1
|
Liu J, Han B, Hu X, Yuan M, Liu Z. Identification of N6-methyladenosine-associated ferroptosis biomarkers in cervical cancer. Hereditas 2025; 162:53. [PMID: 40197384 PMCID: PMC11974235 DOI: 10.1186/s41065-025-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/15/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) stands as a major contributor to female mortality. The pathogenesis of CC is linked with various factors. Our research aimed to unravel the underlying mechanisms of ferroptosis and m6A RNA methylation in CC through bioinformatics analysis. METHODS Three CC datasets, including GSE9750, GSE63514, and TCGA-CESC, were incorporated. m6A-related genes were derived from published sources, while ferroptosis-related genes were obtained from the FerrDb database. Differential expression and correlation analyses were performed to identify differentially expressed m6A-related ferroptosis genes (DE-MRFGs) in CC. Subsequently, the biomarkers were further identified using machine learning techniques. Gene Set Enrichment Analysis (GSEA) and Kaplan-Meier (KM) survival analysis were also performed to comprehend these biomarkers. Furthermore, a competing endogenous RNAs (ceRNA) network involving biomarkers was established. Finally, biomarkers expression were verified by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS From the DE-MRFGs, six genes, including ALOX12, EZH2, CA9, CDCA3, CDC25A, HSPB1, were selected. A nomogram constructed based on these biomarkers exhibited potential clinical diagnostic value for CC, with good diagnostic accuracy confirmed through calibration curves. GSEA unveiled associations of these biomarkers with cell proliferation, spliceosome, and base excision repair. KM survival analysis demonstrated significant differences in survival outcomes between high and low expressions of HSPB1, EZH2, and CA9 samples. A ceRNA network was constructed involving three biomarkers, such as CDC25A, CDCA3, and EZH2, 29 miRNAs, and 25 lncRNAs. In RT-qPCR verification, the expression of ALOX12, EZH2 and CDC25A was significantly higher in CC samples, while HSPB1 expression was higher in control samples. CONCLUSION Six genes, namely ALOX12, EZH2, CA9, CDCA3, CDC25A, and HSPB1, were identified as m6A-regulated ferroptosis biomarkers in CC. These findings offer valuable insights into disease pathogenesis and hold promise for advancing CC treatment and prognosis.
Collapse
Affiliation(s)
- Jinzhe Liu
- Department of Chinese Pharmacy, School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Buwei Han
- Department of Chinese Pharmacy, School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
- Postdoctoral Scientific Research Workstation, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xijiao Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengke Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhiwei Liu
- Department of Pediatrics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 83, Feishan Road, Guiyang, Guizhou Province, China.
| |
Collapse
|
2
|
Zeng Y, Xiao J, Shi L, Li Y, Xu Y, Zhou J, Dong X, Hou H, Zhong C, Cheng G, Chen Y, Zhang N, Fang Y, Hu Y. Discovery of 2,4-quinazolinedione derivatives as LC3B recruiters in the facilitation of protein complex degradations. Eur J Med Chem 2025; 287:117293. [PMID: 39923533 DOI: 10.1016/j.ejmech.2025.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Targeted protein degradation through autophagosome-tethering compounds (ATTECs) that bypasses the ubiquitination process has garnered increasing attention. LC3B, a key protein in autophagosome formation, recruits substrates into the autophagy-lysosome system for degradation. In this study, we systematically optimized 2,4-quinazolinedione derivatives as LC3B-recruiting fragments, utilizing the CDK9 indicator. By attaching the designed LC3B-recruiting fragment to CDK9 inhibitor SNS-032 through a linker, the resulting bifunctional ATTEC molecule simultaneously degraded CDK9 and its associated Cyclin T1. Two-dimensional NMR experiments confirmed the direct interaction between the novel LC3B-recruiting fragments and LC3B. Mechanistic studies elucidated that degradation occurred via an LC3B-dependent autophagy-lysosomal pathway. Additionally, the general applicability of leveraging LC3B-recruiting fragments linked to inhibitors for the targeted degradation of protein complexes was validated with PRC2 and CDK2/4/6 along with their respective Cyclins. This work provides a series of novel LC3B-recruiting fragments that enrich the ATTEC toolbox and can be applied to the degradation of diverse intracellular disease-causing proteins.
