1
|
Guo P, Song S, Niu Y, Kuang X, Zhou D, Zhou Z, Zhang Y, Ma X. Alternative splicing of bunched confers a dual role in hippo pathway-dependent growth and tumorigenesis. Oncogene 2025:10.1038/s41388-025-03348-6. [PMID: 40175650 DOI: 10.1038/s41388-025-03348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/17/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
Alternative splicing is a fundamental mechanism that generates functionally distinct proteins from individual genes, contributing to gene regulation and proteomic diversity. In Drosophila, the bunched (bun) gene, a member of the TSC-22 domain gene family, undergoes alternative splicing, yielding diverse protein isoforms involved in crucial biological processes. Nevertheless, the specific roles and regulatory mechanisms of each isoform remain elusive. Here, we employed CRISPR/Cas9 technology to introduce targeted deletions within the endogenous locus of the bun gene, resulting in the removal of either long or short isoforms. We discovered that the short isoforms demonstrated a growth-suppressive role, whereas the long isoforms exhibited a growth-promoting effect. Surprisingly, the long isoforms exhibited a remarkable dual functionality, as both deletion and amplification of long isoform expression impede the excess growth induced by Hippo pathway inactivation. Mechanistically, ectopically expressed Bun long isoforms act as the transcriptional suppressor by competitively binding to targets' promoter regions in conjunction with Yorkie/Scalloped (Yki/Sd), thereby inhibiting its transcriptional outputs and ultimately leading to the growth suppression. These findings unveil the intricate interaction between distinct spliced isoforms of Bun and oncogenic outcomes, highlighting Bun long isoforms as the critical transcription suppressor regulating Hippo pathway inactivation-mediated growth and tumorigenesis in Drosophila.
Collapse
Affiliation(s)
- Pengjuan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yuxiao Niu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiaoyu Kuang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Ben Mrid R, El Guendouzi S, Mineo M, El Fatimy R. The emerging roles of aberrant alternative splicing in glioma. Cell Death Discov 2025; 11:50. [PMID: 39915450 PMCID: PMC11802826 DOI: 10.1038/s41420-025-02323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Gliomas represent a heterogeneous group of uniformly fatal brain tumors. Low and high-grade gliomas have diverse molecular signatures. Despite successful advances in understanding glioma, several genetic, epigenetic, and post-transcriptional alterations leave various targeted therapies ineffective, leading to a poor prognosis for high-grade glioma. Recent advances have revealed the implication of dysregulated alternative splicing (AS) events in glioma development. AS is a process that produces, from a single genomic sequence, several mature messenger RNAs. Splicing of pre-messenger RNAs concerns at least 95% of transcripts and constitutes an important mechanism in gene expression regulation. Dysregulation of this process, through variations in spliceosome components, aberrant splicing factors and RNA-binding protein activity, disproportionate regulation of non-coding RNAs, and abnormal mRNA methylation, can contribute to the disruption of AS. Such disruptions are usually associated with the development of several cancers, including glioma. Consequently, AS constitutes a key regulatory mechanism that could serve as a target for future therapies. In this review, we explore how AS events, spliceosome components, and their regulatory mechanisms play a critical role in glioma development, highlighting their potential as targets for innovative therapeutic strategies against this challenging cancer.
Collapse
Affiliation(s)
- Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco.
| | - Sara El Guendouzi
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco
| | - Marco Mineo
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco.
| |
Collapse
|
3
|
Mintoo M, Rajagopalan V, O'Bryan JP. Intersectin - many facets of a scaffold protein. Biochem Soc Trans 2024; 52:1-13. [PMID: 38174740 DOI: 10.1042/bst20211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.
