1
|
Li X, Li X, Ren Y, Wang L, Mao Z, Gao S, Ma P, Chen J. HJURP modulates cell proliferation and chemoresistance via the MYC/TOP2A transcriptional axis in gastric cancer. Front Mol Biosci 2025; 12:1566293. [PMID: 40290723 PMCID: PMC12021643 DOI: 10.3389/fmolb.2025.1566293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background The histone chaperone Holliday Junction Recognition Protein (HJURP) has been associated with multiple types of cancers, but its role in GC is not yet fully understood. Considering its functions in centromere stability and DNA repair, investigating HJURP's role in GC may offer novel therapeutic perspectives. Methods HJURP expression was examined in a dataset comprising TCGA-STAD samples and an internal group of GC patients, utilizing RNA sequencing and Western blot techniques. Functional experiments were carried out on the AGS and HGC-27 GC cell lines. The expression levels of HJURP, MYC, and Topoisomerase II alpha (TOP2A) were assessed via quantitative real-time PCR and Western blot. Proliferation rates of the cells were determined through EdU, CCK-8, and colony formation assays. Results Compared to adjacent normal tissues, HJURP expression was notably increased in GC tissues, a finding consistent across both the TCGA-STAD database and our internal patient group. Silencing HJURP markedly reduced GC cell growth and chemoresistance. Mechanistically, HJURP enhanced MYC stability, which in turn promoted TOP2A transcription. Rescue experiments confirmed that overexpression of TOP2A alters proliferation and chemoresistance of GC cells with HJURP knockdown, indicating the dependency of this axis on MYC activity. Conclusion Our study demonstrates that HJURP is critical for promoting GC proliferation and chemoresistance through the regulation of the MYC/TOP2A transcriptional network. Targeting HJURP might offer a novel therapeutic avenue for GC, necessitating further exploration of its clinical potential. This work underscores the value of investigating histone chaperones as potential targets in cancer treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiwen Li
- Department of Central Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Yanlin Ren
- Department of Labor Hygiene and Occupational Disease Prevention and Control, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Ling Wang
- Department of Hematology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zehao Mao
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shikun Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Junjie Chen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
3
|
Liu C, Fang J, Kang W, Yang Y, Yu C, Chen H, Zhang Y, Ouyang H. Identification of novel potential homologous repair deficiency-associated genes in pancreatic adenocarcinoma via WGCNA coexpression network analysis and machine learning. Cell Cycle 2023; 22:2392-2408. [PMID: 38124367 PMCID: PMC10802216 DOI: 10.1080/15384101.2023.2293594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Homologous repair deficiency (HRD) impedes double-strand break repair, which is a common driver of carcinogenesis. Positive HRD status can be used as theranostic markers of response to platinum- and PARP inhibitor-based chemotherapies. Here, we aimed to fully investigate the therapeutic and prognostic potential of HRD in pancreatic adenocarcinoma (PAAD) and identify effective biomarkers related to HRD using comprehensive bioinformatics analysis. The HRD score was defined as the unweighted sum of the LOH, TAI, and LST scores, and it was obtained based on the previous literature. To characterize PAAD immune infiltration subtypes, the "ConsensusClusterPlus" package in R was used to conduct unsupervised clustering. A WGCNA was conducted to elucidate the gene coexpression modules and hub genes in the HRD-related gene module of PAAD. The functional enrichment study was performed using Metascape. LASSO analysis was performed using the "glmnet" package in R, while the random forest algorithm was realized using the "randomForest" package in R. The prognostic variables were evaluated using univariate Cox analysis. The prognostic risk model was built using the LASSO approach. ROC curve and KM survival analyses were performed to assess the prognostic potential of the risk model. The half-maximal inhibitory concentration (IC50) of the PARP inhibitors was estimated using the "pRRophetic" package in R and the Genomics of Drug Sensitivity in Cancer database. The "rms" package in R was used to create the nomogram. A high HRD score indicated a poor prognosis and an advanced clinical process in PAAD patients. PAAD tumors with high HRD levels revealed significant T helper lymphocyte depletion, upregulated levels of cancer stem cells, and increased sensitivity to rucaparib, Olaparib, and veliparib. Using WGCNA, 11 coexpression modules were obtained. The red module and 122 hub genes were identified as the most correlated with HRD in PAAD. Functional enrichment analysis revealed that the 122 hub genes were mainly concentrated in cell cycle pathways. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were screened via LASSO analysis and a random forest algorithm, and they were validated using independent validation sets. No direct association between HRD and CKS1B, HJURP, or TPX2 has not been reported in the literature so far. Thus, these findings indicated that CKS1B, HJURP, and TPX2 have potential as diagnostic and prognostic biomarkers for PAAD. We constructed a novel HRD-related prognostic model that provides new insights into PAAD prognosis and immunotherapy. Based on bioinformatics analysis, we comprehensively explored the therapeutic and prognostic potential of HRD in PAAD. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were identified through the combination of WGCNA, LASSO analysis and a random forest algorithm. A novel HRD-related risk model that can predict clinical prognosis and immunotherapeutic response in PAAD patients was constructed.
