1
|
Gupta S, Lopez MA, Ektesabi AM, Tsoporis JN, Vaswani CM, Gandhi SY, Fairn GD, Dos Santos CC, Marshall JC. Caspase-8: Arbitrating Life and Death in the Innate Immune System. Cells 2025; 14:240. [PMID: 39996713 PMCID: PMC11853578 DOI: 10.3390/cells14040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
The canonical function of caspase-8 is to control timely cellular apoptosis to maintain tissue homeostasis and clear dysfunctional cells; however, emerging findings reveal novel, non-canonical roles of caspase in addition to regulating cellular apoptosis, including inflammatory response regulation, immune function, and cell differentiation. Furthermore, the functional versatility of caspase-8 is reported to be contingent on the presence and dimerization of various isoforms, which are produced through alternative splicing, altering its function and protein-protein interactions. Equally important are post-translational modifications, including phosphorylation and ubiquitination, which can act as a nexus to control caspase-8 activity and cellular localization. Here, we review the alternative splicing and post-translational modifications made to caspase-8 and discuss their influence on its canonical and non-canonical roles.
Collapse
Affiliation(s)
- Sahil Gupta
- Faculty of Medicine, School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia; (S.G.); (S.Y.G.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K3, Canada
| | - Monica Aida Lopez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
| | - Amin M. Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K3, Canada
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
| | - Chirag M. Vaswani
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K3, Canada
| | - Shil Y. Gandhi
- Faculty of Medicine, School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia; (S.G.); (S.Y.G.)
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Claudia C. Dos Santos
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K3, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K3, Canada
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.A.L.); (A.M.E.); (J.N.T.); (C.M.V.); (G.D.F.); (C.C.D.S.)
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K3, Canada
- Department of Critical Care Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
2
|
Kong C, Guo Z, Liu F, Tang N, Wang M, Yang D, Li C, Yang Z, Ma Y, Wang P, Tang Q. Triad3A-Mediated K48-Linked ubiquitination and degradation of TLR9 impairs mitochondrial bioenergetics and exacerbates diabetic cardiomyopathy. J Adv Res 2024; 61:65-81. [PMID: 37625569 PMCID: PMC11258663 DOI: 10.1016/j.jare.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Targeted protein degradation represents a promising therapeutic approach, while diabetic cardiomyopathy (DCM) arises as a consequence of aberrant insulin secretion and impaired glucose and lipid metabolism in the heart.. OBJECTIVES Considering that the Toll-like receptor 9 (TLR9) signaling pathway plays a pivotal role in regulating energy metabolism, safeguarding cardiomyocytes, and influencing glucose uptake, the primary objective of this study was to investigate the impact of TLR9 on diabetic cardiomyopathy (DCM) and elucidate its underlying mechanism. METHODS Mouse model of DCM was established using intraperitoneal injection of STZ, and mice were transfected with adeno-associated virus serotype 9-TLR9 (AAV9-TLR9) to assess the role of TLR9 in DCM. To explore the mechanism of TLR9 in regulating DCM disease progression, we conducted interactome analysis and employed multiple molecular approaches. RESULTS Our study revealed a significant correlation between TLR9 expression and mouse DCM. TLR9 overexpression markedly mitigated cardiac dysfunction, myocardial fibrosis, oxidative stress, and apoptosis in DCM, while inflammation levels remained relatively unaffected. Mechanistically, TLR9 overexpression positively modulated mitochondrial bioenergetics and activated the AMPK-PGC1a signaling pathway. Furthermore, we identified Triad3A as an interacting protein that facilitated TLR9's proteasomal degradation through K48-linked ubiquitination. Inhibiting Triad3A expression improved cardiac function and pathological changes in DCM by enhancing TLR9 activity. CONCLUSIONS The findings of this study highlight the critical role of TLR9 in maintaining cardiac function and mitigating pathological alterations in diabetic cardiomyopathy. Triad3A-mediated regulation of TLR9 expression and function has significant implications for understanding the pathogenesis of DCM. Targeting TLR9 and its interactions with Triad3A may hold promise for the development of novel therapeutic strategies for diabetic cardiomyopathy. Further research is warranted to fully explore the therapeutic potential of TLR9 modulation in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Fangyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