Collapse
Affiliation(s)
- Mubashir Mintoo
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, U.S.A
| |
Collapse
|
4
|
Zhang Z, Wang X, Liu Y, Wu H, Zhu X, Ye C, Ren H, Chong W, Shang L, Li L. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase suppresses insulin-like growth factor 1 receptor expression to inhibit cell adhesion and proliferation in gastric cancer. MedComm (Beijing) 2024; 5:e472. [PMID: 38292328 PMCID: PMC10827000 DOI: 10.1002/mco2.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has recently emerged as a novel tumor suppressor. Researchers have observed that LHPP plays a crucial role in inhibiting proliferation, growth, migration, invasion, and cell metabolism across various cancers. Nevertheless, the specific functions and underlying mechanisms of LHPP as a tumor suppressor in gastric cancer (GC) require further exploration. The expression of LHPP was assessed in human GC specimens and cell lines. Various assays were employed to evaluate the impact of LHPP on GC cells. RNA sequencing and Gene Set Enrichment Analysis were conducted to unravel the mechanism through which LHPP regulates GC cell behavior. Additionally, xenograft nude mouse models were utilized to investigate the in vivo effects of LHPP. The findings indicate that LHPP, functioning as a tumor suppressor, is downregulated in both GC tissues and cells. LHPP emerges as an independent risk factor for GC patients, and its expression level exhibits a positive correlation with patient prognosis. LHPP exerts inhibitory effects on the adhesion and proliferation of GC cells by suppressing the expression of insulin-like growth factor 1 receptor (IGF1R) and modulating downstream signaling pathways. Consequently, LHPP holds potential as a biomarker for targeted therapy involving IGF1R inhibition in GC patients.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Xu Wang
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yuan Liu
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Hao Wu
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of General SurgeryPeking Union Medical CollegePeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Xingyu Zhu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Chunshui Ye
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Huicheng Ren
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wei Chong
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesShandongChina
- Key Laboratory of Engineering of Shandong ProvinceShandong Provincial HospitalJinanShandongChina
| | - Liang Shang
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesShandongChina
- Key Laboratory of Engineering of Shandong ProvinceShandong Provincial HospitalJinanShandongChina
| | - Leping Li
- Department of Gastrointestinal SurgeryShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesShandongChina
- Key Laboratory of Engineering of Shandong ProvinceShandong Provincial HospitalJinanShandongChina
| |
Collapse
|
5
|
Lan C, Zhang H, Wang K, Liu X, Zhao Y, Guo Z, Zhang N, Zhou Y, Gao M, Gu F, Ma Y. The alternative splicing of intersectin 1 regulated by PTBP1 promotes human glioma progression. Cell Death Dis 2022; 13:835. [PMID: 36171198 PMCID: PMC9519902 DOI: 10.1038/s41419-022-05238-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/23/2023]
Abstract
Intersectin 1 (ITSN1) contains two isoforms: ITSN1-S and ITSN1-L, which are highly regulated by alternative splicing. Our previous results showed that the two isoforms of ITSN1 displayed opposite functions: ITSN1-S promoted glioma development, while ITSN1-L exerted an inhibitory role in glioma progression. In this study, our transcriptome analysis using a large glioma cohort indicated that the ratio of ITSN1-S/ITSN1-L was positively correlated with glioma grading and poor prognosis. We identified the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) as an ITSN1 pre-mRNA interaction protein through RNA pull-down assay and RNA immunoprecipitation assay. Knockdown of PTBP1 decreased the ratio of ITSN1-S/ITSN1-L. Minigene reporter assay and mutation analyses further confirmed PTBP1 targeted polypyrimidine sequences on ITSN1 exon 30 (TTGCACTTCAGTATTTT) and promoted the inclusion of ITSN1 exon 30. Subsequently, silencing PTBP1 inhibited glioma cell proliferation, migration, and invasion by down-regulating the ratio of ITSN1-S/ITSN1-L. Taken together, our study provides a novel mechanism that PTBP1 modulates the alternative splicing of ITSN1 and promotes glioma proliferation and motility by up-regulating the ratio of ITSN1-S/ITSN1-L, thereby highlighting that PTBP1 may be an attractive therapeutic target for gliomas.