Collapse
Affiliation(s)
- Yanping Zeng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, 1 Xiangshanzhi Road, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Jian Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yangsha Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Yuanxin Xu
- Nanjing University of Chinese Medicine, School of Chinese Materia Medica, 138 Xianlin Road, Nanjing, 210046, China
| | - Jiayun Zhou
- School of Life Sciences, Fudan University (Jiangwan Campus), 2005 Songhu Road, Yangpu District, Shanghai, 200433, China
| | - Xiao Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Haiyang Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Chao Zhong
- School of Life Sciences, Fudan University (Jiangwan Campus), 2005 Songhu Road, Yangpu District, Shanghai, 200433, China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China.
| | - Yanfen Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China.
| | - Youhong Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, 1 Xiangshanzhi Road, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| |
Collapse
|
3
|
Wen Z, Liang W, Yang Z, Liu J, Yang J, Xu R, Lin K, Pan J, Chen Z. Genetic insights into idiopathic pulmonary fibrosis: a multi-omics approach to identify potential therapeutic targets. J Transl Med 2025; 23:337. [PMID: 40091050 PMCID: PMC11912729 DOI: 10.1186/s12967-025-06368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE To identify potential therapeutic targets and evaluate the safety profiles for Idiopathic Pulmonary Fibrosis (IPF) using a comprehensive multi-omics approach. METHOD We integrated genomic and transcriptomic data to identify therapeutic targets for IPF. First, we conducted a transcriptome-wide association study (TWAS) using the Omnibus Transcriptome Test using Expression Reference Summary data (OTTERS) framework, combining plasma expression quantitative trait loci (eQTL) data with IPF Genome-Wide Association Studies (GWAS) summary statistics from the Global Biobank (discovery) and Finngen (duplication). We then applied Mendelian randomization (MR) to explore causal relationships. RNA-seq co-expression analysis (bulk, single-cell and spatial transcriptomics) was used to identify critical genes, followed by molecular docking to evaluate their druggability. Finally, phenome-wide MR (PheW-MR) using GWAS data from 679 diseases in the UK Biobank assessed the potential adverse effects of the identified genes. RESULT We identified 696 genes associated with IPF in the discovery dataset and 986 genes in the duplication dataset, with 126 overlapping genes through TWAS. MR analysis revealed 29 causal genes in the discovery dataset, with 13 linked to increased and 16 to decreased IPF risk. Summary data-based MR (SMR) confirmed six essential genes: ANO9, BRCA1, CCDC200, EZH1, FAM13A, and SFR1. Bulk RNA-seq showed FAM13A upregulation and SFR1 and EZH1 downregulation in IPF. Single-cell RNA-seq revealed gene expression changes across cell types. Molecular docking identified binding solid affinities for essential genes with respiratory drugs, and PheW-MR highlighted potential side effects. CONCLUSION We identified six key genes-ANO9, BRCA1, CCDC200, EZH1, FAM13A, and SFR1-as potential drug targets for IPF. Molecular docking revealed strong drug affinities, while PheW-MR analysis highlighted therapeutic potential and associated risks. These findings offer new insights for IPF treatment and further investigation of potential side effects.
Collapse
Affiliation(s)
- Zhuofeng Wen
- 1The Sixth School of Clinical Medicine, Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Weixuan Liang
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ziyang Yang
- The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Junjie Liu
- The Second School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Yang
- 1The Sixth School of Clinical Medicine, Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Runge Xu
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Keye Lin
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Pan
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zisheng Chen
- 1The Sixth School of Clinical Medicine, Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.
