1
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. Commun Biol 2025; 8:716. [PMID: 40341772 PMCID: PMC12062209 DOI: 10.1038/s42003-025-08088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
The motor stage of Parkinson's disease (PD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD), hyposmia, and constipation. Here, we show that multiple stages of idiopathic PD, including the pre-motor prodromal stage, can be stratified according to the inflammatory responses to stimulation of peripheral blood mononuclear cells ex vivo. IFNγ stimulation of isolated monocytes reveals increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in prodromal PD relative to moderate stage PD. Additionally, T cells stimulated with CD3/CD28 co-stimulatory beads show diminished proinflammatory cytokine secretion in early-moderate PD relative to prodromal. Receiver operating characteristic curves demonstrate that several cytokines produced by stimulated monocytes show high predictive utility for distinguishing prodromal PD individuals from neurologically healthy controls. Moreover, immune stimulation reveals deficits in CD8+ T-cell mitochondrial health in moderate PD, with relative mitochondrial health in CD8+ T cells being positively correlated with stimulation-dependent secretion of IL-1β, IL-8, and IL-10 in T cells from prodromal PD subjects. Dysregulated mitochondrial health in immune cells may contribute to peripheral inflammation and PD progression, and ex vivo stimulation-based assays have the potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Deri E, Kumar Ojha S, Kartawy M, Khaliulin I, Amal H. Multi-omics study reveals differential expression and phosphorylation of autophagy-related proteins in autism spectrum disorder. Sci Rep 2025; 15:10878. [PMID: 40158064 PMCID: PMC11954894 DOI: 10.1038/s41598-025-95860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Our multi-omics study investigated the molecular mechanisms underlying autism spectrum disorder (ASD) using Shank3Δ4-22 and Cntnap2-/- mouse models. Through global- and phospho- proteomics of the mouse cortex, we focused on shared molecular changes and found that autophagy was particularly affected in both models. Global proteomics identified a small number of differentially expressed proteins that significantly impact postsynaptic components and synaptic function, including key pathways such as mTOR signaling. Phosphoproteomics revealed unique phosphorylation sites in autophagy-related proteins such as ULK2, RB1CC1, ATG16L1, and ATG9, suggesting that altered phosphorylation patterns contribute to impaired autophagic flux in ASD. SH-SY5Y cells with SHANK3 gene deletion showed elevated LC3-II and p62 levels, indicating autophagosome accumulation and autophagy initiation, while the reduced level of the lysosomal activity marker LAMP1 suggested impaired autophagosome-lysosome fusion. The study highlights the involvement of reactive nitrogen species and nitric oxide (NO) on autophagy disruption. Importantly, inhibition of neuronal NO synthase (nNOS) by 7-NI normalized autophagy markers levels in the SH-SY5Y cells and primary cultured neurons. We have previously shown that nNOS inhibition improved synaptic and behavioral phenotypes in Shank3Δ4-22 and Cntnap2-/- mouse models. Our multi-omics study reveals differential expression and phosphorylation of autophagy-related proteins in ASD but further investigation is needed to prove the full involvement of autophagy in ASD. Our study underscores the need for further examination into the functional consequences of the identified phosphorylation sites, which may offer potential novel therapeutic autophagy-related targets for ASD treatment.
