1
|
Tam NW, Becker A, Mangiarotti A, Cipitria A, Dimova R. Extracellular Vesicle Mobility in Collagen I Hydrogels Is Influenced by Matrix-Binding Integrins. ACS NANO 2024; 18:29585-29601. [PMID: 39400273 PMCID: PMC11526431 DOI: 10.1021/acsnano.4c07186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are a diverse population of membrane structures produced and released by cells into the extracellular space for the intercellular trafficking of cargo molecules. They are implicated in various biological processes, including angiogenesis, immunomodulation, and cancer cell signaling. While much research has focused on their biogenesis or their effects on recipient cells, less is understood about how EVs are capable of traversing diverse tissue environments and crossing biological barriers. Their interactions with extracellular matrix components are of particular interest, as such interactions govern diffusivity and mobility, providing a potential basis for organotropism. To start to untangle how EV-matrix interactions affect diffusivity, we use high speed epifluorescence microscopy, single particle tracking, and confocal reflectance microscopy to analyze particle mobility and localization in extracellular matrix-mimicking hydrogels composed of collagen I. EVs are compared with synthetic liposomes and extruded plasma membrane vesicles to better understand the importance of membrane composition on these interactions. By treating EVs with trypsin to digest surface proteins, we determine that proteins are primarily responsible for EV immobilization in collagen I hydrogels. We next use a synthetic peptide competitive inhibitor to narrow down the identity of the proteins involved to argynylglycylaspartic acid (RGD) motif-binding integrins, which interact with unincorporated or denatured nonfibrillar collagen. Moreover, the effect of integrin inhibition with RGD peptides has strong implications for the use of RGD-peptide-based drugs to treat certain cancers, as integrin inhibition appears to increase EV mobility, improving their ability to infiltrate tissue-like environments.
Collapse
Affiliation(s)
- Nicky W. Tam
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | | | - Agustín Mangiarotti
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | - Amaia Cipitria
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
- Group
of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research
Institute, San Sebastián 20014, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| |
Collapse
|
2
|
Santos P, Rezende CP, Piraine R, Oliveira B, Ferreira FB, Carvalho VS, Calado RT, Pellegrini M, Almeida F. Extracellular vesicles from human breast cancer-resistant cells promote acquired drug resistance and pro-inflammatory macrophage response. Front Immunol 2024; 15:1468229. [PMID: 39474419 PMCID: PMC11518763 DOI: 10.3389/fimmu.2024.1468229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/30/2024] [Indexed: 05/01/2025] Open
Abstract
Introduction Breast cancer is a significant public health problem around the world, ranking first in deaths due to cancer in females. The therapy to fight breast cancer involves different methods, including conventional chemotherapy. However, the acquired resistance that tumors develop during the treatment is still a central cause of cancer-associated deaths. One mechanism that induces drug resistance is cell communication via extracellular vesicles (EVs), which can carry efflux transporters and miRNA that increase sensitive cells' survivability to chemotherapy. Methods Our study investigates the transcription changes modulated by EVs from tamoxifen- and doxorubicin-resistant breast cancer cells in sensitive cells and how these changes may induce acquired drug resistance, inhibit apoptosis, and increase survivability in the sensitive cells. Additionally, we exposed human macrophages to resistant EVs to understand the influence of EVs on immune responses. Results Our results suggest that the acquired drug resistance is associated with the ability of resistant EVs to upregulate several transporter classes, which are directly related to the increase of cell viability and survival of sensitive cells exposed to EVs before a low-dose drug treatment. In addition, we show evidence that resistant EVs may downregulate immune system factors to evade detection and block cell death by apoptosis in sensitive breast cancer cells. Our data also reveals that human macrophages in contact with resistant EVs trigger a pro-inflammatory cytokine secretion profile, an effect that may be helpful for future immunotherapy studies. Discussion These findings are the first transcriptome-wide analysis of cells exposed to resistant EVs, supporting that resistant EVs are associated with the acquired drug resistance process during chemotherapy by modulating different aspects of sensitive cancer cells that coffer the chemoresistance.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline P. Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renan Piraine
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bianca Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francielle B. Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vinicius S. Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, United States
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
4
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
González-King H, Rodrigues PG, Albery T, Tangruksa B, Gurrapu R, Silva AM, Musa G, Kardasz D, Liu K, Kull B, Åvall K, Rydén-Markinhuhta K, Incitti T, Sharma N, Graneli C, Valadi H, Petkevicius K, Carracedo M, Tejedor S, Ivanova A, Heydarkhan-Hagvall S, Menasché P, Synnergren J, Dekker N, Wang QD, Jennbacken K. Head-to-head comparison of relevant cell sources of small extracellular vesicles for cardiac repair: Superiority of embryonic stem cells. J Extracell Vesicles 2024; 13:e12445. [PMID: 38711334 DOI: 10.1002/jev2.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.
