1
|
Wang H, Zhang G, Zhao C, Xue Y, Zhu D, Chang Y. RORγt agonist LYC-55716 potentiates IFN-α's efficacy in hepatocellular carcinoma through enhancing cytotoxicity of Tc17 cells and infiltration of CD8 + T cells. Biochem Pharmacol 2025; 238:116963. [PMID: 40312017 DOI: 10.1016/j.bcp.2025.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
While interferon-alpha (IFN-α) demonstrates potent antineoplastic activity against hepatocellular carcinoma (HCC), but many patients have a low response rate and may even develop resistance to it. It is necessary to find new strategies to reduce IFN-α resistance and improve its efficacy. RAR-related orphan receptor gamma t (RORγt) agonists exhibit dual immunomodulatory functions, demonstrating both immunosuppression-reducing and immune-activating properties. In this study, we demonstrated that the combination of the RORγt agonist-LYC-55716 and IFN-α significantly promoted cytotoxic T cell 17 (Tc17 cell) differentiation and interleukin-17a (I1-17a) expression through activation of the Akt/Stat3 signal pathway. The combination therapy markedly enhanced the tumoricidal activity of differentiated Tc17 cells against hepatoma carcinoma cells. Moreover, this therapeutic strategy showed superior antitumor efficacy in multiple HCC models while maintaining a favorable safety profile compared to single-agent treatment. Importantly, our findings revealed that the combination treatment significantly enhanced CD8+ T cells infiltration into tumor tissues. Moreover, our mechanistic studies revealed that the observed synergistic antitumor effect was mediated by enhanced CD8+ T cell tumor infiltration, which was facilitated by the C-X-C motif chemokine ligand 10 (Cxcl10)- C-X-C motif chemokine receptor 3 (Cxcr3) interaction. Collectively, these findings support a novel immunoregulatory strategy that leverages RORγt agonists to enhance the efficacy of IFN-α in HCC therapy.
Collapse
Affiliation(s)
- Heng Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | | | - Cai Zhao
- Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Youan Xue
- Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China; Shandong Academy of Pharmaceutical Science, Jinan 250101, China; Fudan University Shanghai Cancer Center, Shanghai 200032, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, and Department of Oncology, Second Affiliated Hospital of Guilin Medical University, China.
| | - Yan Chang
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
2
|
Talubo NDD, Dela Cruz EWB, Fowler PMPT, Tsai PW, Tayo LL. QSAR-Based Drug Repurposing and RNA-Seq Metabolic Networks Highlight Treatment Opportunities for Hepatocellular Carcinoma Through Pyrimidine Starvation. Cancers (Basel) 2025; 17:903. [PMID: 40075750 PMCID: PMC11898721 DOI: 10.3390/cancers17050903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: The molecular heterogeneity and metabolic flexibility of Hepatocellular Carcinoma (HCC) pose significant challenges to the efficacy of systemic therapy for advanced cases. Early screening difficulties often delay diagnosis, leading to more advanced stages at presentation. Combined with the inconsistent responses to current systemic therapies, HCC continues to have one of the highest mortality rates among cancers. Thus, this paper seeks to contribute to the development of systemic therapy options through the consideration of HCC's metabolic vulnerabilities and lay the groundwork for future in vitro studies. Methods: Transcriptomic data were used to calculate single and double knockout options for HCC using genetic Minimal Cut Sets. Furthermore, using QSAR modeling, drug repositioning opportunities were assessed to inhibit the selected genes. Results: Two single knockout options that were also annotated as essential pairs were found within the pyrimidine metabolism pathway of HCC, wherein the knockout of either DHODH or TYMS is potentially disruptive to proliferation. The result of the flux balance analysis and gene knockout simulation indicated a significant decrease in biomass production. Three machine learning algorithms were assessed for their performance in predicting the pIC50 of a given compound for the selected genes. SVM-rbf performed the best on unseen data achieving an R2 of 0.82 for DHODH and 0.81 for TYMS. For DHODH, the drugs Oteseconazole, Tipranavir, and Lusutrombopag were identified as potential inhibitors. For TYMS, the drugs Tadalafil, Dabigatran, Baloxavir Marboxil, and Candesartan Cilexetil showed promise as inhibitors. Conclusions: Overall, this study suggests in vitro testing of the identified drugs to assess their capabilities in inducing pyrimidine starvation on HCC.