Collapse
Affiliation(s)
- Chungen Lan
- grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Huikun Zhang
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Kezhen Wang
- grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoli Liu
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yawen Zhao
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhifang Guo
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ning Zhang
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yongxia Zhou
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Manzhi Gao
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Gu
- grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yongjie Ma
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
6
|
Wang J, He Z, Liu X, Xu J, Jiang X, Quan G, Jiang J. LINC00941 promotes pancreatic cancer malignancy by interacting with ANXA2 and suppressing NEDD4L-mediated degradation of ANXA2. Cell Death Dis 2022; 13:718. [PMID: 35977942 PMCID: PMC9385862 DOI: 10.1038/s41419-022-05172-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Recently, long non-coding RNAs (lncRNA) have been proven to regulate pancreatic cancer (PC) progression. We aimed to explore the pathogenesis of LINC00941 in PC regarding protein binding. By using PCR analysis, we found that LINC00941 was overexpressed in PC tissues and was higher in patients with liver metastasis than in patients without liver metastasis. In addition, high LINC00941 expression was associated with a poor prognosis. Functional experiments and mice models were respectively used to evaluate PC cell proliferation and migration in vitro and in vivo. The results suggested that LINC00941 overexpression promoted PC proliferation and metastasis. Subsequently, RNA pull-down, mass spectrometry (MS), and RNA-binding protein immunoprecipitation (RIP) were performed to identify LINC00941-interacting proteins. The results suggested that ANXA2 was the potential LINC00941-interacting protein. Nucleotides 500-1390 of LINC00941 could bind to the Annexin 1 domain of ANXA2. LINC00941-mediated malignant phenotype of PC was reversed by ANXA2 depletion. Co-immunoprecipitation (Co-IP) followed by MS was conducted to determine the potential interacting protein of LINC00941. The results illustrated that NEDD4L, an E3 ligase involved in ubiquitin-mediated protein degradation, bound to the Annexin 1 domain of ANXA2 and promoted its degradation. Mechanically, LINC00941 functioned as a decoy to bind to ANXA2 and suppressed its degradation by enclosing the domain that binds to NEDD4L. Eventually, LINC00941 upregulated ANXA2 and activated FAK/AKT signaling, increasing PC cell proliferation and metastasis. This study indicates that LINC00941 promotes PC proliferation and metastasis by binding ANXA2 and potentiating its stability, leading to the activation of FAK/AKT signaling. Our data demonstrate that LINC00941 may serve as a novel target for prognosis and therapy.
Collapse
Affiliation(s)
- Jie Wang
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Zhiwei He
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Xinyuan Liu
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Jian Xu
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Xueyi Jiang
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Gang Quan
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Jianxin Jiang
- grid.412632.00000 0004 1758 2270Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| |
Collapse
|
7
|
Ferrer-Bonsoms JA, Gimeno M, Olaverri D, Sacristan P, Lobato C, Castilla C, Carazo F, Rubio A. EventPointer 3.0: flexible and accurate splicing analysis that includes studying the differential usage of protein-domains. NAR Genom Bioinform 2022; 4:lqac067. [PMID: 36128425 PMCID: PMC9477077 DOI: 10.1093/nargab/lqac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022] Open
Abstract
Alternative splicing (AS) plays a key role in cancer: all its hallmarks have been associated with different mechanisms of abnormal AS. The improvement of the human transcriptome annotation and the availability of fast and accurate software to estimate isoform concentrations has boosted the analysis of transcriptome profiling from RNA-seq. The statistical analysis of AS is a challenging problem not yet fully solved. We have included in EventPointer (EP), a Bioconductor package, a novel statistical method that can use the bootstrap of the pseudoaligners. We compared it with other state-of-the-art algorithms to analyze AS. Its performance is outstanding for shallow sequencing conditions. The statistical framework is very flexible since it is based on design and contrast matrices. EP now includes a convenient tool to find the primers to validate the discoveries using PCR. We also added a statistical module to study alteration in protein domain related to AS. Applying it to 9514 patients from TCGA and TARGET in 19 different tumor types resulted in two conclusions: i) aberrant alternative splicing alters the relative presence of Protein domains and, ii) the number of enriched domains is strongly correlated with the age of the patients.
Collapse
Affiliation(s)
- Juan A Ferrer-Bonsoms
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Marian Gimeno
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Danel Olaverri
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Pablo Sacristan
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - César Lobato
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Carlos Castilla
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Fernando Carazo
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Angel Rubio
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| |
Collapse
|
8
|
Landscape of Alternative Splicing Events Related to Prognosis and Immune Infiltration in Glioma: A Data Analysis and Basic Verification. J Immunol Res 2022; 2022:2671891. [PMID: 35832652 PMCID: PMC9273398 DOI: 10.1155/2022/2671891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioma is a prevalent primary brain cancer with high invasiveness and typical local diffuse infiltration. Alternative splicing (AS), as a pervasive transcriptional regulatory mechanism, amplifies the coding capacity of the genome and promotes the progression of malignancies. This study was aimed at identifying AS events and novel biomarkers associated with survival for glioma. Methods RNA splicing patterns were collected from The Cancer Genome Atlas SpliceSeq database, followed by calculating the percentage of splicing index. Expression profiles and related clinical information of glioma were integrated based on the UCSC Xena database. The AS events in glioma were further analyzed, and glioma prognosis-related splicing factors were identified with the use of bioinformatics analysis and laboratory techniques. Further immune infiltration analysis was performed. Results Altogether, 9028 AS events were discovered. Upon univariate Cox analysis, 425 AS events were found to be related to the survival of patients with glioma, and 42 AS events were further screened to construct the final prognostic model (area under the curve = 0.974). Additionally, decreased expression of the splicing factors including Neuro-Oncological Ventral Antigen 1 (NOVA1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), heterogeneous nuclear ribonucleoprotein L-like protein (HNRNPLL), and RNA-Binding Motif Protein 4 (RBM4) contributed to the poor survival in glioma. The immune infiltration analysis demonstrated that AS events were related to the proportion of immune cells infiltrating in glioma. Conclusions It is of great value for comprehensive consideration of AS events, splicing networks, and related molecular subtype clusters in revealing the underlying mechanism and immune microenvironment remodeling for glioma, which provides clues for the further verification of related therapeutic targets.