Collapse
Affiliation(s)
- Chun Liu
- Department of General surgery, The People’s Hospital of Chizhou, Chizhou, Anhui Province, China
| | - Jingyun Fang
- Department of Nursing, The People’s Hospital of Chizhou, Chizhou, Anhui Province, China
| | - Weibiao Kang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Yang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Changjun Yu
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hao Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yongwei Zhang
- Department of general surgery, Anqing First People’s Hospital, Anqing, Anhui Province, China
| | - Huan Ouyang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Liu P, Luo J, Tan N, Li C, Xu J, Yang X. Establishing a prognostic model of chromatin modulators and identifying potential drug candidates in renal clear cell patients. BMC Bioinformatics 2023; 24:104. [PMID: 36941564 PMCID: PMC10029171 DOI: 10.1186/s12859-023-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Renal carcinoma is a common malignant tumor of the urinary system. Advanced renal carcinoma has a low 5-year survival rate and a poor prognosis. More and more studies have confirmed that chromatin regulators (CRs) can regulate the occurrence and development of cancer. This article investigates the functional and prognostic value of CRs in renal carcinoma patients. METHODS mRNA expression and clinical information were obtained from The Cancer Genome Atlas database. Univariate Cox regression analysis and LASSO regression analysis were used to select prognostic chromatin-regulated genes and use them to construct a risk model for predicting the prognosis of renal cancer. Differences in prognosis between high-risk and low-risk groups were compared using Kaplan-Meier analysis. In addition, we analyzed the relationship between chromatin regulators and tumor immune infiltration, and explored differences in drug sensitivity between risk groups. RESULTS We constructed a model consisting of 11 CRs to predict the prognosis of renal cancer patients. We not only successfully validated its feasibility, but also found that the 11 CR-based model was an independent prognostic factor. Functional analysis showed that CRs were mainly enriched in cancer development-related signalling pathways. We also found through the TIMER database that CR-based models were also associated with immune cell infiltration and immune checkpoints. At the same time, the genomics of drug sensitivity in cancer database was used to analyze the commonly used drugs of renal clear cell carcinoma patients. It was found that patients in the low-risk group were sensitive to medicines such as axitinib, pazopanib, sorafenib, and gemcitabine. In contrast, those in the high-risk group may be sensitive to sunitinib. CONCLUSION The chromatin regulator-related prognostic model we constructed can be used to assess the prognostic risk of patients with clear cell renal cell carcinoma. The results of this study can bring new ideas for targeted therapy of clear cell renal carcinoma, helping doctors to take corresponding measures in advance for patients with different risks.
Collapse
Affiliation(s)
- Puyu Liu
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Jihang Luo
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Tan
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Chengfang Li
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Jieyu Xu
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Xiaorong Yang
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
5
|
Gao S, Zhou XQ, Wu Q, Chen XD, Li P, Qin YM. Effects of Holliday Junction-Recognition Protein-Mediated C-Jun N-Terminal Kinase/ Signal Transducer and Activator of Transcription 3 Signaling Pathway on Cell Proliferation, Cell Cycle and Cell Apoptosis in Bladder Urothelial Carcinoma. TOHOKU J EXP MED 2023; 259:209-219. [PMID: 36543245 DOI: 10.1620/tjem.2022.j113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.