Collapse
Affiliation(s)
- Nicholas Dale D. Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (N.D.D.T.); (E.W.B.D.C.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Emery Wayne B. Dela Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (N.D.D.T.); (E.W.B.D.C.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (N.D.D.T.); (E.W.B.D.C.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| |
Collapse
|
3
|
Wang S, He Y, Wang J, Luo E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed Pharmacother 2024; 174:116566. [PMID: 38631143 DOI: 10.1016/j.biopha.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide, and its high morbidity and mortality have brought a heavy burden to the global public health system. Due to the concealment of its onset, the limitation of treatment, the acquisition of multi-drug resistance and radiation resistance, the treatment of HCC cannot achieve satisfactory results. Epithelial mesenchymal transformation (EMT) is a key process that induces progression, distant metastasis, and therapeutic resistance to a variety of malignant tumors, including HCC. Therefore, targeting EMT has become a promising tumor immunotherapy method for HCC. The NF-κB pathway is a key regulatory pathway for EMT. Targeting this pathway has shown potential to inhibit HCC infiltration, invasion, distant metastasis, and therapeutic resistance. At present, there are still some controversies about this pathway and new ideas of combined therapy, which need to be further explored. This article reviews the progress of immunotherapy in improving EMT development in HCC cells by exploring the mechanism of regulating EMT.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - En Luo
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Karaś K, Karwaciak I, Chałaśkiewicz K, Sałkowska A, Pastwińska J, Bachorz RA, Ratajewski M. Anti-hepatocellular carcinoma activity of the cyclin-dependent kinase inhibitor AT7519. Biomed Pharmacother 2023; 164:115002. [PMID: 37311277 DOI: 10.1016/j.biopha.2023.115002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancerous tumors and one of the leading causes of death among cancer-related disorders. Chemotherapy is ineffective in HCC patients, and the number of drugs that are in use is limited. Thus, new molecules are needed that could increase the effectiveness of anti-HCC regimens. Here, we show that AT7519, a CDK inhibitor, exerts positive effects on HCC cells: it inhibits proliferation, migration and clonogenicity. Detailed analysis of the transcriptomes of cells treated with this compound indicated that AT7519 affects a substantial portion of genes that are associated with HCC development and progression. Moreover, we showed that the concomitant use of AT7519 with gefitinib or cabozantinib sensitized HCC cells to these drugs. Thus, our research indicates that AT7519 is worth considering in monotherapy for hepatocellular carcinoma patients or in combination with other drugs, e.g., gefitinib or cabozantinib.
