1
|
Hu Y, Zhou J, Ling X, Zhao K, Huang P, Gao M, Li X, Sun M, Zou Y, Feng G. KPNA5 Suppresses Malignant Progression of Ovarian Cancer Through Importing the PTPN4 Into the Nucleus. Cancer Med 2025; 14:e70731. [PMID: 40145330 PMCID: PMC11947769 DOI: 10.1002/cam4.70731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Abnormal protein localization due to disrupted nucleoplasmic transport is common in tumor cells, but its mechanisms are not well understood. Nuclear pore complexes and nuclear transporter proteins are crucial for protein transport between the nucleus and cytoplasm. Evidence increasingly shows that abnormal expression of karyopherin family proteins disrupts protein translocation, affecting processes like cell differentiation, proliferation, apoptosis, and transcriptional regulation. However, their functions and roles in ovarian cancer remain unclear. METHODS The expression level of KPNA5 in ovarian cancer tissues and cells was detected by IHC, Western blot, and qPCR. CCK-8 and colony formation assays were used to assess cell proliferation ability. Transwell assay was conducted to determine cell migration and invasion capacity. A xenograft model was used to assess the effect of KPNA5 on tumor growth in vivo. RESULTS KPNA5 expression is downregulated in ovarian cancer (OC) tissues. Low KPNA5 levels were associated with poor survival in OC patients, validated by an OC tissue sample cohort. Overexpression of KPNA5 significantly suppressed OC cell proliferation, tumor growth, and invasion in both in vitro and in vivo studies. Mechanistically, KPNA5 recognizes nuclear localization signals (NLSs) in PTPN4, mediating its nuclear transport and inhibiting STAT3 phosphorylation and its downstream signaling pathway. Similarly, PTPN4 overexpression reduced OC cell viability and invasion, also suppressing STAT3 phosphorylation. CONCLUSIONS Our findings identify KPNA5 as a tumor suppressor in OC, presenting a potential therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Yanming Hu
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolSuzhouChina
| | - Jing Zhou
- Department of OncologyThe Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhouJiangsuChina
| | - Xinru Ling
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolSuzhouChina
| | - Kun Zhao
- Department of OncologyHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Peng Huang
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolSuzhouChina
| | - Max Gao
- Department of Computer Science and EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Xiaoqing Li
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolSuzhouChina
| | - Ming Sun
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolSuzhouChina
| | - Yanfen Zou
- Department of Obstetrics and GynecologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Guannan Feng
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolSuzhouChina
| |
Collapse
|
2
|
Kang K, Nie H, Kuang W, Li X, Zhou Y. A novel telomere-associated genes signature for the prediction of prognosis and treatment responsiveness of hepatocellular carcinoma. Biol Proced Online 2025; 27:8. [PMID: 40016654 PMCID: PMC11866598 DOI: 10.1186/s12575-025-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy worldwide, characterized by its high malignancy and poor prognosis. Telomeres, crucial components of eukaryotic chromosomes, have been increasingly recognized for their involvement in tumorigenesis, development, and impact on the prognosis of cancer patients. However, the precise role of telomere-associated genes in HCC remains incompletely elucidated. METHODS The Cancer Genome Atlas (TCGA) database was utilized to download data from 374 HCC and 50 normal liver tissue samples. Differential genes were screened and intersected with 2093 telomere-related genes (TRGs) in GeneCards, resulting in the identification of 704 TRGs exhibiting survival differences. Through univariate Cox regression analysis, multivariate Cox regression analysis, and LASSO regression, a prognostic model consisting of 18 TRGs for HCC risk assessment was developed. The single-cell and spatial transcriptomics were utilized to analyze the expression and distribution of 18 TRGs in HCC. Subsequently, Mendelian randomization (MR) analysis confirmed a causal relationship between ASF1A and alcoholic HCC among the identified 18 TRGs. The expression and functional significance of ASF1A in HCC cell lines were investigated through colony formation assays, Transwell migration assays, and wound healing experiments. RESULTS We developed a prognostic risk model for HCC incorporating 18 TRGs. Kaplan-Meier analysis demonstrated that the overall survival (OS) rate of the high-risk group was significantly inferior to that of the low-risk group. Cox regression analysis identified age (HR = 1.017, 95% CI: 1.002-1.032, P = 0.03), stage (HR = 1.389, 95% CI: 1.111-1.737, P = 0.004), and risk score (HR = 5.097, 95% CI: 3.273-7.936, P < 0.001) as three independent risk