1
|
Xiao Y, Chen Y, Chen J, Dong J. ASPP2 Is Phosphorylated by CDK1 during Mitosis and Required for Pancreatic Cancer Cell Proliferation. Cancers (Basel) 2023; 15:5424. [PMID: 38001686 PMCID: PMC10670399 DOI: 10.3390/cancers15225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: pancreatic cancer is highly lethal. The role of apoptosis-stimulating protein of p53-2 (ASPP2) in this lethal disease remains unclear. This protein belongs to the ASPP family of p53 interacting proteins. Previous studies in this lab used phosphate-binding tag (Phos-tag) sodium dodecyl sulfate (SDS) polyacrylamide gels and identified a motility upshift of the ASPP family of proteins during mitosis. (2) Purpose: this study expands on previous findings to identify the detailed phosphorylation regulation of ASPP2 during mitosis, as well as the function of ASPP2 in pancreatic cancer. (3) Methods: the Phos-tag technique was used to investigate the phosphorylation mechanism of ASPP2 during mitosis. Phospho-specific antibodies were generated to validate the phosphorylation of ASPP2, and ASPP2-inducible expression cell lines were established to determine the role of ASPP2 in pancreatic cancer. RNA sequencing (RNA-Seq) was used to uncover the downstream targets of ASPP2. (4) Results: results demonstrate that ASPP2 is phosphorylated during mitosis by cyclin-dependent kinase 1 (CDK1) at sites S562 and S704. In vitro and in vivo results show that ASPP2 is required for pancreatic cancer growth. Furthermore, the expressions of yes-associated protein (YAP)-related genes are found to be dramatically altered by ASPP2 depletion. Together, these findings reveal the phosphorylation mechanism of ASPP2 during mitosis. Collectively, results strongly indicate that ASPP2 is a potential target for abating tumor cell growth in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.X.); (Y.C.); (J.C.)
| |
Collapse
|
2
|
Chen Y, Jiao D, He H, Sun H, Liu Y, Shi Q, Zhang P, Li Y, Mo R, Gao K, Wang C. Disruption of the Keap1-mTORC2 axis by cancer-derived Keap1/mLST8 mutations leads to oncogenic mTORC2-AKT activation. Redox Biol 2023; 67:102872. [PMID: 37688978 PMCID: PMC10498434 DOI: 10.1016/j.redox.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
The mechanistic target of the rapamycin (mTOR) pathway, which participates in the regulation of cellular growth and metabolism, is aberrantly regulated in various cancer types. The mTOR complex 2 (mTORC2), which consists of the core components mTOR, Rictor, mSin1, and mLST8, primarily responds to growth signals. However, the coordination between mTORC2 assembly and activity remains poorly understood. Keap1, a major sensor of oxidative stress in cells, functions as a substrate adaptor for Cullin 3-RING E3 ubiquitin ligase (CRL3) to promote proteasomal degradation of NF-E2-related factor 2 (NRF2), which is a transcription factor that protects cells against oxidative and electrophilic stress. In the present study, we demonstrate that Keap1 binds to mLST8 via a conserved ETGE motif. The CRL3Keap1 ubiquitin ligase complex promotes non-degradative ubiquitination of mLST8, thus reducing mTORC2 complex integrity and mTORC2-AKT activation. However, this effect can be prevented by oxidative/electrophilic stresses and growth factor signaling-induced reactive oxygen species (ROS) burst. Cancer-derived Keap1 or mLST8 mutations disrupt the Keap1-mLST8 interaction and allow mLST8 to evade Keap1-mediated ubiquitination, thereby enhancing mTORC2-AKT activation and promoting cell malignancy and remodeling cell metabolism. Our findings provide new insights into the molecular mechanisms of Keap1/mLST8 mutation-driven tumorigenesis by promoting mTORC2-AKT activation, which is independent of the canonical NRF2 pathway.
Collapse
Affiliation(s)
- Yingji Chen
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Dongyue Jiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Huiying He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Huiru Sun
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Yajuan Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Qing Shi
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yao Li
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Ren Mo
- Department of Urology, Inner Mongolia Urological Institute, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, PR China.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, PR China.