Collapse
|
9
|
Fan W, Ding J, Liu S, Zhong W. Development and validation of novel prognostic models based on RNA-binding proteins in breast cancer. J Int Med Res 2022; 50:3000605221106285. [PMID: 35770997 PMCID: PMC9252011 DOI: 10.1177/03000605221106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives We aimed to construct novel prognostic models based on RNA-binding proteins (RBPs) in breast cancer (BRCA) and explore their roles in this disease and their effects on tumor-infiltrating immune cells (TIICs). Methods Datasets were downloaded from the Gene Expression Omnibus (GEO) database. Functions and prognostic values of RBPs were systematically investigated using a series of bioinformatics analysis methods. TIICs were assessed using CIBERSORT. Results Overall, 138 differentially expressed RBPs were identified, of which 86 were upregulated and 52 were downregulated. Of these, 13 RBPs were identified as prognosis-related and adopted to construct an overall survival (OS) model, while 12 RBPs were used for the relapse-free survival (RFS) model. High-risk patients had poorer OS and RFS rates than low-risk patients. The results indicate that the OS and RFS models are good prognostic models with reliable predictive abilities. In addition, the proportions of CD8, CD4 naïve, and CD4 memory resting T cells, as well as resting dendritic cells, were significantly different between the low-risk and high-risk groups in the OS model. Conclusions OS and RFS signatures can be used as reliable BRCA prognostic biomarkers. This work will help understand the prognostic roles and functions of RBPs in BRCA.
Collapse
Affiliation(s)
- Wei Fan
- Department of Breast Cancer, Hubei Cancer Hospital; Tongji Medical College, Huazhong University of Science and Technology and Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Jun Ding
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, China
| | - Shushu Liu
- Department of Breast Cancer, Hubei Cancer Hospital; Tongji Medical College, Huazhong University of Science and Technology and Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Wei Zhong
- Department of Breast Cancer, Hubei Cancer Hospital; Tongji Medical College, Huazhong University of Science and Technology and Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| |
Collapse
|
10
|
The SpliZ generalizes 'percent spliced in' to reveal regulated splicing at single-cell resolution. Nat Methods 2022; 19:307-310. [PMID: 35241832 DOI: 10.1038/s41592-022-01400-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Detecting single-cell-regulated splicing from droplet-based technologies is challenging. Here, we introduce the splicing Z score (SpliZ), an annotation-free statistical method to detect regulated splicing in single-cell RNA sequencing. We applied the SpliZ to human lung cells, discovering hundreds of genes with cell-type-specific splicing patterns including ones with potential implications for basic and translational biology.