| |
Collapse
|
4
|
Goleij P, Heidari MM, Tabari MAK, Hadipour M, Rezaee A, Javan A, Sanaye PM, Larsen DS, Daglia M, Khan H. Polycomb repressive complex 2 (PRC2) pathway's role in cancer cell plasticity and drug resistance. Funct Integr Genomics 2025; 25:53. [PMID: 40048009 DOI: 10.1007/s10142-025-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a central regulator of gene expression via the trimethylation of histone H3 on lysine 27. This epigenetic modification plays a crucial role in maintaining cell identity and controlling differentiation, while its dysregulation is closely linked to cancer progression. PRC2 silences tumor suppressor genes, promoting cell proliferation, metastasis, epithelial-mesenchymal transition, and cancer stem cell plasticity. Enhancement of zeste homolog 2 (EZH2) overexpression or gain-of-function mutations have been observed in several cancers, including lymphoma, breast, and prostate cancers, driving aggressive tumor behavior and drug resistance. In addition to EZH2, other PRC2 components, such as embryonic ectoderm development (EED) and suppressor of zeste 12, are essential for complex stability and function. EED, in particular, enhances EZH2 activity and has emerged as a therapeutic target. Inhibitors like MAK683 and EED226 disrupt EED's ability to maintain PRC2 activity, thereby reducing H3K27me3 levels and reactivating tumor suppressor genes. Valemetostat, a dual inhibitor of both EZH2 and EED, has shown promising results in aggressive cancers like diffuse large B-cell lymphoma and small-cell lung cancer, underlining the therapeutic potential of targeting multiple PRC2 components. PRC2's role extends beyond gene repression, as it contributes to metabolic reprogramming in tumors, regulating glycolysis and lipid synthesis to fuel cancer growth. Furthermore, PRC2 is implicated in chemoresistance, particularly by modulating DNA damage response and immune evasion. Tazemetostat, a selective EZH2 inhibitor, has demonstrated significant clinical efficacy in EZH2-mutant cancers, such as non-Hodgkin lymphomas and epithelioid sarcoma. However, the compensatory function of enhancer of zeste homolog 1 (EZH1) in some cancers requires dual inhibition strategies, as seen with agents like UNC1999 and Tulmimetostat, which target both EZH1 and EZH2. Given PRC2's multifaceted role in cancer biology, its inhibition represents a promising avenue for therapeutic intervention. The continued development of PRC2 inhibitors and exploration of their use in combination with standard chemotherapy or immunotherapy has great potential for improving patient outcomes in cancers driven by PRC2 dysregulation.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immunotact), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Mahdi Heidari
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Alireza Javan
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
5
|
Zhao Z, Chen X, Pang H, Shi Y, Sun H. Safety profile of EZH2 inhibitors for cancer: a systematic review and meta-analysis. PeerJ 2025; 13:e18871. [PMID: 39886019 PMCID: PMC11781267 DOI: 10.7717/peerj.18871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
Objective To evaluate the safety profiles of EZH2-targeted inhibitors in cancer treatment, focusing on treatment-related adverse events (TRAEs) across various clinical trials. Methods We conducted a systematic review and meta-analysis using data from clinical trials involving EZH2 inhibitors reported up to May 31, 2024. Databases searched included PubMed, Embase, CENTRAL (Cochrane Central Register of Controlled Trials), and ClinicalTrials.gov. Studies included were those involving patients treated with EZH2 inhibitors as monotherapy or in combination, specifically detailing the incidence of TRAEs. Data on all-grade TRAEs, grade 3 or higher TRAEs, and severe TRAEs were extracted and analyzed using random-effects models. Results Our systematic review and meta-analysis included 22 studies encompassing 1,002 patients who met the inclusion criteria. TRAEs were commonly observed during EZH2 inhibitor therapy, affecting 86% of patients (95% CI [79-94%]%; I2 = 89.5%). The incidence of grade 3 or higher TRAEs was 33% (95% CI [21-44%]; I2 = 93.5%), while severe TRAEs occurred in 15% of the cases (95% CI [9-22%]; I2 = 87.5%). The most frequently reported grade 3 or higher TRAEs in the pooled analysis were neutropenia (8%), thrombocytopenia (8%), and anemia (6%). Specifically, for tazemetostat, the most common grade 3 or higher TRAE was neutropenia (5%). For SHR2554, the most prevalent grade 3 or higher TRAEs were thrombocytopenia (17%), neutropenia (8%), and anemia (7%). Notably, treatment-related fatalities were rare, with only 0.9% of patients experiencing potentially fatal outcomes due to therapy. Conclusion EZH2 inhibitors demonstrate a manageable safety profile with a low incidence of severe TRAEs, emphasizing their potential as safe therapeutic options in cancer treatment. The low rate of severe TRAEs and the rare occurrences of treatment-related deaths support the continued clinical use and further investigation of EZH2 inhibitors.
