1
|
Wu Y, Ma Y, Li Q, Li J, Zhang D, Zhang Y, Li Y, Li X, Xu P, Bai L, Zhou X, Xue M. Multi-omics analysis reveals phenylalanine enhance mitochondrial function and hypoxic endurance via LKB1/AMPK activation. J Transl Med 2024; 22:920. [PMID: 39390477 PMCID: PMC11465566 DOI: 10.1186/s12967-024-05696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Many studies have focused on the effects of small molecules, such as amino acids, on metabolism under hypoxia. Recent findings have indicated that phenylalanine levels were markedly elevated in adaptation to chronic hypoxia. This raises the possibility that phenylalanine treatment could markedly improve the hypoxic endurance. However, the importance of hypoxia-regulated phenylalanine is still unclear. This study investigates the role of phenylalanine in hypoxia adaptation using a hypoxic zebrafish model and multi-omics analysis. We found that phenylalanine-related metabolic pathways are significantly up-regulated under hypoxia, contributing to enhanced hypoxic endurance. Phenylalanine treatment reduced ROS levels, improved mitochondrial oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) in hypoxic cells. Western blotting revealed increased phenylalanine uptake via L-type amino transporters (LAT1), activating the LKB1/AMPK signaling pathway. This activation up-regulated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and the Bcl-2/Bax ratio, while down-regulating uncoupling protein 2 (UCP2), thereby improving mitochondrial function under hypoxia. This is the first comprehensive multi-omics analysis to demonstrate phenylalanine's crucial role in hypoxia adaptation, providing insights for the development of anti-hypoxic drugs.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Ma
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Di Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuxin Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yue Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China.
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, 100069, China.
| |
Collapse
|
2
|
Çubuk C, Loucera C, Peña-Chilet M, Dopazo J. Crosstalk between Metabolite Production and Signaling Activity in Breast Cancer. Int J Mol Sci 2023; 24:7450. [PMID: 37108611 PMCID: PMC10138666 DOI: 10.3390/ijms24087450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The reprogramming of metabolism is a recognized cancer hallmark. It is well known that different signaling pathways regulate and orchestrate this reprogramming that contributes to cancer initiation and development. However, recent evidence is accumulating, suggesting that several metabolites could play a relevant role in regulating signaling pathways. To assess the potential role of metabolites in the regulation of signaling pathways, both metabolic and signaling pathway activities of Breast invasive Carcinoma (BRCA) have been modeled using mechanistic models. Gaussian Processes, powerful machine learning methods, were used in combination with SHapley Additive exPlanations (SHAP), a recent methodology that conveys causality, to obtain potential causal relationships between the production of metabolites and the regulation of signaling pathways. A total of 317 metabolites were found to have a strong impact on signaling circuits. The results presented here point to the existence of a complex crosstalk between signaling and metabolic pathways more complex than previously was thought.
Collapse
Affiliation(s)
- Cankut Çubuk
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- FPS, ELIXIR-es, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- FPS, ELIXIR-es, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| |
Collapse
|
3
|
Montagna DR, Duarte A, Chiarella P, Rearte B, Bustuoabad OD, Vermeulen M, Ruggiero RA. Inhibition of hyperprogressive cancer disease induced by immune-checkpoint blockade upon co-treatment with meta-tyrosine and p38 pathway inhibitor. BMC Cancer 2022; 22:845. [PMID: 35922755 PMCID: PMC9347122 DOI: 10.1186/s12885-022-09941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Although immune-checkpoint inhibitors (ICI) are overall promissory for cancer treatment, they entail, in some cases, an undesired side-effect called hyperprogressive-cancer disease (HPD) associated with acceleration of tumor growth and shortened survival. Methods To understand the mechanisms of HPD we assayed the ICI therapy on two murine tumors widely different regarding immunogenicity and, subsequently, on models of local recurrences and metastases of these tumors. To potentiate the immune response (IR), we combined ICI with meta-tyrosine—that counteracts immune-suppressive signals—and a selective inhibitor of p38 pathway that proved to counteract the phenomenon of tumor-immunostimulation. Results ICI were therapeutically effective against both tumor models (proportionally to their immunogenicity) but only when they faced incipient tumors. In contrast, ICI produced acceleration of large and residual tumors. The combined treatment strongly inhibited the growth of large tumors and it managed to cure 80% of mice with local recurrences and 60% of mice bearing residual metastases. Conclusions Tumor enhancement was paradoxically correlated to a weak increase of the antitumor IR suggesting that a weak IR – different from a strong tumor-inhibitory one—may produce stimulation of tumor growth, mimicking the HPD observed in some clinical settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09941-2.