Collapse
Affiliation(s)
- Eden Deri
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shashank Kumar Ojha
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.625499. [PMID: 39677794 PMCID: PMC11643067 DOI: 10.1101/2024.12.05.625499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The motor stage of idiopathic Parkinson's disease (iPD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD). Here, we show that multiple stages of iPD, including the pre-motor prodromal stage, can be stratified according to the inflammatory and immunometabolic responses to stimulation of peripheral blood mononuclear cells ex vivo. We identified increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in monocytes from RBD patients and showed diminished proinflammatory cytokine secretion in monocytes and T cells in early and moderate stages of PD. Mechanistically, immune activation revealed deficits in CD8+ T-cell mitochondrial health in moderate PD, and relative mitochondrial health in CD8+ T cells was positively correlated with stimulation-dependent T-cell cytokine secretion across the PD spectrum. Dysregulated immunometabolism may drive peripheral inflammation and PD progression, and ex vivo stimulation-based assays have potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Shi Y, He Y, Li Y, Zhang M, Liu Y, Wang H, Shen Z, Zhao X, Wang R, Ma T, Yang P, Chen J. Downregulation of heat shock protein 47 caused lysosomal dysfunction leading to excessive chondrocyte apoptosis. Exp Cell Res 2024; 443:114294. [PMID: 39447624 DOI: 10.1016/j.yexcr.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Heat shock protein 47 (HSP47) is a collagen-specific chaperone present in several regions of the endoplasmic reticulum and cytoplasm. Elevated HSP47 expression in cells causes various cancers and fibrotic disorders. However, the consequences of HSP47 downregulation leading to chondrocyte death, as well as the underlying pathways, remain largely unclear. This study presents the first experimental evidence of the localization of HSP47 on lysosomes. Additionally, it successfully designed and generated shRNA HSP47 target sequences to suppress the expression of HSP47 in ATDC5 chondrocytes using lentiviral vectors. By employing a chondrocyte model that has undergone stable downregulation of HSP47, we observed that HSP47 downregulation in chondrocytes, disturbs the acidic homeostatic environment of chondrocyte lysosomes, causes hydrolytic enzyme activity dysregulation, impairs the lysosome-mediated autophagy-lysosome pathway, and causes abnormal expression of lysosomal morphology, number, and functional effector proteins. This implies the significance of the presence of HSP47 in maintaining proper lysosomal function. Significantly, the inhibitor CA-074 Me, which can restore the dysfunction of lysosomes, successfully reversed the negative effects of HSP47 on the autophagy-lysosomal pathway and partially reduced the occurrence of excessive cell death in chondrocytes. This suggests that maintaining proper lysosomal function is crucial for preventing HSP47-induced apoptosis in chondrocytes. The existence of HSP47 is crucial for preserving optimal lysosomal function and autophagic flux, while also inhibiting excessive apoptosis in ATDC5 chondrocytes.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yanan Li
- School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Zhiran Shen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xiaoru Zhao
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Pinglin Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
6
|
Favero F, Re A, Dason MS, Gravina T, Gagliardi M, Mellai M, Corazzari M, Corà D. Characterization of gut microbiota dynamics in an Alzheimer's disease mouse model through clade-specific marker-based analysis of shotgun metagenomic data. Biol Direct 2024; 19:100. [PMID: 39478626 PMCID: PMC11524029 DOI: 10.1186/s13062-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.
Collapse
Affiliation(s)
- Francesco Favero
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Angela Re
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Mohammed Salim Dason
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Teresa Gravina
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Mara Gagliardi
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marta Mellai
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marco Corazzari
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy.
| | - Davide Corà
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy.