Collapse
|
11
|
Zhang H, Guo Z, Liu X, Zhao Y, Chen Y, Zhang M, Fu L, Gu F, Ma Y. Endocytic protein intersectin1-S shuttles into nucleus to suppress the DNA replication in breast cancer. Cell Death Dis 2021; 12:922. [PMID: 34625530 PMCID: PMC8501101 DOI: 10.1038/s41419-021-04218-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common type of cancer worldwide. However, the well-known molecular biomarkers are not enough to meet the needs of precision medicine. In search for novel targets in this regard, we reported ITSN1 (intersectin1) as one of the candidates through mRNA microarray analysis. In the present study, we reported that endocytic protein ITSN1-S exists not only in the cytoplasm but also in nuclei of breast cancer cells. ITSN1-S' functional nuclear localization signal is within its residues 306-312. Its nuclear export signal (NES) resides within its SH3 domains. We also found, the interaction between the CC domain of nuclear ITSN1-S and the NT domain of nuclear DNA helicase II (NDH II) directly suppressed the DNA replication and nascent DNA synthesis by inhibiting the R-loops resolution in breast cancer cells. Furthermore, the interaction between the EH domains of cytoplasmic ITSN1-S and PI3KC2α inhibit cell migration and invasion by inactivating the PI3KC2α-AKT pathway. Our results were confirmed in both ITSN1 gene knockout cells and in vivo assays. Finally, our clinical data showed a potential application of the combined consideration of the cytoplasmic and nuclear ITSN1-S as an independent prognosis factor. In conclusion, our study revealed ITSN1-S' novel positioning in the nuclei of breast cancer cells, its function in suppressing DNA replication, and its potential application in improved breast cancer prognosis.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/chemistry
- Adaptor Proteins, Vesicular Transport/metabolism
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Nucleus/metabolism
- Cell Proliferation
- DNA Replication
- DNA, Neoplasm/biosynthesis
- Endocytosis
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Nuclear Localization Signals
- Phosphatidylinositol 3-Kinases/metabolism
- Prognosis
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Wound Healing
- src Homology Domains
- Mice
Collapse
Affiliation(s)
- Huikun Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhifang Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoli Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yawen Zhao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yongzi Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Li Fu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Gu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongjie Ma
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| |
Collapse
|
12
|
Han B, Yang M, Yang X, Liu M, Xie Q, Fan G, Hosseini DK, Yu J, Song P, Chen X, Sun H. Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Thyroid Carcinoma. Front Oncol 2021; 11:561457. [PMID: 34249669 PMCID: PMC8261059 DOI: 10.3389/fonc.2021.561457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a key mechanism involved in regulating gene expression and is closely related to tumorigenesis. The incidence of thyroid cancer (THCA) has increased during the past decade, and the role of AS in THCA is still unclear. Here, we used TCGA and to generate AS maps in patients with THCA. Univariate analysis revealed 825 AS events related to the survival of THCA. Five prognostic models of AA, AD, AT, ES, and ME events were obtained through lasso and multivariate analyses, and the final prediction model was established by integrating all the AS events in the five prediction models. Kaplan–Meier survival analysis revealed that the overall survival rate of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The ROC results revealed that the prognostic capabilities of each model at 3, 5, and 8 years were all greater than 0.7, and the final prognostic capabilities of the models were all greater than 0.9. By reviewing other databases and utilizing qPCR, we verified the established THCA gene model. In addition, gene set enrichment analysis showed that abnormal AS events might play key roles in tumor development and progression of THCA by participating in changes in molecular structure, homeostasis of the cell environment and in cell energy. Finally, a splicing correlation network was established to reveal the potential regulatory patterns between the predicted splicing factors and AS event candidates. In summary, AS should be considered an important prognostic indicator of THCA. Our results will help to elucidate the underlying mechanism of AS in the process of THCA tumorigenesis and broaden the prognostic and clinical application of molecular targeted therapy for THCA.
Collapse
Affiliation(s)
- Baoai Han
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengzhi Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Xie
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Davood K Hosseini
- Department of Internal Medicine, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Yao J, Tang YC, Yi B, Yang J, Chai Y, Yin N, Zhang ZX, Wei YJ, Li DC, Zhou J. Signature of gene aberrant alternative splicing events in pancreatic adenocarcinoma prognosis. J Cancer 2021; 12:3164-3179. [PMID: 33976726 PMCID: PMC8100795 DOI: 10.7150/jca.48661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS), as an effective and universal mechanism of transcriptional regulation, is involved in the development and progression of cancer. Therefore, systematic analysis of alternative splicing in pancreatic adenocarcinoma (PAAD) is warranted. The corresponding clinical information of the RNA-Seq data and PAAD cohort was downloaded from the TCGA data portal. Then, a java application, SpliceSeq, was used to evaluate the RNA splicing pattern and calculate the splicing percentage index (PSI). Differentially expressed AS events (DEAS) were identified based on PSI values between PAAD cancer samples and normal samples of adjacent tissues. Kaplan-Meier and Cox regression analyses were used to assess the association between DEAS and patient clinical characteristics. Unsupervised cluster analysis used to reveal four clusters with different survival patterns. At the same time, GEO and TCGA combined with GTEx to verify the differential expression of AS gene and splicing factor. After rigorous filtering, a total of 45,313 AS events were identified, 1,546 of which were differentially expressed AS events. Nineteen DEAS were found to be associated with OS with a five-year overall survival rate of 0.946. And the subtype clusters results indicate that there are differences in the nature of individual AS that affect clinical outcomes. Results also identified 15 splicing factors associated with the prognosis of PAAD. And the splicing factors ESRP1 and RBM5 played an important role in the PAAD-associated AS events. The PAAD-associated AS events, splicing networks, and clusters identified in this study are valuable for deciphering the underlying mechanisms of AS in PAAD and may facilitate the establishment of therapeutic goals for further validation.