Collapse
Affiliation(s)
- Zhou Zhao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Department of General Surgery, Center for Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiufeng Chen
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Huayang Pang
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yan Shi
- Department of General Surgery, Center for Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
6
|
Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, Sun Z, Fazal Z, Freemantle SJ, Parker MH, Vieson MD, Samuelson JP, Spinella MJ, Singh R. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. Cell Commun Signal 2024; 22:528. [PMID: 39482699 PMCID: PMC11529429 DOI: 10.1186/s12964-024-01912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure. In contrast to genetic alterations, recent evidence suggests that epigenetics is a major driving factor for TGCT formation, progression, and response to chemotherapy. Hence, targeting epigenetic pathways with "epidrugs" is one potential relatively unexplored strategy to advance TGCT treatment beyond cisplatin. In this report, we demonstrate for the first time that targeting polycomb demethylases KDM6A and KDM6B with epidrug GSK-J4 can treat both cisplatin-sensitive and -resistant TGCTs. While GSK-J4 had minimal effects alone on TGCT tumor growth in vivo, it dramatically sensitized cisplatin-sensitive and -resistant TGCTs to cisplatin. We validated KDM6A/KDM6B as the target of GSK-J4 since KDM6A/KDM6B genetic depletion had a similar effect to GSK-J4 on cisplatin-mediated anti-tumor activity and transcriptome alterations. Pharmacologic and genetic targeting of KDM6A/KDM6B potentiated or primed the p53-dominant transcriptional response to cisplatin, with also evidence for basal activation of p53. Further, several chromatin modifier genes, including BRD4, lysine demethylases, chromodomain helicase DNA binding proteins, and lysine methyltransferases, were repressed with cisplatin only in KDM6A/KDM6B-targeted cells, implying that KDM6A/KDM6B inhibition sets the stage for extensive chromatin remodeling of TGCT cells upon cisplatin treatment. Our findings demonstrate that targeting polycomb demethylases is a new potent pharmacologic strategy for treating cisplatin resistant TGCTs that warrants clinical development.
Collapse
Affiliation(s)
- Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Department of Anatomy and Embryology, Alexandria University, Alexandria, Egypt
| | - Mehwish W Khan
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Christine Powell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Samantha Johnson
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Brayden C Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Maryanna H Parker
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Miranda D Vieson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jonathan P Samuelson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
| |
Collapse
|
7
|
Marquez VE. 3-Deazaneplanocin A (DZNep): A Drug That Deserves a Second Look. J Med Chem 2024; 67:17964-17979. [PMID: 39392180 DOI: 10.1021/acs.jmedchem.4c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The emerging data compiled during the past five years on 3-deazaneplanocin (DZNep) provide compelling evidence to reevaluate this drug as a better alternative over the specific catalytic inhibitors of histone methyl transferases (HTMs). The indirect mechanism of DZNep via inhibition of AdoHcy-ase, once considered a liability due to possible side effects, has now shown to be rather beneficial as additional pathways targeted by DZNep are important contributors to its superior anticancer properties. Furthermore, DZNep has demonstrated the ability to induce proteasomal degradation of its target and reduce toxicity in combination with well-established antitumor therapies in animal models. In addition, DZNep has shown important effects in suppressing fibrosis and inflammation in liver, kidney, peritoneum, and airways. Finally, inhibition of mRNA m6A methylation by DZNep suppresses the synthesis of the viral genome in SARS-Cov-2 infection and promises to have important therapeutic value when combined with its potent antiviral efficacy and anti-inflammatory effects.