| | - Chenji Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
3
|
Wang C, Li K, An J, Lv X, Ma W, Wang Y, Meng N, Yun T, Zhao T. ASPP1/2 positive patients with invasive breast cancers have good prognosis. Heliyon 2023; 9:e20613. [PMID: 37886763 PMCID: PMC10597814 DOI: 10.1016/j.heliyon.2023.e20613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Although the expression of ASPP family members in multiple tumors has been studied, especially in various cell lines of breast cancer (BC), but the expressions pattern of ASPP family members in invasive BC tissues are not clear. We studied the expression and expression pattern of ASPPs family member in BCs, the relationship between ASPP family members and clinic-pathologic features of BCs was also analyzed. The results showed that the expression of ASPP1, ASPP2 and iASPP was observed on AE1/AE3+ tumor cells, and not on infiltrated lymphocytes and capillaries. The relationship between ASPP1 expression and pTNM stage has statistical difference (p<0.01). The relationship between expression of ASPP2 and SBR grade has statistical difference (p<0.05). The relationship between expression of iASPP and clinic-pathologic feature of patients has no statistical difference (p>0.05). The patients with positive expression of ASPP1 and the patients with negative expression of ASPP1 have statistical difference in 3-year survival rate and 5-year survival rate (χ2 = 4.49, P = 0.03; χ2 = 3.79, P = 0.048). Overall, our work demonstrated that the expression of ASPP1/2 contributes to predict the prognosis of patients with BC.
Collapse
Affiliation(s)
- Changsong Wang
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Ke Li
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Junling An
- Department of Pathology and Pathophysiology, School of Basic Medicine, Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Xuexia Lv
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Wenfeng Ma
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Yaxi Wang
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Nianlong Meng
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Tian Yun
- Department of Pathology, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| | - Ting Zhao
- Department of Colorectal Surgery, People's Liberation Army Joint Logistic Support Force 989th Hospital, Luoyang, Henan, PR China
| |
Collapse
|
4
|
Wang J, Jia C, Gao Q, Zhang J, Gu X. iASPP regulates neurite development by interacting with Spectrin proteins. Front Mol Neurosci 2023; 16:1154770. [PMID: 37284462 PMCID: PMC10240065 DOI: 10.3389/fnmol.2023.1154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Since its discovery in 1999, a substantial body of research has shown that iASPP is highly expressed in various kinds of tumors, interacts with p53, and promotes cancer cell survival by antagonizing the apoptotic activity of p53. However, its role in neurodevelopment is still unknown. Methods We studied the role of iASPP in neuronal differentiation through different neuronal differentiation cellular models, combined with immunohistochemistry, RNA interference and gene overexpression, and studied the molecular mechanism involved in the regulation of neuronal development by iASPP through coimmunoprecipitation coupled with mass spectrometry (CoIP-MS) and coimmunoprecipitation (CoIP). Results In this study, we found that the expression of iASPP gradually decreased during neuronal development. iASPP silencing promotes neuronal differentiation, while its overexpression inhibited neurite differentiation in a variety of neuronal differentiation cellular models. iASPP associated with the cytoskeleton-related protein Sptan1 and dephosphorylated the serine residues in the last spectrin repeat domain of Sptan1 by recruiting PP1. The non-phosphorylated and phosphomimetic mutant form of Sptbn1 inhibited and promoted neuronal cell development respectively. Conclusion Overall, we demonstrate that iASPP suppressed neurite development by inhibiting phosphorylation of Sptbn1.
Collapse
Affiliation(s)
- Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunhong Jia
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Gao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiwen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
6
|
Jiao D, Chen Y, Wang Y, Sun H, Shi Q, Zhang L, Zhao X, Liu Y, He H, Lv Z, Liu C, Zhang P, Gao K, Huang Y, Li Y, Li L, Wang C. DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs. Oncogene 2022; 41:3000-3010. [PMID: 35459779 DOI: 10.1038/s41388-022-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival and appear to neutralize the cell death machinery by binding pro-apoptotic caspases. dcaf12 was recently identified as an apoptosis regulator in Drosophila. However, the underlying molecular mechanisms are unknown. Here we revealed that human DCAF12 homolog binds multiple IAPs, including XIAP, cIAP1, cIAP2, and BRUCE, through recognition of BIR domains in IAPs. The pro-apoptotic function of DCAF12 is dependent on its capacity to bind IAPs. In response to apoptotic stimuli, DCAF12 translocates from the nucleus to the cytoplasm, where it blocks the interaction between XIAP and pro-apoptotic caspases to facilitate caspase activation and apoptosis execution. Similarly, DCAF12 suppresses NF-κB activation in an IAP binding-dependent manner. Moreover, DCAF12 acts as a tumor suppressor to restrict the malignant phenotypes of cancer cells. Together, our results suggest that DCAF12 is an evolutionarily conserved IAP antagonist.