Collapse
Affiliation(s)
- Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
5
|
Li XX, Li H, Jin LQ, Tan YB. Exploration and Validation of Pancreatic Cancer Hub Genes Based on Weighted Gene Co-Expression Network Analysis and Immune Infiltration Score Analysis. Pharmgenomics Pers Med 2023; 16:467-480. [PMID: 37252337 PMCID: PMC10216855 DOI: 10.2147/pgpm.s403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Objective To find pancreatic cancer (PC)-related hub genes based on weighted gene co-expression network analysis (WGCNA) construction and immune infiltration score analysis and validate them immunohistochemically by clinical cases, to generate new concepts or therapeutic targets for the early diagnosis and treatment of PC. Material and Methods In this study, WGCNA and immune infiltration score were utilized to identify the relevant core modules of PC and the hub genes within these core modules. Results Using WGCNA analysis, data from PC and normal pancreas integrated with TCGA and GTEX were analyzed and brown modules were chosen from the six modules. Five hub genes, including DPYD, FXYD6, MAP6, FAM110B, and ANK2, were discovered to have differential survival significance via validation tests utilizing survival analysis curves and the GEPIA database. The DPYD gene was the only gene associated with PC survival side effects. Validation of the Human Protein Atlas (HPA) database and immunohistochemical testing of clinical samples showed positive results for DPYD expression in PC. Conclusion In this study, we identified DPYD, FXYD6, MAP6, FAM110B, and ANK2, as immune-related candidate markers for PC. Only the DPYD gene had a negative impact on the survival of PC patients. Through validation of the HPA database and immunohistochemical testing of clinical cases, we believe that the DPYD gene brings novel ideas and therapeutic targets in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Dali University of Clinical Medicine School, Dali, Yunnan, 671000, People’s Republic of China
| | - Hong Li
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Hubei, 443001, People’s Republic of China
| | - Li-Quan Jin
- Department of General Surgery, The First of Affiliated Hospital of Dali University, Dali, Yunnan, 671000, People’s Republic of China
| | - Yun-Bo Tan
- Dali University of Clinical Medicine School, Dali, Yunnan, 671000, People’s Republic of China
- Department of General Surgery, The First of Affiliated Hospital of Dali University, Dali, Yunnan, 671000, People’s Republic of China
| |
Collapse
|
6
|
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6986445. [PMID: 36466092 PMCID: PMC9715334 DOI: 10.1155/2022/6986445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Lan T, Wang Y, Miao J, Guo H, Wang Z, Wang J, Zhang C, Yang P, Zhang Z, Dunmall LC, Wang Y. Deoxythymidylate Kinase as a Promising Marker for Predicting Prognosis and Immune Cell Infiltration of Pan-cancer. Front Mol Biosci 2022; 9:887059. [PMID: 35903153 PMCID: PMC9315941 DOI: 10.3389/fmolb.2022.887059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Deoxythymidylate kinase (DTYMK) serves as a pyrimidine metabolic rate-limiting enzyme that catalyzes deoxythymidine monophosphate (dTMP) to generate deoxythymidine diphosphate (dTDP). It remains unclear whether DTYMK expression has the potential to predict outcome and immune cell infiltration in cancers. Methods: DTYMK expression profile was analyzed using Oncomine, TIMER, GEPIA and UALCAN databases. The influence of DTYMK on immune infiltration was examined using TIMER and TISIDB databases. DTYMK interactive gene hub and co-expressing genes were obtained and analyzed by STRING and Linkedomics, respectively. The relationship between DTYMK expression and patient prognosis was validated using GEPIA, Kaplan-Meier plotter, and PrognoScan databases. The functions of DTYMK in cancer cells were also biologically validated in vitro. Results: DTYMK expression was elevated in tumor tissues compared with their control counterparts. DTYMK expression varied in different stages and discriminatorily distributed in different immune and molecular subtypes. Higher expression of DTYMK predicted worse outcome in several cancer types such as liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). High DTYMK expression was positively or negatively correlated with immune cell infiltration, including B cell, CD8+ cell, CD4+ T cell, macrophage, neutrophil and dendritic cell, depending on the type of cancers. Additionally, DTYMK co-expressing genes participated in pyrimidine metabolism as well as in T helper cell differentiation in LIHC and LUAD. In vitro, knockdown of DTYMK suppressed cell migration of liver and lung cancer cells. Conclusion: DTYMK might be taken as an useful prognostic and immunological marker in cancers and further investigation is warrented.