Collapse
Affiliation(s)
- Song Gao
- Department of Urology, Lishui People's Hospital
| | | | - Qi Wu
- Department of Urology, Lishui People's Hospital
| | | | - Peng Li
- Department of Urology, Lishui People's Hospital
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital
| |
Collapse
|
6
|
Li Z, Li Y, Zhang Q, Ge W, Zhang Y, Zhao X, Hu J, Yuan L, Zhang W. Establishment of Bactrian Camel Induced Pluripotent Stem Cells and Prediction of Their Unique Pluripotency Genes. Int J Mol Sci 2023; 24:ijms24031917. [PMID: 36768240 PMCID: PMC9916525 DOI: 10.3390/ijms24031917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.
Collapse
Affiliation(s)
- Zongshuai Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiran Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbo Ge
- Chinese Academy of Agricultural Sciences Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Li L, Yuan Q, Chu YM, Jiang HY, Zhao JH, Su Q, Huo DQ, Zhang XF. Advances in holliday junction recognition protein (HJURP): Structure, molecular functions, and roles in cancer. Front Cell Dev Biol 2023; 11:1106638. [PMID: 37025176 PMCID: PMC10070699 DOI: 10.3389/fcell.2023.1106638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Oncogenes are increasingly recognized as important factors in the development and progression of cancer. Holliday Junction Recognition Protein (HJURP) is a highly specialized mitogenic protein that is a chaperone protein of histone H3. The HJURP gene is located on chromosome 2q37.1 and is involved in nucleosome composition in the mitotic region, forming a three-dimensional crystal structure with Centromere Protein A (CENP-A) and the histone 4 complex. HJURP is involved in the recruitment and assembly of centromere and kinetochore and plays a key role in stabilizing the chromosome structure of tumor cells, and its dysfunction may contribute to tumorigenesis. In the available studies HJURP is upregulated in a variety of cancer tissues and cancer cell lines and is involved in tumor proliferation, invasion, metastasis and immune response. In an in vivo model, overexpression of HJURP in most cancer cell lines promotes cell proliferation and invasiveness, reduces susceptibility to apoptosis, and promotes tumor growth. In addition, upregulation of HJURP was associated with poorer prognosis in a variety of cancers. These properties suggest that HJURP may be a possible target for the treatment of certain cancers. Various studies targeting HJURP as a prognostic and therapeutic target for cancer are gradually attracting interest and attention. This paper reviews the functional and molecular mechanisms of HJURP in a variety of tumor types with the aim of providing new targets for future cancer therapy.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yue-Ming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hang-Yu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Ju-Hua Zhao
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Su
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Dan-Qun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| | - Xiao-Fen Zhang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| |
Collapse
|
8
|
Yang Y, Duan M, Zha Y, Wu Z. CENP-A is a potential prognostic biomarker and correlated with immune infiltration levels in glioma patients. Front Genet 2022; 13:931222. [PMID: 36105094 PMCID: PMC9465177 DOI: 10.3389/fgene.2022.931222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Centromeric protein A (CENP-A), an essential protein involved in chromosomal segregation during cell division, is associated with several cancer types. However, its role in gliomas remains unclear. This study examined the clinical and prognostic significance of CENP-A in gliomas. Methods: Data of patients with glioma were collected from the Cancer Genome Atlas. Logistic regression, the Kruskal–Wallis test, and the Wilcoxon signed-rank test were performed to assess the relationship between CENP-A expression and clinicopathological parameters. The Cox regression model and Kaplan–Meier curve were used to analyze the association between CENP-A and survival outcomes. A prognostic nomogram was constructed based on Cox multivariate analysis. Gene set enrichment analysis (GSEA) was conducted to identify key CENP-A-related pathways and biological processes. Results:CENP-A was upregulated in glioma samples. Increased CENP-A levels were significantly associated with the world health organization (WHO) grade [Odds ratio (OR) = 49.88 (23.52–129.06) for grade 4 vs. grades 2 and 3], primary therapy outcome [OR = 2.44 (1.64–3.68) for progressive disease (PD) and stable disease (SD) vs. partial response (PR) and complete response (CR)], isocitrate dehydrogenase (IDH) status [OR = 13.76 (9.25–20.96) for wild-type vs. mutant], 1p/19q co-deletion [OR = 5.91 (3.95–9.06) for no codeletion vs. co-deletion], and age [OR = 4.02 (2.68–6.18) for > 60 vs. ≤ 60]. Elevated CENP-A expression was correlated with shorter overall survival in both univariate [hazard ratio (HR): 5.422; 95% confidence interval (CI): 4.044–7.271; p < 0.001] and multivariate analyses (HR: 1.967; 95% CI: 1.280–3.025; p < 0.002). GSEA showed enrichment of numerous cell cycle-and tumor-related pathways in the CENP-A high expression phenotype. The calibration plot and C-index indicated the favorable performance of our nomogram for prognostic prediction in patients with glioma. Conclusion: We propose a role for CENP-A in glioma progression and its potential as a biomarker for glioma diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyun Duan