Collapse
Affiliation(s)
- Victor E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, Sun Z, Fazal Z, Freemantle SJ, Parker MH, Vieson MD, Samuelson JP, Spinella MJ, Singh R. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. RESEARCH SQUARE 2024:rs.3.rs-4986186. [PMID: 39483904 PMCID: PMC11527238 DOI: 10.21203/rs.3.rs-4986186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure. In contrast to genetic alterations, recent evidence suggests that epigenetics is a major driving factor for TGCT formation, progression, and response to chemotherapy. Hence, targeting epigenetic pathways with "epidrugs" is one potential relatively unexplored strategy to advance TGCT treatment beyond cisplatin. In this report, we demonstrate for the first time that targeting polycomb demethylases KDM6A and KDM6B with epidrug GSK-J4 can treat both cisplatin-sensitive and -resistant TGCTs. While GSK-J4 had minimal effects alone on TGCT tumor growth in vivo, it dramatically sensitized cisplatin-sensitive and -resistant TGCTs to cisplatin. We validated KDM6A/KDM6B as the target of GSK-J4 since KDM6A/KDM6B genetic depletion had a similar effect to GSK-J4 on cisplatin-mediated anti-tumor activity and transcriptome alterations. Pharmacologic and genetic targeting of KDM6A/KDM6B potentiated or primed the p53-dominant transcriptional response to cisplatin, with also evidence for basal activation of p53. Further, several chromatin modifier genes, including BRD4, lysine demethylases, chromodomain helicase DNA binding proteins, and lysine methyltransferases, were repressed with cisplatin only in KDM6A/KDM6B-targeted cells, implying that KDM6A/KDM6B inhibition sets the stage for extensive chromatin remodeling of TGCT cells upon cisplatin treatment. Our findings demonstrate that targeting polycomb demethylases is a new potent pharmacologic strategy for treating cisplatin resistant TGCTs that warrants clinical development.
Collapse
|
9
|
An R, Zhang Z, Zhang D, Li Y, Lin Y, Sun H, Xu F, Li M, Liu Z. A novel EZH1/2 dual inhibitor inhibits GCB DLBCL through cell cycle regulation and M2 tumor-associated macrophage polarization. J Biol Chem 2024; 300:107788. [PMID: 39303914 PMCID: PMC11538787 DOI: 10.1016/j.jbc.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
The incidence of germinal center B-cell-like type diffuse large B-cell lymphoma (GCB DLBCL) is steadily increasing, with a known hereditary component. Although some molecular mechanisms in GCB DLBCL have been elucidated, understanding remains incomplete, limiting the effectiveness of targeted therapies. In GCB DLBCL patients, abnormally high expression of zeste homologs 2 (EZH2) is noted, and the compensatory effect of EZH1 following EZH2 inhibition contributes to poor prognosis. This highlights the potential of dual targeting of EZH1/2 as a promising strategy. In this study, we developed a novel inhibitor, EZH-1-P2, targeting EZH1/2 and evaluated its antitumor effects on DLBCL cells. Mechanistically, inhibition of EZH1/2 affects the epigenetic regulation of gene expression related to p53, impacting cell cycle progression and GCB DLBCL cell growth. Additionally, while EZH1/2 inhibition impacts NOTCH signaling, the precise mechanism by which it affects M2-type tumor-associated macrophage polarization and germinal center expansion requires further investigation. Our research introduces EZH-1-P2 as a novel inhibitor with potential as a candidate for GCB DLBCL therapy, although further studies are needed to fully elucidate its mechanisms.
Collapse
Affiliation(s)
- Ran An
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhimeng Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dongli Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yueling Lin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongtao Sun
- Guangdong Second Provincial General Hospital, Department of Orthopedics, Guangzhou, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| | - Manmei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou, China.
| |
Collapse
|
10
|
Wei L, Mei D, Hu S, Du S. Dual-target EZH2 inhibitor: latest advances in medicinal chemistry. Future Med Chem 2024; 16:1561-1582. [PMID: 39082677 PMCID: PMC11370917 DOI: 10.1080/17568919.2024.2380243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/03/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sijia Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
11
|
