1
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
2
|
Recchiuti A, Isopi E, Romano M, Mattoscio D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. Int J Mol Sci 2020; 21:E6637. [PMID: 32927853 PMCID: PMC7555248 DOI: 10.3390/ijms21186637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic pathway that accounts for degradation and recycling of cellular components to extend cell survival under stress conditions. In addition to this prominent role, recent evidence indicates that autophagy is crucially involved in the regulation of the inflammatory response, a tightly controlled process aimed at clearing the inflammatory stimulus and restoring tissue homeostasis. To be efficient and beneficial to the host, inflammation should be controlled by a resolution program, since uncontrolled inflammation is the underlying cause of many pathologies. Resolution of inflammation is an active process mediated by a variety of mediators, including the so-called specialized pro-resolving lipid mediators (SPMs), a family of endogenous lipid autacoids known to regulate leukocyte infiltration and activities, and counterbalance cytokine production. Recently, regulation of autophagic mechanisms by these mediators has emerged, uncovering unappreciated connections between inflammation resolution and autophagy. Here, we summarize mechanisms of autophagy and resolution, focusing on the contribution of autophagy in sustaining paradigmatic examples of chronic inflammatory disorders. Then, we discuss the evidence that SPMs can restore dysregulated autophagy, hypothesizing that resolution of inflammation could represent an innovative approach to modulate autophagy and its impact on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Domenico Mattoscio
- Center for Advanced Studies and Technology, Department of Medical, Oral and Biotechnology Sciences, University of Chieti—Pescara, 66100 Chieti, Italy; (A.R.); (E.I.); (M.R.)
| |
Collapse
|
3
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
4
|
Zhang Y, Zhou P, Wang Z, Chen M, Fu F, Su R. Hsp90β positively regulates μ-opioid receptor function. Life Sci 2020; 252:117676. [PMID: 32304763 DOI: 10.1016/j.lfs.2020.117676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 01/19/2023]
Abstract
AIMS Many μ-opioid receptor (MOR)-associated proteins can regulate the MOR signaling pathway. Using a bacterial two-hybrid screen, we found that the C-terminal of the MOR associated with heat shock protein 90 isoform β (Hsp90β). Here, we explored the effect of Hsp90β on MOR signaling transduction and function. MAIN METHODS The interaction of Hsp90β with MOR was detected by co-immunoprecipitation and immunofluorescence. The effects of Hsp90β on MOR signaling induced by opioids were studied in vitro and in vivo. The effects of the Hsp90β inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) on morphine tolerance and dependence were studied via a hot plate test and CPP test. KEY FINDINGS Hsp90β, instead of Hsp90α, interacted with the MOR in HEK293 cells and SH-SY5Y cells, and the interaction was augmented after morphine pretreatment. The interaction of Hsp90β and MOR increased the inhibition of cAMP and decreased PKA activity under opioid treatment. The functional Hsp90β-MOR complex also promoted the phosphorylation and internalization of the MOR induced by DAMGO in MOR-CHO cells. 17-AAG blocked Hsp90β-MOR interactions and decreased the effect of Hsp90β on the MOR signal transduction. In C57BL/6 mice, 17-AAG decreased morphine-induced acute anti-nociception in the hot plate test, with an increase in phosphorylated PKA and phosphorylated JNK and a decrease in phosphorylated CREB and phosphorylated ERK in murine brains. Chronic morphine treatment induced tolerance, and dependence was inhibited by 17-AAG co-administration. SIGNIFICANCE Hsp90β is a positive co-regulator of the MOR via the activation of a G-protein-dependent and β-arrestin-dependent pathway. Hsp90β has the potential to improve the pharmacologic profile of existing opiates. It is conceivable that in future clinical treatments, the Hsp90β inhibitor, 17-AAG, could decrease the tolerance and dependence in cancer patients induced by opioids.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Fenghua Fu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