Collapse
Affiliation(s)
- Jun Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yu-Chen Tang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Yi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Yang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yun Chai
- Department of Plastic Surgery, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215006, China
| | - Ni Yin
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zi-Xiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yi-Jun Wei
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - De-Chun Li
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
14
|
Li J, Zhou W, Wei J, Xiao X, An T, Wu W, He Y. Prognostic Value and Biological Functions of RNA Binding Proteins in Stomach Adenocarcinoma. Onco Targets Ther 2021; 14:1689-1705. [PMID: 33707953 PMCID: PMC7942957 DOI: 10.2147/ott.s297973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose To investigate the prognostic value and biological function of RNA binding proteins (RBPs) in stomach adenocarcinoma (STAD). Materials and Methods Datasets of the differentially expressed genes (DEGs) were downloaded from the TCGA-based (The Cancer Genome Atlas) GEPIA database, from which the differentially expressed RBPs were determined. Functions and prognostic values of these determined RBPs were systematically investigated by a series of methods in bioinformatics analysis. In addition, transwell assays were performed to explore the effect of PTBP1 in STAD cells. Results Three hundred and sixty-two differentially expressed RBPs were determined, with 331 up-regulated and 31 down-regulated. Seven RBPs (PTBP1, PPIH, SMAD5, MSI2, RBM15, MRPS17, and ADAT3) were identified to be prognosis-related and adopted to construct a prognostic model. Compared with low-risk patients in TCGA training cohort, TCGA testing cohort and GEO cohort, high-risk patients had poorer overall survival (OS). The area under the ROC curves of this prognostic model were 0.804, 0.644 and 0.581 for TCGA training cohort, TCGA testing cohort and GEO cohort, respectively, justifying itself as a good prognostic model with reliable predictive ability. Using the seven identified RBPs, we then constructed a nomogram to generate a clinical utility model. The regulatory networks and functions of the seven RBPs were then investigated, the results of which demonstrated that MRPS17 and PTBP1 reduced the number of infiltrated immune cells. In-vitro experiments showed that the downregulation of PTBP1 weakened the migration and invasion capability of AGS and HGC27 cells. Conclusion The seven-gene signature can be used as a reliable STAD prognostic biomarker, and these findings help us better understand the prognostic roles and functions of RBPs in STAD.
Collapse
Affiliation(s)
- Junqing Li
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenjie Zhou
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jitao Wei
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China
| | - Xing Xiao
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China
| | - Tailai An
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China
| | - Wenhui Wu
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China
| | - Yulong He
- Digestive Disease Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, People's Republic of China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
15
|
Chen X, Guo ZQ, Cao D, Chen Y, Chen J. MYC-mediated upregulation of PNO1 promotes glioma tumorigenesis by activating THBS1/FAK/Akt signaling. Cell Death Dis 2021; 12:244. [PMID: 33664245 PMCID: PMC7933405 DOI: 10.1038/s41419-021-03532-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
PNO1 has been reported to be involved in tumorigenesis, however, its role in glioma remains unexplored. In the present study, PNO1 expression in glioma from on-line databases, cDNA, and tissue microarrays was upregulated and associated with poor prognosis. PNO1 knockdown inhibits tumor cell growth and invasion both in vitro and in vivo; whereas PNO1 overexpression promoted cell proliferation and invasion in vitro. Notably, PNO1 interacted with THBS1 and the promotion of glioma by PNO1 overexpression could be attenuated or even reversed by simultaneously silencing THBS1. Functionally, PNO1 was involved in activation of FAK/Akt pathway. Moreover, overexpressing MYC increased PNO1 promoter activity. MYC knockdown decreased PNO1 and THBS1 expression, while inhibited cell proliferation and invasion. In conclusion, MYC-mediated upregulation of PNO1 contributes to glioma progression by activating THBS1/FAK/Akt signaling. PNO1 was reported to be a tumor promotor in the development and progression of glioma and may act as a candidate of therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China.