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
| |
Collapse
|
7
|
Vassileff N, Spiers JG, Bamford SE, Lowe RGT, Datta KK, Pigram PJ, Hill AF. Microglial activation induces nitric oxide signalling and alters protein S-nitrosylation patterns in extracellular vesicles. J Extracell Vesicles 2024; 13:e12455. [PMID: 38887871 PMCID: PMC11183937 DOI: 10.1002/jev2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralia
| | - Sarah E. Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| |
Collapse
|
8
|
Li Y, Pan K, Gao Y, Li J, Zang Y, Li X. Deconvoluting nitric oxide-protein interactions with spatially resolved multiplex imaging. Chem Sci 2024; 15:6562-6571. [PMID: 38699271 PMCID: PMC11062118 DOI: 10.1039/d4sc00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Simultaneous imaging of nitric oxide (NO) and its proximal proteins should facilitate the deconvolution of NO-protein interactions. While immunostaining is a primary assay to localize proteins in non-genetically manipulated samples, NO imaging probes with immunostaining-compatible signals remain unexplored. Herein, probe NOP-1 was developed with an NO-triggered proximal protein labeling capacity and fluorogenic signals. The trick is to fuse the native chemical ligation of acyl benzotriazole with the protein-conjugation-induced fluorogenic response of Si-rhodamine fluorophore. NOP-1 predominantly existed in the non-fluorescent spirocyclic form. Yet, its acyl o-phenylenediamine moiety was readily activated by NO into acyl benzotriazole to conjugate proximal proteins, providing a fluorogenic response and translating the transient cellular NO signal into a permanent stain compatible with immunostaining. NOP-1 was utilized to investigate NO signaling in hypoglycemia-induced neurological injury, providing direct evidence of NO-induced apoptosis during hypoglycemia. Mechanistically, multiplex imaging revealed the overlap of cellular NOP-1 fluorescence with immunofluorescence for α-tubulin and NO2-Tyr. Importantly, α-tubulin was resolved from NOP-1 labeled proteins. These results suggest that NO played a role in hypoglycemia-induced apoptosis, at least in part, through nitrating α-tubulin. This study fills a crucial gap in current imaging probes, providing a valuable tool for unraveling the complexities of NO signaling in biological processes.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
| | - Kaijun Pan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Yanan Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Jia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Yi Zang
- Lingang Laboratory Shanghai 201203 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Xin Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University Jiashan 314100 China
| |
Collapse
|
9
|
Ding H, Luo L, Su L, Chen J, Li Y, Hu L, Luo K, Tian X. Gasotransmitter nitric oxide imaging in Alzheimer's disease and glioblastoma with diamino-cyclic-metalloiridium phosphorescence probes. Biosens Bioelectron 2024; 247:115939. [PMID: 38145594 DOI: 10.1016/j.bios.2023.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Nitric Oxide (NO), a significant gasotransmitter in biological systems, plays a crucial role in neurological diseases and cancer. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with neurological diseases. Novel diamino-cyclic-metalloiridium phosphorescence probes, Ir-CDA and Ir-BDA, have been designed to visualize the gasotransmitter NO in Alzheimer's disease (AD) and glioblastoma (GBM). Ir-CDA and Ir-BDA utilize iridium (III) as the central ion and incorporate a diamino group as a ligand. The interaction between the diamino structure and NO leads to the formation of a three-nitrogen five-membered ring structure, which opens up phosphorescence. The two probes can selectively bind to NO and offer low detection limits. Additionally, Ir-BDA/Ir-CDA can image NO in brain cancer cell models, neuroinflammatory models, and AD cell models. Furthermore, the NO content in fresh brain sections from AD mice was considerably higher than that in wild-type (WT) mice. Consequently, it is plausible that NO is generated in significant quantities around cells hosting larger Aβ deposits, gradually diffusing throughout the entire brain region. Furthermore, we posit that this phenomenon is a key factor contributing to the higher brain NO content in AD mice compared to that in WT mice. This discovery offers novel insights into the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Li Luo
- The Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liping Su
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Junyang Chen
- Department of Chemistry, University College London, London, United Kingdom
| | - Yunkun Li
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Kui Luo
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
| |
Collapse
|
10
|
Hamed R, Merquiol E, Zlotver I, Blum G, Eyal S, Ekstein D. Challenges in Batch-to-Bed Translation Involving Inflammation-Targeting Compounds in Chronic Epilepsy: The Case of Cathepsin Activity-Based Probes. ACS OMEGA 2024; 9:6965-6975. [PMID: 38371846 PMCID: PMC10870404 DOI: 10.1021/acsomega.3c08759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024]
Abstract
Our goal was to test the feasibility of a new theranostic strategy in chronic epilepsy by targeting cathepsin function using novel cathepsin activity-based probes (ABPs). We assessed the biodistribution of fluorescent cathepsin ABPs in vivo, in vitro, and ex vivo, in rodents with pilocarpine-induced chronic epilepsy and naïve controls, in human epileptic tissue, and in the myeloid cell lines RAW 264.7 (monocytes) and BV2 (microglia). Distribution and localization of ABPs were studied by fluorescence scanning, immunoblotting, microscopy, and cross-section staining in anesthetized animals, in their harvested organs, in brain tissue slices, and in vitro. Blood-brain-barrier (BBB) efflux transport was evaluated in transporter-overexpressing MDCK cells and using an ATPase activation assay. Although the in vivo biodistribution of ABPs to both naïve and epileptic hippocampi was negligible, ex vivo ABPs bound cathepsins preferentially within epileptogenic brain tissue and colocalized with neuronal but not myeloid cell markers. Thus, our cathepsin ABPs are less likely to be of major clinical value in the diagnosis of chronic epilepsy, but they may prove to be of value in intraoperative settings and in CNS conditions with leakier BBB or higher cathepsin activity, such as status epilepticus.