- Health Science Center, Department of Medical Imaging, Yangtze University, Jingzhou, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| | - Zijun Wu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| |
Collapse
|
9
|
Yang Y, Yuan J, Liu Z, Cao W, Liu P. The expression, clinical relevance, and prognostic significance of HJURP in cholangiocarcinoma. Front Oncol 2022; 12:972550. [PMID: 35965590 PMCID: PMC9366246 DOI: 10.3389/fonc.2022.972550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCholangiocarcinoma (CCA) is the malignancy originating from the biliary epithelium, including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA. The prognosis of CCA is very poor, and the biomarkers of different CCA subsets should be investigated separately. Holliday junction recognition protein (HJURP) is a key component of the pre-nucleosomal complex, which is responsible for normal mitosis. The ectopic expression of HJURP has been reported in several cancers, but not CCA.Materials and methodsIn our study, we investigated the expression of HJURP in 127 CCA patients which were composed of 32 iCCAs, 71 pCCAs, and 24 dCCAs with immunohistochemistry and divided these patients into subgroups with a low or high expression of HJURP. With chi-square test and univariate and multivariate analyses, we evaluated the clinical relevance and prognostic significance of HJURP in iCCAs, pCCAs, and dCCAs.ResultsHJURP was ectopically upregulated in CCAs compared with the para-tumor tissues based on TCGA and other mRNA-seq databases. A high expression of HJURP was correlated with low overall survival rates of iCCA and pCCA, but not in dCCA. Moreover, HJURP was an independent prognostic biomarker in both iCCA and pCCA. Patients with high HJURP were more likely to suffer CCA-related death after operation.ConclusionsHJURP was an independent prognostic biomarker in both iCCA and pCCA, but not in dCCA. Our results provide more evidence of the molecular features of different CCA subsets and suggest that patients with high HJURP are more high-risk, which can guide more precision follow-up and treatment of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jinyan Yuan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Zhenzhong Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Wenwen Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Pei Liu
- Department of Burn and Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
- *Correspondence: Pei Liu,
| |
Collapse
|
10
|
Li Z, Ma Z, Xue H, Shen R, Qin K, Zhang Y, Zheng X, Zhang G. Chromatin Separation Regulators Predict the Prognosis and Immune Microenvironment Estimation in Lung Adenocarcinoma. Front Genet 2022; 13:917150. [PMID: 35873497 PMCID: PMC9305311 DOI: 10.3389/fgene.2022.917150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Abnormal chromosome segregation is identified to be a common hallmark of cancer. However, the specific predictive value of it in lung adenocarcinoma (LUAD) is unclear. Method: The RNA sequencing and the clinical data of LUAD were acquired from The Cancer Genome Atlas (TACG) database, and the prognosis-related genes were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were carried out for functional enrichment analysis of the prognosis genes. The independent prognosis signature was determined to construct the nomogram Cox model. Unsupervised clustering analysis was performed to identify the distinguishing clusters in LUAD-samples based on the expression of chromosome segregation regulators (CSRs). The differentially expressed genes (DEGs) and the enriched biological processes and pathways between different clusters were identified. The immune environment estimation, including immune cell infiltration, HLA family genes, immune checkpoint genes, and tumor immune dysfunction and exclusion (TIDE), was assessed between the clusters. The potential small-molecular chemotherapeutics for the individual treatments were predicted via the connectivity map (CMap) database. Results: A total of 2,416 genes were determined as the prognosis-related genes in LUAD. Chromosome segregation is found to be the main bioprocess enriched by the prognostic genes. A total of 48 CSRs were found to be differentially expressed in LUAD samples and were correlated with the poor outcome in LUAD. Nine CSRs were identified as the independent prognostic signatures to construct the nomogram Cox model. The LUAD-samples were divided into two distinct clusters according to the expression of the 48 CSRs. Cell cycle and chromosome segregation regulated genes were enriched in cluster 1, while metabolism regulated genes were enriched in cluster 2. Patients in cluster 2 had a higher score of immune, stroma, and HLA family components, while those in cluster 1 had higher scores of TIDES and immune checkpoint genes. According to the hub genes highly expressed in cluster 1, 74 small-molecular chemotherapeutics were predicted to be effective for the patients at high risk. Conclusion: Our results indicate that the CSRs were correlated with the poor prognosis and the possible immunotherapy resistance in LUAD.