3
|
Wang Q, Yang F, Duo K, Liu Y, Yu J, Wu Q, Cai Z. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:3882-3898. [PMID: 38038880 DOI: 10.1007/s12035-023-03728-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Fan Yang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kun Duo
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Cai
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer Center, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
6
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Qin Y, Chen J, Xu K, Lu Y, Xu F, Shi J. Triad3A involved in the regulation of endotoxin tolerance and mycobactericidal activity through the NFκB-nitric oxide pathway. Immun Inflamm Dis 2023; 11:e925. [PMID: 37506157 PMCID: PMC10363814 DOI: 10.1002/iid3.925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1β, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1β in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yang Lu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifan Xu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
8
|
George AJ, Dong B, Lail H, Gomez M, Hoffiz YC, Ware CB, Fang N, Murphy AZ, Hrabovszky E, Wanders D, Mabb AM. The E3 ubiquitin ligase RNF216/TRIAD3 is a key coordinator of the hypothalamic-pituitary-gonadal axis. iScience 2022; 25:104386. [PMID: 35620441 PMCID: PMC9126796 DOI: 10.1016/j.isci.2022.104386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS. Rnf216/Triad3 controls GnRH production and intrinsic hypothalamic cell activity Rnf216/Triad3 knockout male mice have greater reproductive impairments than females Rnf216/Triad3 controls the HPG axis differently in males and females Rnf216/Triad3 knockout male mice have reactive microglia in the hypothalamus
Collapse
|
9
|
Cotton TR, Cobbold SA, Bernardini JP, Richardson LW, Wang XS, Lechtenberg BC. Structural basis of K63-ubiquitin chain formation by the Gordon-Holmes syndrome RBR E3 ubiquitin ligase RNF216. Mol Cell 2021; 82:598-615.e8. [PMID: 34998453 DOI: 10.1016/j.molcel.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.
Collapse
Affiliation(s)
- Thomas R Cotton
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon A Cobbold
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan P Bernardini
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan W Richardson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Li D, Li F, Meng L, Wei H, Zhang Q, Jiang F, Chen DN, Li W, Tan YQ, Li JD. RNF216 regulates meiosis and PKA stability in the testes. FASEB J 2021; 35:e21460. [PMID: 33724554 DOI: 10.1096/fj.202002294rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/11/2022]
Abstract
Spermatogenesis is a highly sophisticated process that comprises of mitosis, meiosis, and spermiogenesis. RNF216 (ring finger protein 216), an E3 ubiquitin ligase, has been reported to be essential for spermatogenesis and male fertility in mice. However, the stages affected by Rnf216 deficiency and its underlying molecular pathological mechanisms are still unknown. In this study, we generated Rnf216-deficient mice (Rnf216-/- ) using CRISPR-Cas9 technology. Knockout of Rnf216 led to infertility in male but not female mice. Rnf216 knockout affected the prophase of meiosis I, as no genotypic difference was observed until 12 dpp (days postpartum). Rnf216-/- spermatocytes were incompletely arrested at the zygotene stage and underwent apoptosis at approximately the pachytene stage. The proportion of zygotene spermatocytes was significantly increased, whereas the proportion of pachytene spermatocytes was significantly decreased in Rnf216-/- testes. Nevertheless, there was no significantly genotypic difference in the number of diplotene spermatocytes. We further revealed that the PKA catalytic subunit β (PRKACB) was significantly increased, which subsequently resulted in elevated PKA activity in testes from adult as well as 9 dpp Rnf216-/- mice. RNF216 interacts with PRKACB and promotes its degradation through the ubiquitin-lysosome pathway. Collectively, our results revealed an important role for RNF216 in regulation of meiosis and PKA stability in the testes.