Kwak YT, Montalbano AP, Kelleher AM, Colon-Caraballo M, Kraus WL, Mahendroo M, Mendelson CR. Decline in corepressor CNOT1 in the pregnant myometrium near term impairs progesterone receptor function and increases contractile gene expression. J Biol Chem 2024; 300:107484. [PMID: 38897566 PMCID: PMC11301068 DOI: 10.1016/j.jbc.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Progesterone (P4), acting via its nuclear receptor (PR), is critical for pregnancy maintenance by suppressing proinflammatory and contraction-associated protein (CAP)/contractile genes in the myometrium. P4/PR partially exerts these effects by tethering to NF-κB bound to their promot-ers, thereby decreasing NF-κB transcriptional activity. However, the underlying mechanisms whereby P4/PR interaction blocks proinflammatory and CAP gene expression are not fully understood. Herein, we characterized CCR-NOT transcription complex subunit 1 (CNOT1) as a corepressor that also interacts within the same chromatin complex as PR-B. In mouse myome-trium increased expression of CAP genes Oxtr and Cx43 at term coincided with a marked decline in expression and binding of CNOT1 to NF-κB-response elements within the Oxtr and Cx43 promoters. Increased CAP gene expression was accompanied by a pronounced decrease in enrichment of repressive histone marks and increase in enrichment of active histone marks to this genomic region. These changes in histone modification were associated with changes in expression of corresponding histone modifying enzymes. Myometrial tissues from P4-treated 18.5 dpc pregnant mice manifested increased Cnot1 expression at 18.5 dpc, compared to vehicle-treated controls. P4 treatment of PR-expressing hTERT-HM cells enhanced CNOT1 expression and its recruitment to PR bound NF-κB-response elements within the CX43 and OXTR promoters. Furthermore, knockdown of CNOT1 significantly increased expression of contractile genes. These novel findings suggest that decreased expression and DNA-binding of the P4/PR-regulated transcriptional corepressor CNOT1 near term and associated changes in histone modifications at the OXTR and CX43 promoters contribute to the induction of myometrial contractility leading to parturition.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew M Kelleher
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Mariano Colon-Caraballo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Chen Y, Zhu H, Luo Y, Tong S, Liu Y. EZH2: The roles in targeted therapy and mechanisms of resistance in breast cancer. Biomed Pharmacother 2024; 175:116624. [PMID: 38670045 DOI: 10.1016/j.biopha.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Drug resistance presents a formidable challenge in the realm of breast cancer therapy. Accumulating evidence suggests that enhancer of zeste homolog 2 (EZH2), a component of the polycomb repressive complex 2 (PRC2), may serve as a key regulator in controlling drug resistance. EZH2 overexpression has been observed in breast cancer and many other malignancies, showing a strong correlation with poor outcomes. This review aims to summarize the mechanisms by which EZH2 regulates drug resistance, with a specific focus on breast cancer, in order to provide a comprehensive understanding of the underlying molecular processes. Additionally, we will discuss the current strategies and outcomes of targeting EZH2 using both single agents and combination therapies, with the goal of offering improved guidance for the clinical treatment of breast cancer patients who have developed drug resistance.
Collapse
Affiliation(s)
- Yun Chen
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hongyan Zhu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yi Luo
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Biotheus Inc., Guangdong Province, Zhuhai 519080, PR China.
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Song Y, Jin Z, Li ZM, Liu Y, Li L, He C, Su H, Zhou H, Li K, Hao S, Zuo X, Wu J, Li D, Wu M, Sun X, Qi J, Cai Z, Li Z, Li Y, Huang Y, Shen J, Xiao Z, Zhu J. Enhancer of Zeste Homolog 2 Inhibitor SHR2554 in Relapsed or Refractory Peripheral T-cell Lymphoma: Data from the First-in-Human Phase I Study. Clin Cancer Res 2024; 30:1248-1255. [PMID: 38190117 DOI: 10.1158/1078-0432.ccr-23-2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
PURPOSE Patients with peripheral T-cell lymphomas (PTCL) in the relapsed or refractory (r/r) setting have only a limited number of therapies available, and the prognosis is extremely poor. SHR2554 is an oral inhibitor against EZH2, a rational therapeutic target for lymphomas. PATIENTS AND METHODS This was a multicenter, two-part, phase I study of SHR2554 in r/r mature lymphoid neoplasms. In part I, 350 mg twice daily was established as the recommended phase II dose (RP2D) based on the findings during dose escalation and expansion; subsequently, selected lymphoma subtypes were recruited in clinical expansion cohorts to receive SHR2554 at RP2D. Here, we provide an in-depth assessment of SHR2554 at RP2D in subpopulation with r/r PTCL. RESULTS Twenty-eight patients were included for analysis (17 angioimmunoblastic T-cell lymphoma and 11 not otherwise specified). Eighteen (64%) patients had received ≥2 lines of previous anticancer therapies. The objective response rate was 61% [95% confidence interval (CI), 41-78]. Responses were still ongoing in 59% (10/17) of the responders; estimated median duration of response was 12.3 months (95% CI, 7.4-not reached). Median progression-free survival was 11.1 months (95% CI, 5.3-22.0), and 12-month overall survival rate was 92% (95% CI, 72-98). The most common grade 3 or 4 treatment-related adverse events were decreased platelet count [nine (32%)] as well as decreased white blood cell count, decreased neutrophil count, and anemia [four (14%) for each]. No treatment-related deaths were reported. CONCLUSIONS This extended follow-up analysis further supports SHR2554 as a therapeutic opportunity for patients with r/r PTCL.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhengming Jin