Collapse
Affiliation(s)
- Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, China
- Cardiothoracic Surgery Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zaiqi Ma
- Cardiothoracic Surgery Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Hong Xue
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ruxin Shen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kun Qin
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xin Zheng
- Cancer Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Xin Zheng, ; Guodong Zhang,
| | - Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Xin Zheng, ; Guodong Zhang,
| |
Collapse
|
11
|
HJURP regulates cell proliferation and chemo-resistance via YAP1/NDRG1 transcriptional axis in triple-negative breast cancer. Cell Death Dis 2022; 13:396. [PMID: 35459269 PMCID: PMC9033877 DOI: 10.1038/s41419-022-04833-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
Triple-negative breast cancer is still a difficult point in clinical treatment at present, and a deep study of its pathogenesis has great clinical value. Therefore, our research mainly focuses on exploring the progression of triple-negative breast cancer and determines the important role of the HJURP/YAP1/NDRG1 transcriptional regulation axis in triple-negative breast cancer. We observed significantly increased HJURP expression levels in triple-negative breast cancer compared to other subtypes. HJURP could affect the level of ubiquitination modification of YAP1 protein and then regulate its downstream transcriptional activity. Mechanistically, we found that YAP1 positively regulates NDRG1 transcription by binding the promoter region of the NDRG1 gene. And HJURP/YAP1/NDRG1 axis could affect cell proliferation and chemotherapy sensitivity in triple-negative breast cancer. Taken together, these findings provide insights into the transcriptional regulation axis of HJURP/YAP1/NDRG1 in triple-negative breast cancer progression and therapeutic response.
Collapse
|
12
|
Li J, Wang C, Cheng R, Su H, Wang L, Ji L, Ji H. KLF11 promotes the progression of glioma via regulating HJURP. Cell Biol Int 2022; 46:1144-1155. [PMID: 35293659 DOI: 10.1002/cbin.11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/09/2022]
Abstract
Understanding the molecular mechanism of glioma is very important for the diagnosis and treatment of glioma. Recently, a new study illustrated that KLF11 could be a potential prognostic and diagnostic biomarker in glioma, but the critical role is not illustrated. In this paper, we found that KLF11 was highly expressed in glioma cancer tissues and cells, and KLF11 high expression of glioblastoma (GBM) and Lower-grade glioma (LGG) were correlated with poorer overall survival and disease-free survival percentages. KLF11 knockdown inhibited glioma cell proliferation and migration, while KLF11 overexpression enhanced cell proliferation and migration. In vivo, knockdown of KLF11 reduced the tumor size of glioma. With regard to the molecular regulatory mechanism, we clarified that the Holliday Junction Recognition Protein (HJURP) was positively regulated by KLF11. Meanwhile, we demonstrated that HJURP knockdown also inhibited glioma carcinoma progression. Overexpression of HJURP rescued the suppressed proliferation and migration function of glioma cells with depletion of KLF11. Therefore, our study demonstrated the function of KLF11 in glioma and showed KLF11 and HJURP could be prognostic and diagnostic markers in glioma, which provides a new insight of glioma therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jian Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Chanzhi City People's hospital, Chanzhi, 046099, Shanxi Province, China
| | - Chunhong Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Haiyang Su
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Lijun Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Lei Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| | - Hongming Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi Province, China.,Department of neurosurgery, Shanxi Provincial People's hospital, Taiyuan, 030012, Shanxi, China
| |
Collapse
|
13
|