Collapse
Affiliation(s)
- Dongyue Jiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingji Chen
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yalan Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiru Sun
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Shi
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaying Zhao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiying He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chuan Liu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Huang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Li
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China.
| | - Chenji Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
iASPP is essential for HIF-1α stabilization to promote angiogenesis and glycolysis via attenuating VHL-mediated protein degradation. Oncogene 2022; 41:1944-1958. [PMID: 35169254 DOI: 10.1038/s41388-022-02234-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays central roles in the hypoxia response. It is highly expressed in multiple cancers, but not always correlated with hypoxia. Mutation of the von Hippel-Lindau (VHL) gene, which encodes an E3 ligase, contributes to the constructive activation of HIF-1α in specific tumor types, as exemplified by renal cell carcinoma; but how VHL wild-type tumors acquire this ability is not completely understood. Here, we found that the oncogene iASPP (inhibitor of apoptosis-simulating protein of p53) plays essential roles in such a context. Genetic inhibition of iASPP reduced tumor growth, accompanied by impaired angiogenesis, increased areas of tumor necrosis, and reduced glycolysis that was HIF-1α-dependent. These abilities of iASPP were validated by in vitro assays. Mechanistically, iASPP directly binds VHL at its β domain, a region also involved in HIF-1α binding, therefore blocking VHL's binding and the subsequent degradation of HIF-1α protein under normoxia. iASPP levels correlate with HIF-1α protein and vascular endothelial growth factor (VEGF) and the glucose transporter protein type 1(GLUT1), representative HIF-1α target genes, in human colon cancer tissues. Furthermore, inhibition of iASPP expression synergizes with low toxic dose of the HIF-1α inhibitor YC-1 to inhibit HIF-1α expression and tumor growth. Our findings suggest that iASPP contributes to HIF-1α activation in cancers, and that iASPP-mediated HIF-1α stabilization has potential as a therapeutic approach against cancer.
Collapse
|
8
|
Zhuo X, Chen L, Lai Z, Liu J, Li S, Hu A, Lin Y. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) correlates with poor prognosis and immune infiltration in lung adenocarcinoma. Bioengineered 2021; 12:8336-8346. [PMID: 34592886 PMCID: PMC8806970 DOI: 10.1080/21655979.2021.1985817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 11/06/2022] Open
Abstract
The protein phosphatase 1 regulatory subunit 3 G (PPP1R3G) participates in many tumor biological processes; however, its effects on lung adenocarcinoma (LUAD) have not been clarified. Therefore, this study aimed to explore the correlation between PPP1R3G and the prognosis and immune invasion of LUAD. We evaluated the relationship between PPP1R3G and LUAD using a wide range of databases and analysis tools, including UALCAN, TIMER, miRDB, The Human Protein Atlas and the MethSurv database. First, we explored the mRNA and protein expression levels of PPP1R3G in LUAD, and results were validated using real-time PCR. Next, we explored the relationship between PPP1R3G expression and clinical features. Finally, Kaplan-Meier curves and Cox regression were employed to investigate the prognostic significance of PPP1R3G in LUAD. In addition, we explored the relationship between the expression of PPP1R3G and immune infiltration using the TIMER database. We analyzed the relationship between PPP1R3G and methylation using MethSurv database. Results showed that PPP1R3G expression in LUAD tissues was higher than that in normal tissues, and high expression was suggestive of a poor prognosis. Moreover, PPP1R3G expression was positively correlated with the immune infiltration of CD4 + T cells, macrophages, neutrophils, and dendritic cells. PPP1R3G copy number variations also demonstrated remarkable associations with the levels of B cells, CD4 + T cells, macrophages, neutrophils, and dendritic cells. Finally, a PPP1R3G-associated regulatory network was constructed. Overall, PPP1R3G might be a poor prognostic biomarker for LUAD and is associated with tumor immune cell infiltration.Abbreviations: LUAD: Lung adenocarcinoma; PPP1R3G: The protein phosphatase 1 regulatory subunit 3G; OS: overall survival; CI: confidence interval; CNV: copy number variance; HR: Hazard Ratio; ROC: receiver operating characteristic curve; AUC: area under the curve; TCGA: The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Xingli Zhuo
- Department of emergency and critical care medicine, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Lan Chen
- Department of Respiratory Medicine, Gannan Medical University, Ganzhou, China
| | - Zongwei Lai
- Department of Respiratory Medicine, Gannan Medical University, Ganzhou, China
| | - Jiansheng Liu
- Department of Respiratory Medicine, Ganzhou People’s Hospital, Ganzhou, China
| | - Shengjun Li
- Department of emergency and critical care medicine, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Ahu Hu
- Department of emergency and critical care medicine, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yuansheng Lin
- Department of emergency and critical care medicine, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
9
|
Kocakaplan D, Karabürk H, Dilege C, Kirdök I, Bektas SN, Caydasi AK. Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. eLife 2021; 10:72833. [PMID: 34633288 PMCID: PMC8577847 DOI: 10.7554/elife.72833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5, and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.