Collapse
Affiliation(s)
- Tianfeng Lan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yachao Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin Miao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haoran Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Surgical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yaohe Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
10
|
Zeng J, Wu H, Huang Q, Li J, Yu Z, Zhong Z. Dihydropyrimidine dehydrogenase (DPYD) gene c.1627A>G A/G and G/G genotypes are risk factors for lymph node metastasis and distant metastasis of colorectal cancer. J Clin Lab Anal 2021; 35:e24023. [PMID: 34612540 PMCID: PMC8605172 DOI: 10.1002/jcla.24023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dihydropyrimidine dehydrogenase (DPD) acts as the key enzyme catabolizing pyrimidines, and may affect the tumor progression. DPYD gene mutations affect DPD activity. The relationship between DPYD IVS14+1G>A, c.1627A>G, c.85T>C and lymph node metastasis (LNM) and distant metastasis (DM) of colorectal cancer (CRC) was investigated. METHODS A total of 537 CRC patients were enrolled in this study. DPYD polymorphisms were analyzed by polymerase chain reaction (PCR)-Sanger sequencing. The relationship between DPYD genotypes and clinical features of patients, metastasis of CRC was analyzed. RESULTS About DPYD c.1627A>G, A/A (57.7%) was the most common genotype, followed by A/G (35.6%), G/G (6.7%) genotypes. In c.85T>C, T/T, T/C, and C/C genotypes are accounted for 83.6%, 16.0%, and 0.4%, respectively. Logistic regression analysis revealed that DPYD c.1627A>G A/G and G/G genotypes in the dominant model (A/G + G/G vs. A/A) were significant risk factors for the LNM (p = 0.029, OR 1.506, 95% CI = 1.048-2.165) and DM (p = 0.039, OR 1.588, 95% CI = 1.041-2.423) of CRC. In addition, DPYD c.1627A>G polymorphism was more common in patients with abnormal serum carcinoembryonic antigen (CEA) (>5 ng/ml) (p = 0.003) or carbohydrate antigen 24-2 (CA24-2) (>20 U/ml) level (p = 0.015). CONCLUSIONS The results suggested that DPYD c.1627A>G A/G, G/G genotypes are associated with increased risk of LNM and DM of CRC.
Collapse
Affiliation(s)
- Juanzi Zeng
- Department of OncologyMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Heming Wu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Center for Precision MedicineMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Qingyan Huang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Center for Precision MedicineMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Jiaquan Li
- Department of OncologyMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Zhikang Yu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Center for Precision MedicineMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Zhixiong Zhong
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Center for Precision MedicineMeizhou People’s Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| |
Collapse
|
11
|
Wu Y, Wang L, Wang X, Zhao Y, Mao A, Zhang N, Zhou J, Pan Q, Zhu W, Wang L. RNA sequencing analysis reveals the competing endogenous RNAs interplay in resected hepatocellular carcinoma patients who received interferon-alpha therapy. Cancer Cell Int 2021; 21:464. [PMID: 34488748 PMCID: PMC8419921 DOI: 10.1186/s12935-021-02170-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/21/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Interferon-alpha (IFN-α) is a general therapeutic regimen to be utilized in hepatocellular carcinoma (HCC). However, regulatory mechanisms of IFN-α on competing endogenous RNAs (ceRNAs) level in anti-HCC relapse are rarely understood. METHODS HCC patients with and without IFN-α treatment were calculated to analyze the expression profile of mRNA, long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) by RNA sequence, and significant differential expression (DE) of these types of RNAs were selected for further analysis. A ceRNA regulatory network was constructed to explore the potential mechanisms of IFN-α intervention on anti-HCC relapse. Finally, the potential prognostic associated genes among these DE RNAs were identified. RESULTS Totally, 556 mRNAs, 120 circRNAs, 87 lncRNAs, and 96 miRNAs were differentially expressed in patients who received IFN-α treatment. A ceRNA regulatory network including a circRNA-miRNA-mRNA network which composed of 4 up- and 10 down-regulated circRNAs, 8 up- and 5 down-regulated miRNAs, 28 up- and 9 down-regulated mRNAs, and a lncRNA-miRNA-mRNA network which composed of 10 up- and 3 down-regulated lncRNAs, 11 up- and 5 down-regulated miRNAs, 28 up- and 10 down-regulated mRNAs was constructed. Gene enrichment and pathway analysis revealed that the ceRNA network was associated with immune-related pathway and corresponding molecular function in patients who accepted IFN-α treatment. Next, we identified 3 most relevant to IFN-α treatment to HCC among these DE RNAs, namely FAM20A, IGFBP4 and MARCH3, as the prognostic associated genes for HCC. Furthermore, MARCH3 expression correlated with infiltrating levels of tumor infiltrating immune cells (TICCs) in HCC. MARCH3 expression also showed strong correlations with the gene markers of diverse immune cells in HCC. CONCLUSION Our data discovered a novel ceRNA network in HCC patients receiving IFN-α therapy, which might lay the foundation for better understand the regulatory mechanism of IFN-α treatment.