Collapse
Affiliation(s)
- Roa’a Hamed
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Emmanuelle Merquiol
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Ivan Zlotver
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Galia Blum
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Sara Eyal
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Dana Ekstein
- Department
of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem 9112001, Israel
- Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
11
|
Lv D, Xu Z, Cheng P, Hu Z, Dong Y, Rong Y, Xu H, Wang Z, Cao X, Deng W, Tang B. S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation. BURNS & TRAUMA 2023; 11:tkad024. [PMID: 38116467 PMCID: PMC10729783 DOI: 10.1093/burnst/tkad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/15/2023] [Accepted: 04/03/2023] [Indexed: 12/21/2023]
Abstract
Background Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown. We aimed to discover the association between protein SNO and keloid formation. Methods Normal and keloid fibroblasts were isolated from collected normal skin and keloid tissues. The obtained fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The effects of DJ-1 on cell proliferation, apoptosis, migration and invasion, and on the expression of proteins were assayed. TurboID-based proximity labelling and liquid chromatography-mass spectrometry were conducted to explore the potential targets of DJ-1. Biotin-switch assays and transnitrosylation reactions were used to detect protein SNO. Quantitative data were compared by two-tailed Student's t test. Results We found that DJ-1 served as an essential positive modulator to facilitate keloid cell proliferation, migration and invasion. A higher S-nitrosylated DJ-1 (SNO-DJ-1) level was observed in keloids, and the effect of DJ-1 on keloids was dependent on SNO of the Cys106 residue of the DJ-1 protein. SNO-DJ-1 was found to increase the level of phosphatase and tensin homolog (PTEN) S-nitrosylated at its Cys136 residue via transnitrosylation in keloids, thus diminishing the phosphatase activity of PTEN and activating the PI3K/AKT/mTOR pathway. Furthermore, Cys106-mutant DJ-1 is refractory to SNO and abrogates DJ-1-PTEN coupling and the SNO of the PTEN protein, thus repressing the PI3K/AKT/mTOR pathway and alleviating keloid formation. Importantly, the biological effect of DJ-1 in keloids is dependent on the SNO-DJ-1/SNO-PTEN/PI3K/AKT/mTOR axis. Conclusions For the first time, this study demonstrated the effect of transnitrosylation from DJ-1 to PTEN on promoting keloid formation via the PI3K/AKT/mTOR signaling pathway, suggesting that SNO of DJ-1 may be a novel therapeutic target for keloid treatment.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Pu Cheng
- Department of General Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Yunxian Dong
- Department of Plastic Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, 466 Xingang Middle Road, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Hailin Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhiyong Wang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|
12
|
Guil-Luna S, Sanchez-Montero MT, Rodríguez-Ariza A. S-Nitrosylation at the intersection of metabolism and autophagy: Implications for cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189012. [PMID: 37918453 DOI: 10.1016/j.bbcan.2023.189012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Department of Comparative Anatomy and Pathology, Faculty of Veterinary Medicine of Córdoba, University of Córdoba, Córdoba, Spain
| | | | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
13
|