Collapse
Affiliation(s)
- Dilara Kocakaplan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Hüseyin Karabürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Cansu Dilege
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Idil Kirdök
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
10
|
Bresch AM, Yerich N, Wang R, Sperry AO. The PP1 regulator PPP1R2 coordinately regulates AURKA and PP1 to control centrosome phosphorylation and maintain central spindle architecture. BMC Mol Cell Biol 2020; 21:84. [PMID: 33238888 PMCID: PMC7687763 DOI: 10.1186/s12860-020-00327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Maintenance of centrosome number in cells is essential for accurate distribution of chromosomes at mitosis and is dependent on both proper centrosome duplication during interphase and their accurate distribution to daughter cells at cytokinesis. Two essential regulators of cell cycle progression are protein phosphatase 1 (PP1) and Aurora A kinase (AURKA), and their activities are each regulated by the PP1 regulatory subunit, protein phosphatase 1 regulatory subunit 2 (PPP1R2). We observed an increase in centrosome number after overexpression of these proteins in cells. Each of these proteins is found on the midbody in telophase and overexpression of PPP1R2 and its mutants increased cell ploidy and disrupted cytokinesis. This suggests that the increase in centrosome number we observed in PPP1R2 overexpressing cells was a consequence of errors in cell division. Furthermore, overexpression of PPP1R2 and its mutants increased midbody length and disrupted midbody architecture. Additionally, we show that overexpression of PPP1R2 alters activity of AURKA and PP1 and their phosphorylation state at the centrosome. RESULTS Overexpression of PPP1R2 caused an increase in the frequency of supernumerary centrosomes in cells corresponding to aberrant cytokinesis reflected by increased nuclear content and cellular ploidy. Furthermore, AURKA, PP1, phospho PPP1R2, and PPP1R2 were all localized to the midbody at telophase, and PP1 localization there was dependent on binding of PPP1R2 with PP1 and AURKA as well as its phosphorylation state. Additionally, overexpression of both PPP1R2 and its C-terminal AURKA binding site altered enzymatic activity of AURKA and PP1 at the centrosome and disrupted central spindle structure. CONCLUSIONS Results from our study reveal the involvement of PPP1R2 in coordinating PP1 and AURKA activity during cytokinesis. Overexpression of PPP1R2 or its mutants disrupted the midbody at cytokinesis causing accumulation of centrosomes in cells. PPP1R2 recruited PP1 to the midbody and interference with its targeting resulted in elongated and severely disrupted central spindles supporting an important role for PPP1R2 in cytokinesis.
Collapse
Affiliation(s)
- Alan-Michael Bresch
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Nadiya Yerich
- University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Rong Wang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Ann O Sperry
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
11
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
12
|
The Correct Localization of Borealin in Midbody during Cytokinesis Depends on IQGAP1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6231697. [PMID: 32685508 PMCID: PMC7334785 DOI: 10.1155/2020/6231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Borealin is a key component of chromosomal passenger complex, which is vital in cytokinesis. IQ domain-containing GTPase-activating protein 1 (IQGAP1) also participates in cytokinesis. The correlation between Borealin and IQGAP1 during cytokinesis is not yet clear. Here, we used mass spectrometry and endogenous coimmunoprecipitation experiments to investigate the interaction between IQGAP1 and Borealin. Results of the current study showed that Borealin interacted directly with IQGAP1 both in vitro and in vivo. Knockdown of IQGAP1 resulted in an abnormal location of Borealin in the midbody. Knocking down Borealin alone, IQGAP1 alone, or Borealin and IQGAP1 at the same time inhibited the completion of cytokinesis and formed multinucleated cells. Our results indicated that IQGAP1 interacts with Borealin during cytokinesis, and the correct localization of Borealin in the midbody during cytokinesis is determined by IQGAP1, and IQGAP1 may play an important role in regulating Borealin function in cytokinesis.