Collapse
Affiliation(s)
- Dengfeng Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Fangfang Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Fang Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| |
Collapse
|
11
|
Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Biochem Soc Trans 2021; 48:1737-1750. [PMID: 32677670 PMCID: PMC7458406 DOI: 10.1042/bst20200237] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Ubiquitination is a fundamental post-translational modification that regulates almost all aspects of cellular signalling and is ultimately catalysed by the action of E3 ubiquitin ligases. The RING-between-RING (RBR) family of E3 ligases encompasses 14 distinct human enzymes that are defined by a unique domain organisation and catalytic mechanism. Detailed characterisation of several RBR ligase family members in the last decade has revealed common structural and mechanistic features. At the same time these studies have highlighted critical differences with respect to autoinhibition, activation and catalysis. Importantly, the majority of RBR E3 ligases remain poorly studied, and thus the extent of diversity within the family remains unknown. In this mini-review we outline the current understanding of the RBR E3 mechanism, structure and regulation with a particular focus on recent findings and developments that will shape the field in coming years.
Collapse
|
12
|
Samson AL, Fitzgibbon C, Patel KM, Hildebrand JM, Whitehead LW, Rimes JS, Jacobsen AV, Horne CR, Gavin XJ, Young SN, Rogers KL, Hawkins ED, Murphy JM. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ 2021; 28:2126-2144. [PMID: 33589776 DOI: 10.1038/s41418-021-00742-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Necroptosis is a lytic, inflammatory cell death pathway that is dysregulated in many human pathologies. The pathway is executed by a core machinery comprising the RIPK1 and RIPK3 kinases, which assemble into necrosomes in the cytoplasm, and the terminal effector pseudokinase, MLKL. RIPK3-mediated phosphorylation of MLKL induces oligomerization and translocation to the plasma membrane where MLKL accumulates as hotspots and perturbs the lipid bilayer to cause death. The precise choreography of events in the pathway, where they occur within cells, and pathway differences between species, are of immense interest. However, they have been poorly characterized due to a dearth of validated antibodies for microscopy studies. Here, we describe a toolbox of antibodies for immunofluorescent detection of the core necroptosis effectors, RIPK1, RIPK3, and MLKL, and their phosphorylated forms, in human and mouse cells. By comparing reactivity with endogenous proteins in wild-type cells and knockout controls in basal and necroptosis-inducing conditions, we characterise the specificity of frequently-used commercial and recently-developed antibodies for detection of necroptosis signaling events. Importantly, our findings demonstrate that not all frequently-used antibodies are suitable for monitoring necroptosis by immunofluorescence microscopy, and methanol- is preferable to paraformaldehyde-fixation for robust detection of specific RIPK1, RIPK3, and MLKL signals.
Collapse
Affiliation(s)
- André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Xavier J Gavin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Triad3A displays a critical role in suppression of cerebral ischemic/reperfusion (I/R) injury by regulating necroptosis. Biomed Pharmacother 2020; 128:110045. [PMID: 32460187 DOI: 10.1016/j.biopha.2020.110045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. Necroptosis is known as a form of cell death, playing an essential role in regulating ischemia-induced brain injury. Triad3A is a ubiquitin ligase of the RING-in-between-RING family, and regulates necroptotic cell death under different pathological conditions, including neurodegenerative disorders. In the present study, the effects of Triad3A on experimental stroke were explored on a mouse model with middle cerebral artery occlusion (MCAO). The results indicated that Triad3A expression was markedly induced in the ischemic brain after MCAO operation. The neurons and microglia cells were the major cellular sources for Triad3A induction. Triad3A knockdown enhanced the infarction area, cell death, microglia activity, and the expression levels of pro-inflammatory markers including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), CD32 and CD68 in MCAO mice. Triad3A and necroptosis were triggered in mouse microglia cells treated with oxygen and glucose deprivation (OGD), and in TNFα-incubated mouse hippocampal neuronal cells treated with Z-VAD-fmk, known as a pan-caspase inhibitor. Moreover, Triad3A knockdown accelerated cell death in microglial cells and neurons under these stresses. Furthermore, pre-treatment with necroptosis inhibitor markedly inhibited the cell death promoted by Triad3A silence in brain of mice with MCAO operation, demonstrating that Triad3A could regulate necroptosis to meditate the progression of cerebral I/R injury. Collectively, these finding illustrated that Triad3A could be served as a potential target for stroke therapy.