| | - Zheng-Qian Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| | - Dan Cao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| | - Yong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, 1095, Wuhan, 430030, China
| |
Collapse
|
16
|
Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ 2020; 28:382-400. [PMID: 32814878 PMCID: PMC7852611 DOI: 10.1038/s41418-020-00607-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Anthracyclines are a class of conventional and commonly used frontline chemotherapy drugs to treat breast cancer. However, the anthracycline-based regimens can only reduce breast cancer mortality by 20–30%. Furthermore, there is no appropriate biomarker for predicting responses to this kind of chemotherapy currently. Here we report our findings that may fill this gap by showing the AQP1 (Aquaporin1) protein as a potential response predictor in the anthracycline chemotherapy. We showed that breast cancer patients with a high level of AQP1 expression who underwent the anthracycline treatment had a better clinical outcome relative to those with a low level of AQP1 expression. In the exploration of the underlying mechanisms, we found that the AQP1 and glycogen synthase kinase-3β (GSK3β) competitively interacted with the 12 armadillo repeats of β-catenin, followed by the inhibition of the β-catenin degradation that led to β-catenin’s accumulation in the cytoplasm and nuclear translocation. The nuclear β-catenin interacted with TopoIIα and enhanced TopoIIα’s activity, which resulted in a high sensitivity of breast cancer cells to anthracyclines. We also found, the miR-320a-3p can attenuate the anthracycline’s chemosensitivity by inhibiting the AQP1 expression. Taken together, our findings suggest the efficacy of AQP1 as a response predictor in the anthracycline chemotherapy. The application of our study includes, but is not limited to, facilitating screening of the most appropriate breast cancer patients (who have a high AQP1 expression) for better anthracycline chemotherapy and improved prognosis purposes.
Collapse
|
17
|
Giblin SP, Schwenzer A, Midwood KS. Alternative splicing controls cell lineage-specific responses to endogenous innate immune triggers within the extracellular matrix. Matrix Biol 2020; 93:95-114. [PMID: 32599145 DOI: 10.1016/j.matbio.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023]
Abstract
The identification of barely more than 20,000 human genes was amongst the most surprising outcomes of the human genome project. Alternative splicing provides an essential means of expanding the proteome, enabling a single gene to encode multiple, distinct isoforms by selective inclusion or exclusion of exons from mature mRNA. However, mis-regulation of this process is associated with most human diseases. Here, we examine the impact of post-transcriptional processing on extracellular matrix function, focusing on the complex alternative splicing patterns of tenascin-C, a molecule that can exist in as many as 500 different isoforms. We demonstrate that the pro-inflammatory activity of this endogenous innate immune trigger is controlled by inclusion or exclusion of a novel immunomodulatory site located within domains AD2AD1, identifying this as a mechanism that prevents unnecessary inflammation in healthy tissues but enables rapid immune cell mobilization and activation upon tissue damage, and defining how this goes awry in autoimmune disease.
Collapse
Affiliation(s)
- Sean P Giblin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Nair SV, Narendradev ND, Nambiar RP, Kumar R, Srinivasula SM. Naturally occurring and tumor-associated variants of RNF167 promote lysosomal exocytosis and plasma membrane resealing. J Cell Sci 2020; 133:jcs239335. [PMID: 32409562 DOI: 10.1242/jcs.239335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Lysosomal exocytosis and resealing of damaged plasma membrane are essential for cellular homeostasis and tumor invasion. However, very little is known of the molecular machinery that regulates these physiological processes. Moreover, no mutations in any of the known regulators of lysosomal exocytosis in primary tumors of patients have been characterized. Here we demonstrate that RNF167-a, a lysosomal-associated ubiquitin ligase, negatively regulates lysosomal exocytosis by inducing perinuclear clustering of lysosomes. Importantly, we also characterized a set of novel natural mutations in RNF167-a, which are commonly found in diverse tumor types. We found that RNF167-a-K97N mutant, unlike the wild type, localizes in the cytoplasm and does not promote perinuclear lysosomal clustering. Furthermore, cells expressing RNF167-a-K97N exhibit dispersed lysosomes, increased exocytosis and enhanced plasma membrane repair. Interestingly, these functional features of RNF167-a-K97N were shared with a naturally occurring short version of RNF167 (isoform RNF167-b). In brief, the results presented here reveal a novel role of RNF167-a, as well as its natural variants RNF167-a-K97N and RNF167-b, as an upstream regulator of lysosomal exocytosis and plasma membrane resealing.