Collapse
Affiliation(s)
- Daniela R Montagna
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina.
| | - Alejandra Duarte
- Laboratory of Experimental Immunology, IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Paula Chiarella
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Bárbara Rearte
- Laboratory of Physiology of Inflammatory Processes, IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Oscar D Bustuoabad
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratory of Antigen Presenting Cells and Inflammatory Response, IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Raúl A Ruggiero
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Assessing Nordihydroguaiaretic Acid Therapeutic Effect for Glioblastoma Multiforme. SENSORS 2022; 22:s22072643. [PMID: 35408257 PMCID: PMC9002887 DOI: 10.3390/s22072643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA's impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA. A novel outcome presented here is the use of phenylalanine as a biomarker for differentiating between samples and assessing drug efficacy. Treatment with a low NDGA dose shows a decline in abnormal lipid-protein metabolism, which is inferred by the formation of lipid droplets and a decrease in altered protein content. A very high dose results in cell structural and membrane damage that favors transformed protein overexpression. The information gained through this work is of substantial value for understanding NDGA's beneficial as well as detrimental bio-effects as a potential therapeutic drug for brain cancer.
Collapse
|
5
|
Tyminski M, Ciacka K, Staszek P, Gniazdowska A, Krasuska U. Toxicity of meta-Tyrosine. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122800. [PMID: 34961269 PMCID: PMC8707607 DOI: 10.3390/plants10122800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 05/15/2023]
Abstract
L-Tyrosine (Tyr) is one of the twenty proteinogenic amino acids and also acts as a precursor for secondary metabolites. Tyr is prone to modifications, especially under conditions of cellular redox imbalance. The oxidation of Tyr precursor phenylalanine leads to the formation of Tyr non-proteinogenic isomers, including meta-Tyr (m-Tyr), a marker of oxidative stress. The aim of this review is to summarize the current knowledge on m-Tyr toxicity. The direct m-Tyr mode of action is linked to its incorporation into proteins, resulting in their improper conformation. Furthermore, m-Tyr produced by some plants as an allelochemical impacts the growth and development of neighboring organisms. In plants, the direct harmful effect of m-Tyr is due to its modification of the proteins structure, whereas its indirect action is linked to the disruption of reactive oxygen and nitrogen species metabolism. In humans, the elevated concentration of m-Tyr is characteristic of various diseases and ageing. Indeed, m-Tyr is believed to play an important role in cancer physiology. Thus, since, in animal cells, m-Tyr is formed directly in response to oxidative stress, whereas, in plants, m-Tyr is also synthesized enzymatically and serves as a chemical weapon in plant-plant competition, the general concept of m-Tyr role in living organisms should be specified.
Collapse
|
6
|
Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line. Molecules 2021; 26:molecules26195767. [PMID: 34641308 PMCID: PMC8510206 DOI: 10.3390/molecules26195767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with "CM-biomimetic peptides" on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0-400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.
Collapse
|
7
|
Hipólito A, Martins F, Mendes C, Lopes-Coelho F, Serpa J. Molecular and Metabolic Reprogramming: Pulling the Strings Toward Tumor Metastasis. Front Oncol 2021; 11:656851. [PMID: 34150624 PMCID: PMC8209414 DOI: 10.3389/fonc.2021.656851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| |
Collapse
|
8
|
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57:678-696. [PMID: 32705178 PMCID: PMC7384845 DOI: 10.3892/ijo.2020.5099] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP-cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Galmarini CM. Lessons from Hippocrates: Time to Change the Cancer Paradigm. Int J Chronic Dis 2020; 2020:4715426. [PMID: 32566644 PMCID: PMC7298279 DOI: 10.1155/2020/4715426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
The ultimate goal of all medical activity is to restore patients to a state of complete physical, mental, and social wellbeing. In cancer, it is assumed that this can only be obtained through the complete eradication of the tumor burden. So far, this strategy has led to a substantial improvement in cancer survival rates. Despite this, more than 9 million people die from cancer every year. Therefore, we need to accept that our current cancer treatment paradigm is obsolete and must be changed. The new paradigm should reflect that cancer is a systemic disease, which affects an individual patient living in a particular social reality, rather than an invading organism or a mere cluster of mutated cells that need to be eradicated. This Hippocratic holistic view will ultimately lead to an improvement in health and wellbeing in cancer patients. They deserve nothing less.