Collapse
|
13
|
Chan KK, Wong ESY, Wong ITL, Cheung CLY, Wong OGW, Ngan HYS, Cheung ANY. Overexpression of iASPP is required for autophagy in response to oxidative stress in choriocarcinoma. BMC Cancer 2019; 19:953. [PMID: 31615473 PMCID: PMC6792270 DOI: 10.1186/s12885-019-6206-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background Gestational trophoblastic disease (GTD) is a heterogeneous group of diseases developed from trophoblasts. ASPP (Ankyrin-repeat, SH3-domain and proline-rich region containing protein) family proteins, ASPP1 and ASPP2, have been reported to be dysregulated in GTD. They modulate p53 activities and are responsible for multiple cellular processes. Nevertheless, the functional role of the ASPP family inhibitory member, iASPP, is not well characterized in GTD. Methods To study the functional role of iASPP in GTD, trophoblastic tissues from normal placentas, hydatidiform mole (HM) and choriocarcinoma were used for immunohistochemistry, whereas siRNAs were used to manipulate iASPP expression in choriocarcinoma cell lines and study the subsequent molecular changes. Results We demonstrated that iASPP was overexpressed in both HM and choriocarcinoma when compared to normal placenta. Progressive increase in iASPP expression from HM to choriocarcinoma suggests that iASPP may be related to the development of trophoblastic malignancy. High iASPP expression in HM was also significantly associated with a high expression of autophagy-related protein LC3. Interestingly, iASPP silencing retarded the growth of choriocarcinoma through senescence instead of induction of apoptosis. LC3 expression decreased once iASPP was knocked down, suggesting a downregulation on autophagy. This may be due to iASPP downregulation rendered decrease in Atg5 expression and concomitantly hindered autophagy in choriocarcinoma cells. Autophagy inhibition per se had no effect on the growth of choriocarcinoma cells but increased the susceptibility of choriocarcinoma cells to oxidative stress, implying a protective role of iASPP against oxidative stress through autophagy in choriocarcinoma. Conclusions iASPP regulates growth and the cellular responses towards oxidative stress in choriocarcinoma cells. Its overexpression is advantageous to the pathogenesis of GTD. (266 words).
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China.
| | - Esther Shuk-Ying Wong
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | | | - Oscar Gee-Wan Wong
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Hextan Yuen-Sheung Ngan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Annie Nga-Yin Cheung
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China. .,Department of Pathology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
15
|
Iosub-Amir A, Bai F, Sohn YS, Song L, Tamir S, Marjault HB, Mayer G, Karmi O, Jennings PA, Mittler R, Onuchic JN, Friedler A, Nechushtai R. The anti-apoptotic proteins NAF-1 and iASPP interact to drive apoptosis in cancer cells. Chem Sci 2018; 10:665-673. [PMID: 30774867 PMCID: PMC6349067 DOI: 10.1039/c8sc03390k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
We reveal a novel interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells, and propose that this interaction is required for apoptosis activation in cancer cells. A peptide derived from the interaction interface inhibits apoptosis in cells.
Suppression of apoptosis is a key Hallmark of cancer cells, and reactivation of apoptosis is a major avenue for cancer therapy. We reveal an interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells and tumors. iASPP is an inhibitory member of the ASPP protein family, whereas NAF-1 belongs to the NEET 2Fe–2S protein family. We show that the two proteins are stimulated to interact in cells during apoptosis. Using peptide array screening and computational methods we mapped the interaction interfaces of both proteins to residues 764–778 of iASPP that bind to a surface groove of NAF-1. A peptide corresponding to the iASPP 764–780 sequence stabilized the NAF-1 cluster, inhibited NAF-1 interaction with iASPP, and inhibited staurosporine-induced apoptosis activation in human breast cancer, as well as in PC-3 prostate cancer cells in which p53 is inactive. The iASPP 764–780 IC50 value for inhibition of cell death in breast cancer cells was 13 ± 1 μM. The level of cell death inhibition by iASPP 764–780 was altered in breast cancer cells expressing different levels and/or variants of NAF-1, indicating that the peptide activity is associated with NAF-1 function. We propose that the interaction between iASPP and NAF-1 is required for apoptosis activation in cancer cells. This interaction uncovers a new layer in the highly complex regulation of cell death in cancer cells and opens new avenues of exploration into the development of novel anticancer drugs that reactivate apoptosis in malignant tumors.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Fang Bai
- Center for Theoretical Biological Physics , Department of Physics , Rice University , Houston , TX 77005 , USA .
| | - Yang-Sung Sohn
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Luhua Song
- Department of Biological Sciences , University of North Texas , Denton , TX 76203 , USA
| | - Sagi Tamir
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Guy Mayer
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Ola Karmi
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA
| | - Ron Mittler
- Department of Surgery , University of Missouri School of Medicine , Christopher S. Bond Life Sciences Center , University of Missouri , 1201 Rollins St , Columbia , MO 65201 , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics , Department of Physics , Rice University , Houston , TX 77005 , USA .
| | - Assaf Friedler
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| |
Collapse
|