Collapse
Affiliation(s)
- Sreeja V Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Nikhil Dev Narendradev
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Rithwik P Nambiar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
19
|
Li W, Li N, Gao L, You C. Integrated analysis of the roles and prognostic value of RNA binding proteins in lung adenocarcinoma. PeerJ 2020; 8:e8509. [PMID: 32071816 PMCID: PMC7007976 DOI: 10.7717/peerj.8509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the top cause of carcinoma-associated deaths worldwide. RNA binding proteins (RBPs) dysregulation has been reported in various malignant tumors, and that dysregulation is closely associated with tumorigenesis and tumor progression. However, little is known about the roles of RBPs in lung adenocarcinoma (LUAD). In this study, we downloaded the RNA sequencing data of LUAD from The Cancer Genome Atlas (TCGA) database and determined the differently expressed RBPs between normal and cancer tissues. We then performed an integrative analysis to explore the expression and prognostic significance of these RBPs. A total of 164 differently expressed RBPs were identified, including 40 down-regulated and 124 up-regulated RBPs. Pathway and Gene ontology (GO) analysis indicated that the differently expressed RBPs were mainly related to RNA processing, RNA metabolic process, RNA degradation, RNA transport, splicing, localization, regulation of translation, RNA binding, TGF-beta signaling pathway, mRNA surveillance pathway, and aminoacyl-tRNA biosynthesis. Survival analysis revealed that the high expression of BOP1 or GNL3 or WDR12 or DCAF13 or IGF2BP3 or IGF2BP1 were associated with poor overall survival (OS). Conversely, overexpression of KHDRBS2/SMAD predicted high OS in these patients. ROC curve analysis showed that the eight hub genes with a better diagnostic accuracy to distinguish lung adenocarcinoma. The results provided novel insights into the pathogenesis of LUAD and the development of treatment targets and prognostic molecular markers.
Collapse
Affiliation(s)
- Wei Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Langzhou, China
| | - Na Li
- Department of Pathology, the First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Lina Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Langzhou, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Langzhou, China
| |
Collapse
|
20
|
ISOGO: Functional annotation of protein-coding splice variants. Sci Rep 2020; 10:1069. [PMID: 31974522 PMCID: PMC6978412 DOI: 10.1038/s41598-020-57974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
The advent of RNA-seq technologies has switched the paradigm of genetic analysis from a genome to a transcriptome-based perspective. Alternative splicing generates functional diversity in genes, but the precise functions of many individual isoforms are yet to be elucidated. Gene Ontology was developed to annotate gene products according to their biological processes, molecular functions and cellular components. Despite a single gene may have several gene products, most annotations are not isoform-specific and do not distinguish the functions of the different proteins originated from a single gene. Several approaches have tried to automatically annotate ontologies at the isoform level, but this has shown to be a daunting task. We have developed ISOGO (ISOform + GO function imputation), a novel algorithm to predict the function of coding isoforms based on their protein domains and their correlation of expression along 11,373 cancer patients. Combining these two sources of information outperforms previous approaches: it provides an area under precision-recall curve (AUPRC) five times larger than previous attempts and the median AUROC of assigned functions to genes is 0.82. We tested ISOGO predictions on some genes with isoform-specific functions (BRCA1, MADD,VAMP7 and ITSN1) and they were coherent with the literature. Besides, we examined whether the main isoform of each gene -as predicted by APPRIS- was the most likely to have the annotated gene functions and it occurs in 99.4% of the genes. We also evaluated the predictions for isoform-specific functions provided by the CAFA3 challenge and results were also convincing. To make these results available to the scientific community, we have deployed a web application to consult ISOGO predictions (https://biotecnun.unav.es/app/isogo). Initial data, website link, isoform-specific GO function predictions and R code is available at https://gitlab.com/icassol/isogo.
Collapse
|
21
|
Splicing Dysregulation as Oncogenic Driver and Passenger Factor in Brain Tumors. Cells 2019; 9:cells9010010. [PMID: 31861467 PMCID: PMC7016899 DOI: 10.3390/cells9010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/21/2022] Open
Abstract
Brain tumors are a heterogeneous group of neoplasms ranging from almost benign to highly aggressive phenotypes. The malignancy of these tumors mostly relies on gene expression reprogramming, which is frequently accompanied by the aberrant regulation of RNA processing mechanisms. In brain tumors, defects in alternative splicing result either from the dysregulation of expression and activity of splicing factors, or from mutations in the genes encoding splicing machinery components. Aberrant splicing regulation can generate dysfunctional proteins that lead to modification of fundamental physiological cellular processes, thus contributing to the development or progression of brain tumors. Herein, we summarize the current knowledge on splicing abnormalities in brain tumors and how these alterations contribute to the disease by sustaining proliferative signaling, escaping growth suppressors, or establishing a tumor microenvironment that fosters angiogenesis and intercellular communications. Lastly, we review recent efforts aimed at developing novel splicing-targeted cancer therapies, which employ oligonucleotide-based approaches or chemical modulators of alternative splicing that elicit an impact on brain tumor biology.
Collapse
|