Collapse
Affiliation(s)
- Carlos M. Galmarini
- Topazium Artificial Intelligence, Paseo de la Castellana 40, 28046 Madrid, Spain
| |
Collapse
|
10
|
Montagna DR, Duarte A, Todero MF, Ruggiero RA, Isturiz M, Rearte B. Meta-tyrosine modulates the immune response induced by bacterial endotoxins. Immunobiology 2020; 225:151856. [DOI: 10.1016/j.imbio.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
|
11
|
Wang Z, Matthews H. Translational incorporation of modified phenylalanines and tyrosines during cell-free protein synthesis. RSC Adv 2020; 10:11013-11023. [PMID: 35495348 PMCID: PMC9050441 DOI: 10.1039/d0ra00655f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 01/22/2023] Open
Abstract
Inherent promiscuity of bacterial translation is demonstrated by mass spectrometric quantification of the translational incorporation of ring-substituted phenylalanines and tyrosines bearing fluoro-, hydroxyl-, methyl-, chloro- and nitro-groups in an E. coli-derived cell-free system. Competitive studies using the cell-free system show that the aminoacyl-tRNA synthetases (aaRS) have at least two orders of magnitude higher specificity for the native substrate over these structural analogues, which correlates with studies on the purified synthetase. E. coli wild-type translational machinery utilizes a range of nonproteinogenic amino acids for protein synthesis with incorporation levels greater than 95%.![]()
Collapse
Affiliation(s)
- Zhongqiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | | |
Collapse
|
12
|
Perkowski MC, Warpeha KM. Phenylalanine roles in the seed-to-seedling stage: Not just an amino acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110223. [PMID: 31623788 DOI: 10.1016/j.plantsci.2019.110223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Phenylalanine is an aromatic amino acid that provides the carbon skeleton for the phenylpropanoid pathway, making many diverse chemicals used for structure, defense, and yet undiscovered functions. The identification of the arogenate dehydratase (ADT) enzymes in the genetic model Arabidopsis thaliana provided a platform to explore the roles of phenylalanine in all stages of life: germination, in the seed-to-seedling transition stage, organelle function, and in generation of defense mechanisms, enabling further studies in other plants. From the literature, data indicate that phenylalanine produced by ADT may have direct roles in organellar and tissue development. Recent studies implicate ADTs in cell division and protection from Reactive Oxygen Species, and in signaling and growth. Research in phenylalanine and subsequent phenylpropanoids also point to a role of phenylalanine as a purveyor of C and N nutrients. The understanding of phenylalanine action in plant cells is enhanced by recent research on phenylalanine in animal cells.
Collapse
Affiliation(s)
- Mark C Perkowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
13
|
Yang B, Wang C, Xie H, Wang Y, Huang J, Rong Y, Zhang H, Kong H, Yang Y, Lu Y. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis 2019; 10:784. [PMID: 31611551 PMCID: PMC6791891 DOI: 10.1038/s41419-019-2023-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Molecular targeted agents, such as sorafenib, remain the only choice of an antitumor drug for the treatment of advanced hepatocellular carcinoma (HCC). The Notch signaling pathway plays central roles in regulating the cellular injury/stress response, anti-apoptosis, or epithelial–mesenchymal transition process in HCC cells, and is a promising target for enhancing the sensitivity of HCC cells to antitumor agents. The ADAM metalloprotease domain-17 (ADAM-17) mediates the cleavage and activation of Notch protein. In the present study, microRNA-3163 (miR-3163), which binds to the 3′-untranslated region of ADAM-17, was screened using online methods. miRDB and pre-miR-3163 sequences were prepared into lentivirus particles to infect HCC cells. miR-3163 targeted ADAM-17 and inhibited the activation of the Notch signaling pathway. Infection of HCC cells with miR-3163 enhanced their sensitivity to molecular targeted agents, such as sorafenib. Therefore, miR-3163 may contribute to the development of more effective strategies for the treatment of advanced HCC.