Li Y, Xu M, Xiang BL, Li X, Zhang DF, Zhao H, Bi R, Yao YG. Functional genomics identify causal variant underlying the protective CTSH locus for Alzheimer's disease. Neuropsychopharmacology 2023; 48:1555-1566. [PMID: 36739351 PMCID: PMC10516988 DOI: 10.1038/s41386-023-01542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, which has a high heritability of up to 79%. Exploring the genetic basis is essential for understanding the pathogenic mechanisms underlying AD development. Recent genome-wide association studies (GWASs) reported an AD-associated signal in the Cathepsin H (CTSH) gene in European populations. However, the exact functional/causal variant(s), and the genetic regulating mechanism of CTSH in AD remain to be determined. In this study, we carried out a comprehensive study to characterize the role of CTSH variants in the pathogenesis of AD. We identified rs2289702 in CTSH as the most significant functional variant that is associated with a protective effect against AD. The genetic association between rs2289702 and AD was validated in independent cohorts of the Han Chinese population. The CTSH mRNA expression level was significantly increased in AD patients and AD animal models, and the protective allele T of rs2289702 was associated with a decreased expression level of CTSH through the disruption of the binding affinity of transcription factors. Human microglia cells with CTSH knockout showed a significantly increased phagocytosis of Aβ peptides. Our study identified CTSH as being involved in AD genetic susceptibility and uncovered the genetic regulating mechanism of CTSH in pathogenesis of AD.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Hui Zhao
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
You M, Song Y, Chen J, Liu Y, Chen W, Cen Y, Zhao X, Tao Z, Yang G. Combined exposure to benzo(a)pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163460. [PMID: 37061049 DOI: 10.1016/j.scitotenv.2023.163460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Humans are often simultaneously exposed to benzo(a)pyrene (BaP) and dibutyl phthalate (DBP) through consumption of food and water. Yet, direct evidence of the link between BaP and DBP co-exposure and the risk of splenic injury is lacking. In the present study, we established the rats and primary splenic macrophages models to evaluate the effects of BaP or/and DBP exposure on spleen and underlying mechanisms. Compared to the single exposure or control groups, the co-exposure group showed more severe spleen damage and higher production of pro-inflammatory cytokines. Co-exposure to BaP and DBP resulted in a 1.79-fold, 2.11-fold and 1.9-fold increase in the M1 macrophage markers iNOS, NLRP3 (pyroptosis marker protein) and cathepsin B (CTSB), respectively, and a 0.8-fold decrease in the M2 macrophage marker Arg1 in vivo. The more prominent effects in perturbation of imbalance in M1/M2 polarization (iNOS, 2.25-fold; Arg1, 0.55-fold), pyroptosis (NLRP3, 1.43-fold), and excess CTSB (1.07-fold) in macrophages caused by BaP and DBP co-exposure in vitro were also found. Notably, MCC950 (the NLRP3-specific inhibitor) treatment attenuated the pro-inflammatory macrophage polarization and following pro-inflammatory cytokine production triggered by BaP and DBP co-exposure. Furthermore, CA-074Me (the CTSB-specific inhibitor) suppressed the macrophages pyroptosis, pro-inflammatory macrophage polarization, and secretion of pro-inflammatory cytokine induced by BaP and DBP co-exposure. In conclusion, this study indicates co-exposure to BaP and DBP poses a higher risk of spleen injury. Pro-inflammatory macrophage polarization regulated by pyroptosis involving CTSB underlies the spleen injury caused by BaP and DBP co-exposure.
Collapse
Affiliation(s)
- Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaodeng Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Zhongfa Tao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Ganghong Yang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
15
|
Xie Z, Zhao M, Yan C, Kong W, Lan F, Zhao S, Yang Q, Bai Z, Qing H, Ni J. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis 2023; 14:255. [PMID: 37031185 PMCID: PMC10082344 DOI: 10.1038/s41419-023-05786-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future avenues for research.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Mengyuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Chengxiang Yan
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Zhantao Bai
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China.
- Yan'an Key Laboratory for Neural Immuno-Tumor and Stem Cell and Engineering and Technological Research Center for Natural Peptide Drugs, Yan'an, 716000, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
16
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
17
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|