Collapse
Affiliation(s)
- Hernán González-King
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Patricia G Rodrigues
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Tamsin Albery
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Benyapa Tangruksa
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ramya Gurrapu
- AstraZeneca India Private Limited, Neville Tower 11th Floor, Ramanujan IT SEZ, Rajv Gandhi Salai (OMR), Taramani, Chennai, Tamil Nadu, India
| | - Andreia M Silva
- Discovery Sciences, Oligo Assay Development, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- Anjarium Biosciences AG, Schlieren, Switzerland
| | - Gentian Musa
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Dominika Kardasz
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Kai Liu
- Discovery Sciences, Oligo Assay Development, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- Pharmaceutical Sciences, Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Bengt Kull
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Karin Åvall
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Katarina Rydén-Markinhuhta
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Tania Incitti
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Nitin Sharma
- AstraZeneca India Private Limited, Neville Tower 11th Floor, Ramanujan IT SEZ, Rajv Gandhi Salai (OMR), Taramani, Chennai, Tamil Nadu, India
| | - Cecilia Graneli
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasparas Petkevicius
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Miguel Carracedo
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Alena Ivanova
- Discovery Sciences, Oligo Assay Development, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
- Chief Medical Office, Global Patient Safety, AstraZeneca, Mölndal, Sweden
| | - Phillipe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, Paris, France
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niek Dekker
- Discovery Sciences, Oligo Assay Development, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
6
|
Sahu P, Camarillo IG, Sundararajan R. Efficacy of metformin and electrical pulses in breast cancer MDA-MB-231 cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:54-73. [PMID: 38464382 PMCID: PMC10918234 DOI: 10.37349/etat.2024.00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024] Open
Abstract
Aim Triple-negative breast cancer (TNBC) is a very aggressive subset of breast cancer, with limited treatment options, due to the lack of three commonly targeted receptors, which merits the need for novel treatments for TNBC. Towards this need, the use of metformin (Met), the most widely used type-2 diabetes drug worldwide, was explored as a repurposed anticancer agent. Cancer being a metabolic disease, the modulation of two crucial metabolites, glucose, and reactive oxygen species (ROS), is studied in MDA-MB-231 TNBC cells, using Met in the presence of electrical pulses (EP) to enhance the drug efficacy. Methods MDA-MB-231, human TNBC cells were treated with Met in the presence of EP, with various concentrations Met of 1 mmol/L, 2.5 mmol/L, 5 mmol/L, and 10 mmol/L. EP of 500 V/cm, 800 V/cm, and 1,000 V/cm (with a pulse width of 100 µs at 1 s intervals) were applied to TNBC and the impact of these two treatments was studied. Various assays, including cell viability, microscopic inspection, glucose, ROS, and wound healing assay, were performed to characterize the response of the cells to the combination treatment. Results Combining 1,000 V/cm with 5 mmol/L Met yielded cell viability as low as 42.6% at 24 h. The glucose level was reduced by 5.60-fold and the ROS levels were increased by 9.56-fold compared to the control, leading to apoptotic cell death. Conclusions The results indicate the enhanced anticancer effect of Met in the presence of electric pulses. The cell growth is inhibited by suppressing glucose levels and elevated ROS. This shows a synergistic interplay between electroporation, Met, glucose, and ROS metabolic alterations. The results show promises for combinational therapy in TNBC patients.