Jia Y, Zhou J, Tan TK, Chung TH, Chen Y, Chooi JY, Sanda T, Fullwood MJ, Xiong S, Toh SHM, Balan K, Wong RWJ, Lim JSL, Zhang E, Cai Z, Shen P, Chng WJ. Super Enhancer-Mediated Upregulation of HJURP Promotes Growth and Survival of t(4;14)-Positive Multiple Myeloma. Cancer Res 2022; 82:406-418. [PMID: 34893510 PMCID: PMC9397631 DOI: 10.1158/0008-5472.can-21-0921] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Multiple myeloma is an incurable malignancy with marked clinical and genetic heterogeneity. The cytogenetic abnormality t(4;14) (p16.3;q32.3) confers aggressive behavior in multiple myeloma. Recently, essential oncogenic drivers in a wide range of cancers have been shown to be controlled by super-enhancers (SE). We used chromatin immunoprecipitation sequencing of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs in t(4;14)-translocated multiple myeloma. The histone chaperone HJURP was aberrantly overexpressed in t(4;14)-positive multiple myeloma due to transcriptional activation by a distal SE induced by the histone lysine methyltransferase NSD2. Silencing of HJURP with short hairpin RNA or CRISPR interference of SE function impaired cell viability and led to apoptosis. Conversely, HJURP overexpression promoted cell proliferation and abrogated apoptosis. Mechanistically, the NSD2/BRD4 complex positively coregulated HJURP transcription by binding the promoter and active elements of its SE. In summary, this study introduces SE profiling as an efficient approach to identify new targets and understand molecular pathogenesis in specific subtypes of cancer. Moreover, HJURP could be a valuable therapeutic target in patients with t(4;14)-positive myeloma. SIGNIFICANCE: A super-enhancer screen in t(4;14) multiple myeloma serves to identify genes that promote growth and survival of myeloma cells, which may be evaluated in future studies as therapeutic targets.
Collapse
Affiliation(s)
- Yunlu Jia
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Melissa J Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Sabrina H M Toh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Regina W J Wong
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Julia S L Lim
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Enfan Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|
14
|
HJURP is a prognostic biomarker for clear cell renal cell carcinoma and is linked to immune infiltration. Int Immunopharmacol 2021; 99:107899. [PMID: 34217993 DOI: 10.1016/j.intimp.2021.107899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most prevalent and highly malignant pathological type of kidney cancer. Finding more precise biomarkers is critical for enhancing the prognosis of patients with ccRCC. Multiple studies have suggested that Holliday junction recognition protein (HJURP) promotes tumor progression and predicts poor prognosis in a variety of cancers. However, the role of HJURP in ccRCC remains unclear. METHODS The ccRCC dataset was obtained from The Cancer Genome Atlas (TCGA), and the relationship between HJURP expression and ccRCC clinical features was investigated using R software. The effect of HJURP expression on survival was assessed using survival probabilities and Cox regression. Gene set enrichment analysis (GSEA) was used to identify HJURP-related signaling pathways in ccRCC. Finally, Tumor IMmune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA)were used to analyzethe correlation between HJURP expression and immunocyte infiltrates in ccRCC. RESULTS HJURP expression was upregulated in ccRCC. Increased HJURP expression was associated with poor pathological features and correlated with poor prognosis in patients with ccRCC. Cox regression further found that HJURP expression was a high-risk factor for ccRCC patients. GSEA revealed that HJURP was closely linked to multiple immune-related signaling pathways. In ccRCC, HJURP expression was closely correlated with infiltration of various immune cells and expression of a wide range of immunocyte gene markers. CONCLUSION HJURP is a potential independent prognostic marker in ccRCC that plays an essential role in the tumor microenvironment by regulating immunocyte infiltration.
Collapse
|