Collapse
|
14
|
Ariana A, Alturki NA, Hajjar S, Stumpo DJ, Tiedje C, Alnemri ES, Gaestel M, Blackshear PJ, Sad S. Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. J Biol Chem 2020; 295:4661-4672. [PMID: 32094226 DOI: 10.1074/jbc.ra119.011633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
The necrosome is a protein complex required for signaling in cells that results in necroptosis, which is also dependent on tumor necrosis factor receptor (TNF-R) signaling. TNFα promotes necroptosis, and its expression is facilitated by mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) but is inhibited by the RNA-binding protein tristetraprolin (TTP, encoded by the Zfp36 gene). We have stimulated murine macrophages from WT, MyD88 -/-, Trif -/-, MyD88 -/- Trif -/-, MK2 -/-, and Zfp36 -/- mice with graded doses of lipopolysaccharide (LPS) and various inhibitors to evaluate the role of various genes in Toll-like receptor 4 (TLR4)-induced necroptosis. Necrosome signaling, cytokine production, and cell death were evaluated by immunoblotting, ELISA, and cell death assays, respectively. We observed that during TLR4 signaling, necrosome activation is mediated through the adaptor proteins MyD88 and TRIF, and this is inhibited by MK2. In the absence of MK2-mediated necrosome activation, lipopolysaccharide-induced TNFα expression was drastically reduced, but MK2-deficient cells became highly sensitive to necroptosis even at low TNFα levels. In contrast, during tonic TLR4 signaling, WT cells did not undergo necroptosis, even when MK2 was disabled. Of note, necroptosis occurred only in the absence of TTP and was mediated by the expression of TNFα and activation of JUN N-terminal kinase (JNK). These results reveal that TTP plays an important role in inhibiting TNFα/JNK-induced necrosome signaling and resultant cytotoxicity.
Collapse
Affiliation(s)
- Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Norah A Alturki
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher Tiedje
- Department of Cellular and Molecular Medicine, University of Copenhagen, The Maersk Tower, 7.3, Blegdamsvej 3B, Copenhagen DK-2200, Denmark.,Institute of Cell Biochemistry, Hannover Medical School, Germany, 30623
| | - Emad S Alnemri
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Germany, 30623
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada .,University of Ottawa, Ottawa Centre for Infection, Immunity and Inflammation, Ontario K1H 8M5, Canada
| |
Collapse
|
15
|
Molecular mechanisms of necroptosis and relevance for neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:31-82. [PMID: 32381178 DOI: 10.1016/bs.ircmb.2019.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Necroptosis is a regulated cell death pathway morphologically similar to necrosis that depends on the kinase activity of receptor interacting protein 3 (RIP3) and the subsequent activation of the pseudokinase mixed lineage kinase domain-like protein (MLKL), being also generally dependent on RIP1 kinase activity. Necroptosis can be recruited during pathological conditions, usually following the activation of death receptors under specific cellular contexts. In this regard, necroptosis has been implicated in the pathogenesis of multiple disorders, including acute and chronic neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, and multiple sclerosis. Here, we summarize the molecular mechanisms regulating the induction of necroptosis and downstream effectors of this form of cell death, besides exploring non-necroptotic roles for necroptosis-related proteins that may impact on alternative cell death pathways and inflammatory mechanisms in disease. Finally, we outline the recent evidence implicating necroptosis in neurodegenerative conditions and the emerging therapeutic perspectives targeting necroptosis in these diseases.
