabolites 2022; 12:1214. [PMID: 36557253 PMCID: PMC9782759 DOI: 10.3390/metabo12121214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Metabolism is a series of life-sustaining chemical reactions in organisms, providing energy required for cellular processes and building blocks for cellular constituents of proteins, lipids, carbohydrates and nucleic acids. Cancer cells frequently reprogram their metabolic behaviors to adapt their rapid proliferation and altered tumor microenvironments. Not only aerobic glycolysis (also termed the Warburg effect) but also altered mitochondrial metabolism, amino acid metabolism and lipid metabolism play important roles for cancer growth and aggressiveness. Thus, the mechanistic elucidation of these metabolic changes is invaluable for understanding the pathogenesis of cancers and developing novel metabolism-targeted therapies. In this review article, we first provide an overview of essential metabolic mechanisms, and then summarize the recent findings of metabolic reprogramming and the recent reports of metabolism-targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koichiro Hamada
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
6
|
Bagué S, León X, Terra X, Lejeune M, Camacho M, Avilés‐Jurado F. Prognostic capacity of the transcriptional expression of lactate dehydrogenase A in patients with head and neck squamous cell carcinoma. Head Neck 2022; 44:2505-2512. [DOI: 10.1002/hed.27161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Silvia Bagué
- Pathology Department, Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Spain
| | - Xavier León
- Otorhinolaryngology Department, Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Madrid Spain
| | - Ximena Terra
- MoBioFood Research Group, Biochemistry and Biotechnology Department Universitat Rovira i Virgili, Campus Sescel·lades Tarragona Spain
| | - Marylène Lejeune
- Pathology Department, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta Institut d'Investigació Sanitària Pere Virgili (IISPV), URV Tortosa Spain
| | - Mercedes Camacho
- Genomics of Complex Diseases Research Institute Hospital Sant Pau Barcelona Spain
| | - Francesc‐Xavier Avilés‐Jurado
- Otorhinolaryngology Department, Hospital Universitari Joan XXIII, Institut d´investigació Sanitària Pere Virgili IISPV, Universitat Rovira i Virgili URV Tarragona Spain
| |
Collapse
|
7
|
Khodaei T, Inamdar S, Suresh AP, Acharya AP. Drug delivery for metabolism targeted cancer immunotherapy. Adv Drug Deliv Rev 2022; 184:114242. [PMID: 35367306 DOI: 10.1016/j.addr.2022.114242] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 02/08/2023]
Abstract
Drug delivery vehicles have made a great impact on cancer immunotherapies in clinics and pre-clinical research. Notably, the science of delivery of cancer vaccines and immunotherapeutics, modulating immune cell functions has inspired development of several successful companies and clinical products. Interestingly, these drug delivery modalities not only modulate the function of immune cells (often quantified at the mRNA and protein levels), but also modulate the metabolism of these cells. Specifically, cancer immunotherapy often leads to activation of different immune cells such as dendritic cells, macrophages and T cells, which is driven by energy metabolism of these cells. Recently, there has been a great excitement about interventions that can directly modulate the energy metabolism of these immune cells and thus affect their function and in turn lead to a robust cancer immune response. Here we review few strategies that have been tested in clinic and pre-clinical research for generating effective metabolism-associated cancer therapies and immunotherapies.
Collapse
|
8
|
Zhou Y, Qi M, Yang M. Fluorescence determination of lactate dehydrogenase activity based on silicon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120697. [PMID: 34915230 DOI: 10.1016/j.saa.2021.120697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Silicon quantum dots (SiQDs) synthesized based on 3-aminopropyltrimethoxysilane (ATPMS) as silicon source were used to detect the activity of lactate dehydrogenase (LDH) through changes of fluorescence intensity of SiQDs. In this system, the fluorescence of SiQDs was first quenched by nicotinamide adenine dinucleotide (NADH), and then recovered with the addition of LDH, as NADH was consumed by catalytic reaction of LDH. A linear calibration chart of LDH is obtained in the range of 0.77-385 U/mL. The assay displays high selectivity towards LDH detection, and was successfully applied to the analysis of LDH in human serum samples. This assay has great prospects for the diagnosis and prognosis of various diseases, especially melanoma.
Collapse
Affiliation(s)
- Yangzhe Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Bao L, Xu T, Lu X, Huang P, Pan Z, Ge M. Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Front Oncol 2021; 11:773028. [PMID: 34926283 PMCID: PMC8674491 DOI: 10.3389/fonc.2021.773028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolism differs significantly between tumor and normal cells. Metabolic reprogramming in cancer cells and metabolic interplay in the tumor microenvironment (TME) are important for tumor formation and progression. Tumor cells show changes in both catabolism and anabolism. Altered aerobic glycolysis, known as the Warburg effect, is a well-recognized characteristic of tumor cell energy metabolism. Compared with normal cells, tumor cells consume more glucose and glutamine. The enhanced anabolism in tumor cells includes de novo lipid synthesis as well as protein and nucleic acid synthesis. Although these forms of energy supply are uneconomical, they are required for the functioning of cancer cells, including those in thyroid cancer (TC). Increasing attention has recently focused on alterations of the TME. Understanding the metabolic changes governing the intricate relationship between TC cells and the TME may provide novel ideas for the treatment of TC.
Collapse
Affiliation(s)
- Lisha Bao
- Second Clinical College, Zhejiang Chinese Medical School, Hangzhou, China
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tong Xu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xixuan Lu
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ping Huang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zongfu Pan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Minghua Ge
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|