Collapse
Affiliation(s)
- Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Xiaoshuang Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
12
|
Kato H, Naiki-Ito A, Suzuki S, Inaguma S, Komura M, Nakao K, Naiki T, Kachi K, Kato A, Matsuo Y, Takahashi S. DPYD, down-regulated by the potentially chemopreventive agent luteolin, interacts with STAT3 in pancreatic cancer. Carcinogenesis 2021; 42:940-950. [PMID: 33640964 PMCID: PMC8283735 DOI: 10.1093/carcin/bgab017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
The 5-year survival rate of pancreatic ductal carcinoma (PDAC) patients is <10% despite progress in clinical medicine. Strategies to prevent the development of PDAC are urgently required. The flavonoids Luteolin (Lut) and hesperetin (Hes) may be cancer-chemopreventive, but effects on pancreatic carcinogenesis in vivo have not been studied. Here, the chemopreventive effects of Lut and Hes on pancreatic carcinogenesis are assessed in the BOP-induced hamster PDAC model. Lut but not Hes suppressed proliferation of pancreatic intraepithelial neoplasia (PanIN) and reduced the incidence and multiplicity of PDAC in this model. Lut also inhibited the proliferation of hamster and human pancreatic cancer cells in vitro. Multi-blot and microarray assays revealed decreased phosphorylated STAT3 (pSTAT3) and dihydropyrimidine dehydrogenase (DPYD) on Lut exposure. To explore the relationship between DPYD and STAT3 activity, the former was silenced by RNAi or overexpressed using expression vectors, and the latter was inactivated by small molecule inhibitors or stimulated by IL6 in human PDAC cells. DPYD knock-down decreased, and overexpression increased, pSTAT3 and cell proliferation. DPYD expression was decreased by inactivation of STAT3 and increased by its activation. The frequency of pSTAT3-positive cells and DPYD expression was significantly correlated and was decreased in parallel by Lut in the hamster PDAC model. Finally, immunohistochemical analysis in 73 cases of human PDAC demonstrated that DPYD expression was positively correlated with the Ki-67 labeling index, and high expression was associated with poor prognosis. These results indicate that Lut is a promising chemopreventive agent for PDAC, targeting a novel STAT3-DPYD pathway.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenju Nakao
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenta Kachi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Akihisa Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Yoichi Matsuo
- Department of Gastroenterology Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| |
Collapse
|
13
|
Escalante PI, Quiñones LA, Contreras HR. Epithelial-Mesenchymal Transition and MicroRNAs in Colorectal Cancer Chemoresistance to FOLFOX. Pharmaceutics 2021; 13:pharmaceutics13010075. [PMID: 33429840 PMCID: PMC7827270 DOI: 10.3390/pharmaceutics13010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
The FOLFOX scheme, based on the association of 5-fluorouracil and oxaliplatin, is the most frequently indicated chemotherapy scheme for patients diagnosed with metastatic colorectal cancer. Nevertheless, development of chemoresistance is one of the major challenges associated with this disease. It has been reported that epithelial-mesenchymal transition (EMT) is implicated in microRNA-driven modulation of tumor cells response to 5-fluorouracil and oxaliplatin. Moreover, from pharmacogenomic research, it is known that overexpression of genes encoding dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), the DNA repair enzymes ERCC1, ERCC2, and XRCC1, and the phase 2 enzyme GSTP1 impair the response to FOLFOX. It has been observed that EMT is associated with overexpression of DPYD, TYMS, ERCC1, and GSTP1. In this review, we investigated the role of miRNAs as EMT promotors in tumor cells, and its potential effect on the upregulation of DPYD, TYMS, MTHFR, ERCC1, ERCC2, XRCC1, and GSTP1 expression, which would lead to resistance of CRC tumor cells to 5-fluorouracil and oxaliplatin. This constitutes a potential mechanism of epigenetic regulation involved in late-onset of acquired resistance in mCRC patients under FOLFOX chemotherapy. Expression of these biomarker microRNAs could serve as tools for personalized medicine, and as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Paula I. Escalante
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8500000 Santiago, Chile;
- Laboratory of Cellular and Molecular Oncology (LOCYM), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Luis A. Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8500000 Santiago, Chile;
- Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
- Correspondence: (L.A.Q.); (H.R.C.); Tel.: +56-2-29770741 or +56-2-29770743 (L.A.Q.); +56-2-29786862 or +56-2-29786861 (H.R.C.)