5
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Pervaiz S, Bellot GL, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:189-214. [DOI: 10.1016/bs.ircmb.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Zhao H, Wang Y, Qiu T, Liu W, Yao P. Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta 2019; 502:139-147. [PMID: 31877297 DOI: 10.1016/j.cca.2019.12.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
As an evolutionarily conserved intracellular degradation pathway, autophagy is essential to cellular homeostasis. Several studies have demonstrated that autophagy showed an important effect on some pulmonary fibrosis diseases, including idiopathic pulmonary fibrosis (IPF), cystic fibrosis lung disease, silicosis and smoking-induced pulmonary fibrosis. For example, autophagy mitigates the pathological progression of IPF by regulating the apoptosis of fibroblasts and the senescence of alveolar epithelial cells. In addition, autophagy ameliorates cystic fibrosis lung disease via rescuing transmembrane conductance regulators (CFTRs) to the plasma membrane. Furthermore, autophagy alleviates the silica-induced pulmonary fibrosis by decreasing apoptosis of alveolar epithelial cells in silicosis. However, excessive macrophage autophagy aggravates the pathogenesis of silicosis fibrosis by promoting the proliferation and migration of lung fibroblasts in silicosis. Autophagy is also involved in smoking-induced pulmonary fibrosis, coal workers' pneumoconiosis, ionizing radiation-mediated pulmonary fibrosis and heavy metal nanoparticle-mediated pulmonary fibrosis. In this review, the role and signalling mechanisms of autophagy in the progression of pulmonary fibrosis diseases have been systematically analysed. It has provided a new insight into the therapeutic potential associated with autophagy in pulmonary fibrosis diseases. In conclusion, the targeting of autophagy might prove to be a prospective avenue for the therapeutic intervention of pulmonary fibrosis diseases.
Collapse
Affiliation(s)
- Hong Zhao
- Nursing College, University of South China, Hengyang, 421001, China
| | - Yiqun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Tingting Qiu
- Nursing College, University of South China, Hengyang, 421001, China
| | - Wei Liu
- Department of Intensive Care Units, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China.
| | - Pingbo Yao
- Department of Clinical Technology, Changsha Health Vocational College, Changsha 410100, China.
| |
Collapse
|
8
|
Autophagy delays progression of the two most frequent human monogenetic lethal diseases: cystic fibrosis and Wilson disease. Aging (Albany NY) 2019; 10:3657-3661. [PMID: 30568028 PMCID: PMC6326686 DOI: 10.18632/aging.101736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) and Wilson disease (WD) are two monogenetic, recessively inherited lethal pathologies that are caused by ionic disequilibria. CF results from loss-of-function mutations in CF transmembrane conductance regulator (CFTR), a channel that conducts chloride across epithelial cell membranes, while WD is due to a deficiency of ATPase copper transporting beta (ATP7B), a plasma membrane protein that pumps out copper from cells. Recent evidence suggests that both diseases are linked to perturbations in autophagy. CFTR deficiency causes an inhibition of autophagic flux, thus locking respiratory epithelial cells in a pro-inflammatory state and subverting the bactericidal function of macrophages. WD is linked to an increase in autophagy, which, however, is insufficient to mitigate the cytotoxicity of copper. Pharmacological induction of autophagy may delay disease progression, as indicated by preclinical evidence (for CF and WD) and results from clinical trials, in particular in CF patients with the most frequent CTRT mutation (CFTRdel506). Thus, CF and WD exemplify pathologies in which insufficient autophagy plays a major role in determining the chronology of disease progression, much like the pace of 'normal' aging that is dictated by disabled autophagy as well.
Collapse
|
9
|
Miah KM, Hyde SC, Gill DR. Emerging gene therapies for cystic fibrosis. Expert Rev Respir Med 2019; 13:709-725. [PMID: 31215818 DOI: 10.1080/17476348.2019.1634547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.