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Ming Li
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanyan Liu
- Lymphatic Comprehensive Internal Medicine Ward, Henan Cancer Hospital, Zhengzhou, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chuan He
- Department of Hematopathology, West China Hospital Sichuan University, Chengdu, China
| | - Hang Su
- Department of Lymphoma, The Fifth Medical Center of the People's Liberation Army General Hospital, Beijing, China
| | - Hui Zhou
- Department of Lymphoma & Hematology (Children's Tumor Center), Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunyan Li
- Early Clinical Trial Center, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelan Zuo
- Department of Hematopathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuhua Sun
- Department of Lymphoma and Head and Neck Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junyuan Qi
- Good Clinical Practice Ward, Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zengjun Li
- Department of Lymphology and Hematology, Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yijing Li
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yanhua Huang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jie Shen
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zhenyu Xiao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
14
|
Chen J, Tang S, Zheng Q, Li J, Jiang H, Lu H, Liao G, Li K, Liang Y. The competitive mechanism of EZH1 and EZH2 in promoting oral squamous cell carcinoma. Exp Cell Res 2024; 436:113957. [PMID: 38309675 DOI: 10.1016/j.yexcr.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Enhancer of Zeste Homolog 1 (EZH1) and Enhancer of Zeste Homolog 2 (EZH2) are the key components of polycomb repressive complex 2 (PRC2); however, the roles of these proteins in oral squamous cell carcinoma (OSCC) have yet to be elucidated. In this study, we aimed to determine the respective roles of these proteins in OSCC by investigating the expression levels of EZH1 and EZH2 in OSCC tissues (N = 63) by immunohistochemistry. In addition, we used lentiviruses to construct stable OSCC cell lines that overexpressed EZH1 and EZH2. Then, we investigated these cell lines for cell viability, colony formation capacity, stemness, and epithelial-mesenchymal transition (EMT). Binding competition between EZH1 and EZH2 with PRC2 was further evaluated using Co-immunoprecipitation (Co-IP). Compared with normal tissues, the expression levels of EZH2 in OSCC tissues was up-regulated, while the expression of EZH1 was down-regulated. EZH2 enhanced cell viability, colony formation capacity, stemness, and EMT, while EZH1 did not. Furthermore, analysis indicated that EZH1 and EZH2 bound competitively to PRC2 and influenced the methylation status of H3K27. In conclusion, our findings verified that EZH1 and EZH2 play opposing roles in OSCC and that EZH1 and EZH2 compete as the key component of PRC2, thus affecting the characteristics of OSCC via the methylation of H3K27.
Collapse
Affiliation(s)
- Jianghai Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Shanshan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Qiuhan Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Hong Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Falkenstern L, Georgi V, Bunse S, Badock V, Husemann M, Roehn U, Stellfeld T, Fitzgerald M, Ferrara S, Stöckigt D, Stresemann C, Hartung IV, Fernández-Montalván A. A miniaturized mode-of-action profiling platform enables high throughput characterization of the molecular and cellular dynamics of EZH2 inhibition. Sci Rep 2024; 14:1739. [PMID: 38242973 PMCID: PMC10799085 DOI: 10.1038/s41598-023-50964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024] Open
Abstract
The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.
Collapse
Affiliation(s)
- Lilia Falkenstern
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Rentschler Biopharma SE, Erwin-Rentschler-Straße 21, 88471, Laupheim, Germany
| | - Victoria Georgi
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Stefanie Bunse
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Volker Badock
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | | | - Ulrike Roehn
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Timo Stellfeld
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Mark Fitzgerald
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nested Therapeutics, 1030 Massachusetts Avenue, Suite 410, Cambridge, MA, 02138, USA
| | - Steven Ferrara
- Broad Institute, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
| | - Detlef Stöckigt
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Ingo V Hartung
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Amaury Fernández-Montalván
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400, Biberach an der Riß, Germany.