| | - Héctor R. Contreras
- Laboratory of Cellular and Molecular Oncology (LOCYM), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
- Correspondence: (L.A.Q.); (H.R.C.); Tel.: +56-2-29770741 or +56-2-29770743 (L.A.Q.); +56-2-29786862 or +56-2-29786861 (H.R.C.)
| |
Collapse
|
14
|
Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene 2020; 39:6139-6156. [PMID: 32839493 PMCID: PMC7515827 DOI: 10.1038/s41388-020-01432-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Tumor metastasis is the major cause of mortality from cancer. Metabolic rewiring and the metastatic cascade are highly intertwined, co-operating to promote multiple steps of cancer metastasis. Metabolites generated by cancer cells influence the metastatic cascade, encompassing epithelial-mesenchymal transition (EMT), survival of cancer cells in circulation, and metastatic colonization at distant sites. A variety of molecular mechanisms underlie the prometastatic effect of tumor-derived metabolites, such as epigenetic deregulation, induction of matrix metalloproteinases (MMPs), promotion of cancer stemness, and alleviation of oxidative stress. Conversely, metastatic signaling regulates expression and activity of rate-limiting metabolic enzymes to generate prometastatic metabolites thereby reinforcing the metastasis cascade. Understanding the complex interplay between metabolism and metastasis could unravel novel molecular targets, whose intervention could lead to improvements in the treatment of cancer. In this review, we summarized the recent discoveries involving metabolism and tumor metastasis, and emphasized the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these aberrant situations in cancer.
Collapse
Affiliation(s)
- Qinyao Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Yun Qian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Marin JJ, Macias RI, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061663. [PMID: 32585893 PMCID: PMC7352164 DOI: 10.3390/cancers12061663] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.
Collapse
Affiliation(s)
- Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| | - Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Alvaro G. Temprano
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Ricardo Espinosa-Escudero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Laura H. Bohorquez
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| |
Collapse
|
16
|
Large-Scale Transgenic Drosophila Resource Collections for Loss- and Gain-of-Function Studies. Genetics 2020; 214:755-767. [PMID: 32071193 DOI: 10.1534/genetics.119.302964] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/11/2020] [Indexed: 01/20/2023] Open
Abstract
The Transgenic RNAi Project (TRiP), a Drosophila melanogaster functional genomics platform at Harvard Medical School, was initiated in 2008 to generate and distribute a genome-scale collection of RNA interference (RNAi) fly stocks. To date, it has generated >15,000 RNAi fly stocks. As this covers most Drosophila genes, we have largely transitioned to development of new resources based on CRISPR technology. Here, we present an update on our libraries of publicly available RNAi and CRISPR fly stocks, and focus on the TRiP-CRISPR overexpression (TRiP-OE) and TRiP-CRISPR knockout (TRiP-KO) collections. TRiP-OE stocks express single guide RNAs targeting upstream of a gene transcription start site. Gene activation is triggered by coexpression of catalytically dead Cas9 fused to an activator domain, either VP64-p65-Rta or Synergistic Activation Mediator. TRiP-KO stocks express one or two single guide RNAs targeting the coding sequence of a gene or genes. Cutting is triggered by coexpression of Cas9, allowing for generation of indels in both germline and somatic tissue. To date, we have generated >5000 TRiP-OE or TRiP-KO stocks for the community. These resources provide versatile, transformative tools for gene activation, gene repression, and genome engineering.