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G. Camarillo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Garcia NA, Gonzalez-King H, Mellergaard M, Nair S, Salomon C, Handberg A. Comprehensive strategy for identifying extracellular vesicle surface proteins as biomarkers for chronic kidney disease. Front Physiol 2024; 15:1328362. [PMID: 38379702 PMCID: PMC10877036 DOI: 10.3389/fphys.2024.1328362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic kidney disease (CKD) poses a significant health burden worldwide. Especially, obesity-induced chronic kidney disease (OCKD) is associated with a lack of accuracy in disease diagnostic methods. The identification of reliable biomarkers for the early diagnosis and monitoring of CKD and OCKD is crucial for improving patient outcomes. Extracellular vesicles (EVs) have emerged as potential biomarkers in the context of CKD. In this review, we focused on the role of EVs as potential biomarkers in CKD and OCKD and developed a comprehensive list of EV membrane proteins that could aid in the diagnosis and monitoring of the disease. To assemble our list, we employed a multi-step strategy. Initially, we conducted a thorough review of the literature on EV protein biomarkers in kidney diseases. Additionally, we explored papers investigating circulating proteins as biomarkers in kidney diseases. To further refine our list, we utilized the EV database Vesiclepedia.org to evaluate the qualifications of each identified protein. Furthermore, we consulted the Human Protein Atlas to assess the localization of these candidates, with a particular focus on membrane proteins. By integrating the information from the reviewed literature, Vesiclepedia.org, and the Human Protein Atlas, we compiled a comprehensive list of potential EV membrane protein biomarkers for CKD and OCKD. Overall, our review underscores the potential of EVs as biomarkers in the field of CKD research, providing a foundation for future studies aimed at improving CKD and OCKD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Kwon YJ, Kwon TU, Shin S, Lee B, Lee H, Park H, Kim D, Moon A, Chun YJ. Enhancing the invasive traits of breast cancers by CYP1B1 via regulation of p53 to promote uPAR expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166868. [PMID: 37661069 DOI: 10.1016/j.bbadis.2023.166868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) catalyzes estrogen metabolism to produce metabolites that promote the progression of breast cancer. Since the invasive properties of cancer cells cause cancer relapse, which dramatically reduces patient survival, we investigated the new pro-invasive mechanism involving CYP1B1 in breast cancer. Exploring clinical data from invasive breast cancer patients revealed that CYP1B1 exhibits a potential correlation with urokinase-type plasminogen activator receptor (uPAR). Interestingly, uPAR mRNA expression was elevated in invasive breast cancer patients carrying TP53 genes with driver mutations, and our results showed that CYP1B1 activates the uPAR pathway following regulation of p53 according to its mutant status. CYP1B1 suppressed wild-type (WT) p53 whereas it induced the oncogenic gain-of-function mutant p53R280K, not only via transcriptional regulation but also the protein stabilization and activation following phosphorylation on Ser15 residue of p53R280K. Intriguingly, results from CYP1B1 polymorphic gene study and 4-hydroxyestradiol (4-OHE2) treatment showed that CYP1B1 regulates p53s and uPAR through its enzymatic activity. Furthermore, effects of DMBA and TMS on uPAR expression disappeared in HCT116p53-/- cells, indicating that p53 is critical for uPAR induction by CYP1B1. Collectively, our results demonstrate that CYP1B1 may reduce the relapse-free survival rate of breast cancer patients by inducing invasive traits in cancer cells via p53 regulation based on the mutation status of TP53 genes and further activation of the uPAR pathway. The elucidation of the previously unknown molecular mechanism of CYP1B1 may provide evidence for the development of effective anti-cancer therapeutic strategies that target the progression of cancer invasion.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Uk Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Sangyun Shin
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Boyoung Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyein Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyemin Park
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, South Korea
| | - Young-Jin Chun
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
9
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
10
|
Mansur S, Habib S, Hawkins M, Brown SR, Weinman ST, Bao Y. Preparation of Nanoparticle-Loaded Extracellular Vesicles Using Direct Flow Filtration. Pharmaceutics 2023; 15:pharmaceutics15051551. [PMID: 37242792 DOI: 10.3390/pharmaceutics15051551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20-100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells.
Collapse
Affiliation(s)
- Shomit Mansur
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shahriar Habib
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mikayla Hawkins
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Spenser R Brown
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Steven T Weinman
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yuping Bao
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
11
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|