Collapse
Affiliation(s)
- Kamran M Miah
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Stephen C Hyde
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Deborah R Gill
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
10
|
Zhang S, Wang Y, Xie W, Howe ENW, Busschaert N, Sauvat A, Leduc M, Gomes-da-Silva LC, Chen G, Martins I, Deng X, Maiuri L, Kepp O, Soussi T, Gale PA, Zamzami N, Kroemer G. Squaramide-based synthetic chloride transporters activate TFEB but block autophagic flux. Cell Death Dis 2019; 10:242. [PMID: 30858361 PMCID: PMC6411943 DOI: 10.1038/s41419-019-1474-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis is a disease caused by defective function of a chloride channel coupled to a blockade of autophagic flux. It has been proposed to use synthetic chloride transporters as pharmacological agents to compensate insufficient chloride fluxes. Here, we report that such chloride anionophores block autophagic flux in spite of the fact that they activate the pro-autophagic transcription factor EB (TFEB) coupled to the inhibition of the autophagy-suppressive mTORC1 kinase activity. Two synthetic chloride transporters (SQ1 and SQ2) caused a partially TFEB-dependent relocation of the autophagic marker LC3 to the Golgi apparatus. Inhibition of TFEB activation using a calcium chelator or calcineurin inhibitors reduced the formation of LC3 puncta in cells, yet did not affect the cytotoxic action of SQ1 and SQ2 that could be observed after prolonged incubation. In conclusion, the squaramide-based synthetic chloride transporters studied in this work (which can also dissipate pH gradients) are probably not appropriate for the treatment of cystic fibrosis yet might be used for other indications such as cancer.
Collapse
Affiliation(s)
- Shaoyi Zhang
- Department of Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Yan Wang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Xie
- Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Ethan N W Howe
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Allan Sauvat
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Lígia C Gomes-da-Silva
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France.,Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Guo Chen
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Isabelle Martins
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Xiaxing Deng
- Department of Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France
| | - Thierry Soussi
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Sorbonne Université, UPMC Univ Paris, Paris, France.,Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Naoufal Zamzami
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Gustave Roussy Comprehensive Cancer Center, Villejuif, France. .,Sorbonne Université, UPMC Univ Paris, Paris, France.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Gustave Roussy Comprehensive Cancer Center, Villejuif, France. .,Sorbonne Université, UPMC Univ Paris, Paris, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, APsupp-HP, Paris, France. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Luigi Maiuri: un Grande Uomo - a Great Spirit. Cell Death Dis 2019. [PMCID: PMC6397222 DOI: 10.1038/s41419-019-1466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Maiuri MC, Kroemer G. Therapeutic modulation of autophagy: which disease comes first? Cell Death Differ 2019; 26:680-689. [PMID: 30728461 PMCID: PMC6460393 DOI: 10.1038/s41418-019-0290-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
The relentless efforts of thousands of researchers have allowed deciphering the molecular machinery that regulates and executes autophagy, thus identifying multiple molecular targets to enhance or block the process, rendering autophagy "druggable". Autophagy inhibition may be useful for preserving the life of cells that otherwise would succumb to excessive self-digestion. Moreover, autophagy blockade may reduce the fitness of cancer cells or interrupt metabolic circuitries required for their growth. Autophagy stimulation is probably useful for the prevention or treatment of aging, cancer (when stimulation of immunosurveillance is the therapeutic goal), cardiovascular disease, cystic fibrosis, infection by intracellular pathogens, obesity, and intoxication by heavy metals, just to mention a few examples. Epidemiological evidence suggests broad health-improving effects for lifestyles, micronutrients, and drugs that favor autophagy. In this review, we discuss the role of autophagy in disease pathogenesis while focusing on the question, which disease will become the first clinically approved indication for therapeutic autophagy modulation.
Collapse
Affiliation(s)
- Maria Chiara Maiuri
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France.
- INSERM U1138, 75006, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Sorbonne Université, 75006, Paris, France.
| | - Guido Kroemer
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France.