| |
Collapse
|
16
|
Guo YY, Zhang JY, Sun JF, Nie P, Gao H. Synthesis and application of small molecules approved for the treatment of lymphoma. Eur J Med Chem 2023; 261:115835. [PMID: 37801827 DOI: 10.1016/j.ejmech.2023.115835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Lymphoma is a form of cancer that impacts the lymphatic system, which plays a crucial role in defending the body against infections and illnesses. It is characterized by the atypical proliferation of lymphocytes, a type of white blood cell, which can form tumors in the lymph nodes, bone marrow, spleen, etc. Lymphoma is usually treated using a combination of targeted therapy, chemotherapy, and radiation therapy. In recent years, there has been a growing interest in the development of new drugs to treat lymphoma, which has led to the discovery of several promising compounds. The primary targets for lymphoma treatment have been identified as Bruton's tyrosine kinase (BTK), phosphoinositide3-kinase (PI3K), histone deacetylase (HDAC), and DNA polymerase (POLA). This review aims to provide an overview of the clinical applications and synthesis of several notable drugs approved to treat lymphoma, to expedite the exploration of more potent novel medications for the management of lymphoma.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
18
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
19
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
20
|
Wang J, Liao D, Zhang X, Miao C, Chen K. Can Patients with HER2-Low Breast Cancer Benefit from Anti-HER2 Therapies? A Review. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:281-294. [PMID: 37113514 PMCID: PMC10128871 DOI: 10.2147/bctt.s407181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Breast cancer (BC) poses a severe threat to the health of women worldwide. Currently, different therapeutic regimens are used for BC according to the pathological classification of HER2-positive or HER2-negative. Clinical reports of HER2-low expression indicate that the condition is HER2-negative, which was ineligible for HER2-targeted therapy. In contrast to HER2-zero tumors, however, HER2-low BC is a heterogeneous disease with unique genetic characteristics, prognoses, and different therapeutic responses. Clinical efficacy has been demonstrated by numerous potent and innovative anti-HER2 medications, particularly antibody-drug conjugates (ADCs). Certain ADCs, including T-DXd, have demonstrated good efficacy in some trials either used alone or in conjunction with other medications. To enhance outcomes in individuals with HER2-low BC, immunotherapy and other treatments are frequently combined with HER2-targeted therapy. There are also alternative strategies that target both HER2 and HER3 or other antigenic sites. We hope more individuals with HER2-low BC will benefit from more precise treatment regimens in the future. This article provides a review of existing research and clinical trials.
Collapse
Affiliation(s)
- Jin Wang
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Dongying Liao
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xuemin Zhang
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Changhong Miao
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Kuang Chen
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| |
Collapse
|
21
|
Nouruzi S, Tabrizian N, Zoubeidi A. Beyond Expression: Role of Phosphorylated Residues of EZH2 in Lineage Plasticity in Prostate Cancer. Endocrinology 2023; 164:7010689. [PMID: 36718085 DOI: 10.1210/endocr/bqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Despite the development of effective targeted therapies and a significant understanding of carcinogenesis and cancer progression, treatment resistance is a major obstacle in achieving durable long-term control in many types of cancers. Emerging evidence supports that nongenetic mechanisms could play an underappreciated role in therapy resistance. These mechanisms include phenotypic plasticity, which is recognized as a hallmark of cancer and translates to epigenetic and transcriptional control of gene expression. Alterations in the expression and activity of the epigenetic modifier enhancer of zeste homolog 2 (EZH2) support prostate cancer lineage plasticity and progression. EZH2 expression and activity is elevated in castration-resistant prostate cancer treated with androgen receptor pathway inhibitors and in treatment-resistant prostate cancer. Moreover, 17 known residues of EZH2 are phosphorylated on by multiple kinases that modulate its activity, localization, stability, and polycomb repressive complex (PRC2) assembly. In this review, we explore the contribution of EZH2 phosphorylation in regulating canonical PRC2 in a methylation-dependent manner as an epigenetic repressor and in a noncanonical manner independent of PRC2 as a transcription activator. Apart from the contribution of EZH2 phosphorylation at serine 21, threonine 350, and threonine 311 in prostate cancer progression and treatment resistance, we discuss how other EZH2 phosphorylated residues with unknown functions could contribute to prostate cancer based on their upstream regulators and potential therapeutic utility.
Collapse
Affiliation(s)
- Shaghayegh Nouruzi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nakisa Tabrizian
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|