Collapse
|
17
|
A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab 2020; 35:100962. [PMID: 32244187 PMCID: PMC7096759 DOI: 10.1016/j.molmet.2020.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nucleotide metabolism is a critical pathway that generates purine and pyrimidine molecules for DNA replication, RNA synthesis, and cellular bioenergetics. Increased nucleotide metabolism supports uncontrolled growth of tumors and is a hallmark of cancer. Agents inhibiting synthesis and incorporation of nucleotides in DNA are widely used as chemotherapeutics to reduce tumor growth, cause DNA damage, and induce cell death. Thus, the research on nucleotide metabolism in cancer is primarily focused on its role in cell proliferation. However, in addition to proliferation, the role of purine molecules is established as ligands for purinergic signals. However, so far, the role of the pyrimidines has not been discussed beyond cell growth. Scope of the review In this review we present the key evidence from recent pivotal studies supporting the notion of a non-proliferative role for pyrimidine metabolism (PyM) in cancer, with a special focus on its effect on differentiation in cancers from different origins. Major conclusion In leukemic cells, the pyrimidine catabolism induces terminal differentiation toward monocytic lineage to check the aberrant cell proliferation, whereas in some solid tumors (e.g., triple negative breast cancer and hepatocellular carcinoma), catalytic degradation of pyrimidines maintains the mesenchymal-like state driven by epithelial-to-mesenchymal transition (EMT). This review further broadens this concept to understand the effect of PyM on metastasis and, ultimately, delivers a rationale to investigate the involvement of the pyrimidine molecules as oncometabolites. Overall, understanding the non-proliferative role of PyM in cancer will lead to improvement of the existing antimetabolites and to development of new therapeutic options.
Collapse
|
18
|
Wu M, Zhao G, Zhuang X, Zhang T, Zhang C, Zhang W, Zhang Z. Triclosan treatment decreased the antitumor effect of sorafenib on hepatocellular carcinoma cells. Onco Targets Ther 2018; 11:2945-2954. [PMID: 29849464 PMCID: PMC5965385 DOI: 10.2147/ott.s165436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Triclosan is a widely applied antimicrobial agent which affects the endocrine system and homeostasis; it may also promote the cirrhosis and hepatocellular carcinoma (HCC) growth in a mice model. The exact roles of triclosan in regulating human hepatocellular carcinoma development and treatment remain unknown. Methods MHCC97-H, a highly aggressive HCC cell line, was treated with indicated concentration of triclosan or sorafenib. The expression of drug-resistance genes was examined by qPCR. The clearance or metabolism of sorafenib was determined by liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS). MTT assay was used to examine the MHCC97-H cell proliferation. Nude mice were used to exam the anti-tumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H cells. Results In the present study, triclosan could induce the expression of drug-resistance genes in MHCC97-H cells (a highly aggressive HCC cell line), accelerate the clearance of sorafenib, and attenuate the anti-proliferation effect of this molecular targeted agent in MHCC97-H cells. Triclosan decreased the antitumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H in nude mice. Conclusion By discovering the fact that triclosan treatment enhances sorafenib resistance in HCC cells, this work suggests exposure of triclosan is detrimental to HCC patients during chemotherapy.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Department of Pharmacy, The 309th Hospital of PLA, Beijing, China
| | - Guanren Zhao
- Department of Pharmacy, The 309th Hospital of PLA, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ce Zhang
- Department of Pharmacy, The 309th Hospital of PLA, Beijing, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|