Collapse
|
16
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
17
|
Seenivasan R, Hermanns T, Blyszcz T, Lammers M, Praefcke GJK, Hofmann K. Mechanism and chain specificity of RNF216/TRIAD3, the ubiquitin ligase mutated in Gordon Holmes syndrome. Hum Mol Genet 2019; 28:2862-2873. [DOI: 10.1093/hmg/ddz098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractGordon Holmes syndrome (GDHS) is an adult-onset neurodegenerative disorder characterized by ataxia and hypogonadotropic hypogonadism. GDHS is caused by mutations in the gene encoding the RING-between-RING (RBR)-type ubiquitin ligase RNF216, also known as TRIAD3. The molecular pathology of GDHS is not understood, although RNF216 has been reported to modify several substrates with K48-linked ubiquitin chains, thereby targeting them for proteasomal degradation. We identified RNF216 in a bioinformatical screen for putative SUMO-targeted ubiquitin ligases and confirmed that a cluster of predicted SUMO-interaction motifs (SIMs) indeed recognizes SUMO2 chains without targeting them for ubiquitination. Surprisingly, purified RNF216 turned out to be a highly active ubiquitin ligase that exclusively forms K63-linked ubiquitin chains, suggesting that the previously reported increase of K48-linked chains after RNF216 overexpression is an indirect effect. The linkage-determining region of RNF216 was mapped to a narrow window encompassing the last two Zn-fingers of the RBR triad, including a short C-terminal extension. Neither the SIMs nor a newly discovered ubiquitin-binding domain in the central portion of RNF216 contributes to chain specificity. Both missense mutations reported in GDHS patients completely abrogate the ubiquitin ligase activity. For the R660C mutation, ligase activity could be restored by using a chemical ubiquitin loading protocol that circumvents the requirement for ubiquitin-conjugating (E2) enzymes. This result suggests Arg-660 to be required for the ubiquitin transfer from the E2 to the catalytic cysteine. Our findings necessitate a re-evaluation of the previously assumed degradative role of RNF216 and rather argue for a non-degradative K63 ubiquitination, potentially acting on SUMOylated substrates.
Collapse
Affiliation(s)
- Ramkumar Seenivasan
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Thomas Hermanns
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Tamara Blyszcz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Michael Lammers
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Gerrit J K Praefcke
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
- Division of Haematology and Transfusion Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
18
|
Seo J, Kim MW, Bae KH, Lee SC, Song J, Lee EW. The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochem Pharmacol 2018; 162:21-40. [PMID: 30452908 DOI: 10.1016/j.bcp.2018.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023]
Abstract
Regulation of cell survival and death, including apoptosis and necroptosis, is important for normal development and tissue homeostasis, and disruption of these processes can cause cancer, inflammatory diseases, and degenerative diseases. Ubiquitination is a cellular process that induces proteasomal degradation by covalently attaching ubiquitin to the substrate protein. In addition to proteolytic ubiquitination, nonproteolytic ubiquitination, such as M1-linked and K63-linked ubiquitination, has been shown to be important in recent studies, which have demonstrated its function in cell signaling pathways that regulate inflammation and cell death pathways. In this review, we summarize the TRAIL- and TNF-induced death receptor signaling pathways along with recent advances in this field and illustrate how different types of ubiquitination control cell death and survival. In particular, we provide an overview of the different types of ubiquitination, target residues, and modifying enzymes, including E3 ligases and deubiquitinating enzymes. Given the relevance of these regulatory pathways in human disease, we hope that a better understanding of the regulatory mechanisms of cell death pathways will provide insights into and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Roles of ubiquitin in autophagy and cell death. Semin Cell Dev Biol 2018; 93:125-135. [PMID: 30195063 PMCID: PMC6854449 DOI: 10.1016/j.semcdb.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023]
Abstract
The balance between cell survival and cell death is often lost in human pathologies such as inflammation and cancer. Autophagy plays a critical role in cell survival: essential nutrients are generated by autophagy-dependent degradation and recycling of cellular garbage. On the other hand, cell death is induced by different programs, such as apoptosis, pyroptosis, and necroptosis. Emerging evidence is revealing how cell survival and cell death pathways are coordinated to determine cell fate. For instance, posttranslational modification of proteins with ubiquitin regulates many steps of autophagy and cell death pathways. In this review article, we will discuss how the ubiquitin system influences cell death and autophagy.
Collapse
|