factors for HCC patients. The five-year receiver operating characteristic curve (ROC) and multivariate Cox regression analysis further validated the accuracy of our model. Time-dependent ROC results revealed that the 1-year, 3-year, and 5-year AUC values were AUC = 0.801, AUC = 0.734, and AUC = 0.690, respectively. The expression and distribution of 18 TRGs in HCC were further validated through single-cell and spatial transcriptomics data. Additionally, immune subtype analysis indicated a significantly lower proportion of C3 and C4 subtypes in the high-risk TRG group compared to the low-risk group. Meanwhile, tumor immune dysfunction and exclusion (TIDE) were significantly higher in the high-risk group than in the low-risk group. Furthermore, we observed differences in IC50 values among nine chemotherapeutic drugs across different TRG risk subtypes which partially confirmed our model's predictive efficacy for immunotherapy. Amongst these eighteen TRGs analyzed by MR analysis, ASF1A was found to be associated with alcoholic HCC pathogenesis. We further confirmed ASF1A was significant overexpression in HCC by Western blotting. We also explored it's the carcinogenic role of ASF1A in HCC via the transwell, wound healing, and clone formation experiments. CONCLUSION In this study, we developed a novel prognostic model comprising 18 TRGs for HCC, which exhibited remarkable accuracy in predicting HCC patients' prognosis. Additionally, through MR analysis, we have successfully established a causal relationship between ASF1A and alcoholic HCC for the first time, which also provided a new theoretical foundation for the management of alcoholic HCC.
Collapse
Affiliation(s)
- Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Weilu Kuang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Lyu Y, Zhao H, Zeng G, Yang J, Shao Q, Wu H. Mapping the evolving trend of research on leukocyte telomere length: a text-mining study. Hum Genomics 2024; 18:117. [PMID: 39468654 PMCID: PMC11520877 DOI: 10.1186/s40246-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Substantial evidence indicates that measuring leukocyte telomere length (LTL) is a useful tool that may be considered as a valuable biomarker of individual biological age, correlating with numerous chronic disorders. However, to date, there has been a lack of in-depth understanding regarding the current landscape and forthcoming developments in the LTL field. Therefore, this study aimed to utilize bibliometric methods to summarize the knowledge structure, current focus, and emerging directions in this field. METHOD Scientific publications on LTL spanning the period from 2000 to 2022 were acquired from the Web of Science Core Collection database. Several bibliometric tools including CiteSpace, VOSviewer, and an online website were utilized for bibliometric analysis. The primary evaluations encompassed investigating the major contributors and their collaborative relationships among countries/regions, institutions, and authors, conducting co-citation analyses of authors, journals, as well as reference, examining reference bursts, as well as performing co-occurrence analyses of keywords. RESULTS There are 1818 papers with 66,668 citations identified. Both the annual publication and citation counts on LTL exhibited significant upward trends. The United States emerged as the most prominent contributor, as evidenced by the greatest volume of papers and the highest H-index value. University of California San Francisco and Aviv A were identified as the most productive institution and author in this domain, respectively. Reference analysis revealed that longitudinal study and mendelian randomization study are the most concerned research method in this field recently. Keywords analysis showed that the most concerned diseases in LTL fields were aging, inflammation, cardiovascular diseases, endocrine diseases, neurological and psychiatric diseases, and cancers. In addition, the following research directions such as "COPD", "mendelian randomization", "adiposity", "colorectal cancer", "National Health and Nutrition Examination Survey (NHNES)", "telomerase reverse transcriptase", "pregnancy" have garnered increasing attention in recent times and hold the potential to evolve into research foci in the foreseeable future. CONCLUSION This is the first bibliometric study that provides comprehensive overview of LTL research. The findings of this study could become valuable references for investigators to explore and address the current and emerging challenges in LTL research.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Medical University Baodi Hospital, Tianjin, China
| | - Guiping Zeng
- Department of Orthopaedic Surgery, Yangxin People's Hospital, Yangxin, 435200, Hubei, China
| | - Jia Yang
- Department of Orthopaedics, Jincheng General Hospital, Jincheng, 048006, Shanxi Province, China
| | - Qipeng Shao
- Department of Orthopaedics, Ganzhou People's Hospital, Ganzhou, China.