Collapse
Affiliation(s)
- Bin Yang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Chunping Wang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Hui Xie
- Department of Interventional Therapy, The Fifth Medical Center, Chinese PLA General Hospital, Chinese PLA, Beijing, 100039, China
| | - Yiwu Wang
- Department of Disease Control and Prevention, Chinese PLA The 532nd Hospital, Huangshan, 242700, Anhui Province, China
| | - Jiagan Huang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yihui Rong
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huixin Zhang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huifang Kong
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yinying Lu
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
14
|
Xu N, Wu YP, Ke ZB, Liang YC, Cai H, Su WT, Tao X, Chen SH, Zheng QS, Wei Y, Xue XY. Identification of key DNA methylation-driven genes in prostate adenocarcinoma: an integrative analysis of TCGA methylation data. J Transl Med 2019; 17:311. [PMID: 31533842 PMCID: PMC6751626 DOI: 10.1186/s12967-019-2065-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023] Open
Abstract
Background Prostate cancer (PCa) remains the second leading cause of deaths due to cancer in the United States in men. The aim of this study was to perform an integrative epigenetic analysis of prostate adenocarcinoma to explore the epigenetic abnormalities involved in the development and progression of prostate adenocarcinoma. The key DNA methylation-driven genes were also identified. Methods Methylation and RNA-seq data were downloaded for The Cancer Genome Atlas (TCGA). Methylation and gene expression data from TCGA were incorporated and analyzed using MethylMix package. Methylation data from the Gene Expression Omnibus (GEO) were assessed by R package limma to obtain differentially methylated genes. Pathway analysis was performed on genes identified by MethylMix criteria using ConsensusPathDB. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also applied for the identification of pathways in which DNA methylation-driven genes significantly enriched. The protein–protein interaction (PPI) network and module analysis in Cytoscape software were used to find the hub genes. Two methylation profile (GSE112047 and GSE76938) datasets were utilized to validate screened hub genes. Immunohistochemistry of these hub genes were evaluated by the Human Protein Atlas. Results A total of 553 samples in TCGA database, 32 samples in GSE112047 and 136 samples in GSE76938 were included in this study. There were a total of 266 differentially methylated genes were identified by MethylMix. Plus, a total of 369 differentially methylated genes and 594 differentially methylated genes were identified by the R package limma in GSE112047 and GSE76938, respectively. GO term enrichment analysis suggested that DNA methylation-driven genes significantly enriched in oxidation–reduction process, extracellular exosome, electron carrier activity, response to reactive oxygen species, and aldehyde dehydrogenase [NAD(P)+] activity. KEGG pathway analysis found DNA methylation-driven genes significantly enriched in five pathways including drug metabolism—cytochrome P450, phenylalanine metabolism, histidine metabolism, glutathione metabolism, and tyrosine metabolism. The validated hub genes were MAOB and RTP4. Conclusions Methylated hub genes, including MAOB and RTP4, can be regarded as novel biomarkers for accurate PCa diagnosis and treatment. Further studies are needed to draw more attention to the roles of these hub genes in the occurrence and development of PCa.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yu-Peng Wu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Zhi-Bin Ke
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Ying-Chun Liang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Hai Cai
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wen-Ting Su
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xuan Tao
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Xue-Yi Xue
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
15
|
Zheng C, Qing S, Wang J, Lü G, Li H, Lü X, Ma C, Tang J, Yue X. Diagnosis of cervical squamous cell carcinoma and cervical adenocarcinoma based on Raman spectroscopy and support vector machine. Photodiagnosis Photodyn Ther 2019; 27:156-161. [PMID: 31136828 DOI: 10.1016/j.pdpdt.2019.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
In this report, we collected the Raman spectrum of cervical adenocarcinoma and cervical squamous cell carcinoma tissues by a micro-Raman spectroscopy system. We analysed, compared and summarized the characteristics and differences of the normalized mean Raman spectra of the two tissues and pointed out the major differences in the biochemical composition between the two tissues. The PCA-SVM model that was used to distinguish the two types of cervical cancer tissues was established. The accuracy of the model in differentiating cervical adenocarcinoma from cervical squamous cell carcinoma was 93.125%. The results of this study indicate that Raman spectroscopy of cervical adenocarcinoma and cervical squamous cell carcinoma tissue in combination with SVM (support vector analysis) and PCA (principal component analysis) can be useful for the classification of cervical adenocarcinoma and cervical squamous cell carcinoma tissues and for the exploration of the differences in biochemical compositions between the two types of cervical tissue. This study lays a foundation to further study Raman spectroscopy as a clinical diagnostic method for cervical cancer.
Collapse
Affiliation(s)
- Chengxia Zheng
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Changji Vocational and Technical College, Changji City 831100, Xinjiang Uygur Autonomous Region, China
| | - Song Qing
- Pathology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Jing Wang
- Gynecology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Hongyi Li
- Quality of Products Supervision and Inspection Institute, Urumqi 830011, Xinjiang, China
| | - Xiaoyi Lü
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Cailing Ma
- Gynecology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| | - Jun Tang
- Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China
| | - Xiaxia Yue
- Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China
| |
Collapse
|