- INSERM U1138, 75006, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Sorbonne Université, 75006, Paris, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
13
|
Methylomic correlates of autophagy activity in cystic fibrosis. J Cyst Fibros 2019; 18:491-500. [PMID: 30737168 DOI: 10.1016/j.jcf.2019.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a highly regulated, biological process that provides energy during periods of stress and starvation. This conserved process also acts as a defense mechanism and clears microbes from the host cell. Autophagy is impaired in Cystic Fibrosis (CF) patients and CF mice, as their cells exhibit low expression levels of essential autophagy molecules. The genetic disorder in CF is due to mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene that encodes for a chloride channel. CF patients are particularly prone to infection by pathogens that are otherwise cleared by autophagy in healthy immune cells including Burkholderia cenocepacia (B. cenocepacia). The objective of this study is to determine the mechanism underlying weak autophagic activity in CF macrophages and find therapeutic targets to correct it. Using reduced representation bisulfite sequencing (RRBS) to determine DNA methylation profile, we found that the promoter regions of Atg12 in CF macrophages are significantly more methylated than in the wild-type (WT) immune cells, accompanied by low protein expression. The natural product epigallocatechin-3-gallate (EGCG) significantly reduced the methylation of Atg12 promoter improving its expression. Accordingly, EGCG restricted B. cenocepacia replication within CF mice and their derived macrophages by improving autophagy and preventing dissemination. In addition, EGCG improved the function of CFTR protein. Altogether, utilizing RRBS for the first time in the CF field revealed a previously unrecognized mechanism for reduced autophagic activity in CF. Our data also offers a mechanism by which EGCG exerts its positive effects in CF.
Collapse
|
14
|
Bodas M, Vij N. Adapting Proteostasis and Autophagy for Controlling the Pathogenesis of Cystic Fibrosis Lung Disease. Front Pharmacol 2019; 10:20. [PMID: 30774592 PMCID: PMC6367269 DOI: 10.3389/fphar.2019.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF), a fatal genetic disorder predominant in the Caucasian population, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (Cftr) gene. The most common mutation is the deletion of phenylalanine from the position-508 (F508del-CFTR), resulting in a misfolded-CFTR protein, which is unable to fold, traffic and retain its plasma membrane (PM) localization. The resulting CFTR dysfunction, dysregulates variety of key cellular mechanisms such as chloride ion transport, airway surface liquid (ASL) homeostasis, mucociliary-clearance, inflammatory-oxidative signaling, and proteostasis that includes ubiquitin-proteasome system (UPS) and autophagy. A collective dysregulation of these key homoeostatic mechanisms contributes to the development of chronic obstructive cystic fibrosis lung disease, instead of the classical belief focused exclusively on ion-transport defect. Hence, therapeutic intervention(s) aimed at rescuing chronic CF lung disease needs to correct underlying defect that mediates homeostatic dysfunctions and not just chloride ion transport. Since targeting all the myriad defects individually could be quite challenging, it will be prudent to identify a process which controls almost all disease-promoting processes in the CF airways including underlying CFTR dysfunction. There is emerging experimental and clinical evidence that supports the notion that impaired cellular proteostasis and autophagy plays a central role in regulating pathogenesis of chronic CF lung disease. Thus, correcting the underlying proteostasis and autophagy defect in controlling CF pulmonary disease, primarily via correcting the protein processing defect of F508del-CFTR protein has emerged as a novel intervention strategy. Hence, we discuss here both the rationale and significant therapeutic utility of emerging proteostasis and autophagy modulating drugs/compounds in controlling chronic CF lung disease, where targeted delivery is a critical factor-influencing efficacy.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - Neeraj Vij
- Department of Pediatric Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- 4Dx Limited, Los Angeles, CA, United States
- VIJ Biotech LLC, Baltimore, MD, United States
| |
Collapse
|
15
|
Galluzzi L, Kroemer G. Etiological involvement of CFTR in apparently unrelated human diseases. Mol Cell Oncol 2018; 6:1558874. [PMID: 30788425 DOI: 10.1080/23723556.2018.1558874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
17
|
Tosco A, Villella VR, Castaldo A, Kroemer G, Maiuri L, Raia V. Repurposing therapies for the personalised treatment of cystic fibrosis. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1483231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Antonella Tosco
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Valeria R. Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alice Castaldo
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Paris, Sorbonne Paris Cité, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, HôpitalEuropéen Georges Pompidou, AP-HP, Paris, France
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|