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
5
|
da Mota THA, Camargo R, Biojone ER, Guimarães AFR, Pittella-Silva F, de Oliveira DM. The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14030691. [PMID: 36980962 PMCID: PMC10048576 DOI: 10.3390/genes14030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
- Correspondence:
| | - Ricardo Camargo
- Brasília Children’s Hospital José Alencar, Brasilia 70684-831, Brazil
| | | | - Ana Flávia Reis Guimarães
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
| | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
6
|
MAPK/ERK-CBP-RFPL-3 Mediates Adipose-Derived Stem Cell-Induced Tumor Growth in Breast Cancer Cells by Activating Telomerase Reverse Transcriptase Expression. Stem Cells Int 2022; 2022:8540535. [PMID: 35711680 PMCID: PMC9197637 DOI: 10.1155/2022/8540535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Adipose-derived stem cells (ASCs) improve the self-renewal and survival of fat grafts in breast reconstruction after oncology surgery. However, ASCs have also been found to enhance breast cancer growth, and its role in tumor proliferation remains largely elusive. Here, we explored a novel mechanism that mediates hTERT reactivation during ASC-induced tumor growth in breast cancer cells. In this study, we found the proliferative ability of breast cancer cells markedly increased with ASC coculture. To explore the molecular mechanism, we treated cells with anibody/inhibitor and found that the activation of MEK-ERK pathway was triggered in breast cancer cells by SCF secreted from ASCs, leading to the nuclear recruitment of CBP. As a coactivator of hTERT, CBP subsequently coordinated with RFPL-3 upregulated hTERT transcription and telomerase activity. The inhibition of CBP and RFPL-3 abrogated the activation of hTERT transcription and the promotion of proliferation in breast cancer cells with cocultured ASCs in vitro and in vivo. Collectively, our study findings indicated that CBP coordination with RFPL-3 promotes ASC-induced breast cancer cell proliferation by anchoring to the hTERT promoter and upregulating telomerase activity, which is activated by the MAPK/ERK pathway.
Collapse
|
7
|
Guo J, Wang S, Jiang Z, Tang L, Liu Z, Cao J, Hu Z, Chen X, Luo Y, Bo H. Long Non-Coding RNA RFPL3S Functions as a Biomarker of Prognostic and Immunotherapeutic Prediction in Testicular Germ Cell Tumor. Front Immunol 2022; 13:859730. [PMID: 35669771 PMCID: PMC9165694 DOI: 10.3389/fimmu.2022.859730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
The incidence of testicular germ cell tumor (TGCT) is currently on the rise worldwide, of which 15%-30% of patients have occur recurrence and metastasis. However, clinical methods for diagnosing TGCT and judging its prognosis remained inadequate. In this study, we aimed to explore the possibility of testis-specific long-chain non-coding RNA (lncRNA) Ret finger protein-like 3S (RFPL3S) as a biomarker for TGCT diagnosis, prognosis, and treatment response by reviewing the TGCT gene expression data in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The cohort data and DNA methylation data of TGCT in TCGA were downloaded from TGCA, UCSC XENA, and GEO. The bioinformatic tools were used, including GEPIA2, Kaplan-Meier Plotter, LinkedOmics, UCSC XENA, Sangerbox Tools, GSCA, and Tumor Immune Dysfunction and Exclusion. Compared with normal testicular tissues, the RFPL3S expression was significantly reduced in TGCT, and was significantly negatively correlated with the patient’s Tumor, Node, Metastasis stage. Hypermethylation and low copy number of RFPL3S were present in TGCT, and low RFPL3S was associated with short disease-free and progression-free intervals. Silencing RFPL3S significantly enhanced the invasion ability and proliferation ability of TGCT cells as evaluated by Transwell and CCK-8 experiments. Additionally, RFPL3S expression was positively correlated with the infiltration of immune-activating cells such as B cells, CD8+ T cells, cytotoxic T cells, and natural killer cells, and negatively correlated with the infiltration of immunosuppressive cells such as Th17 and Th2. Higher RFPL3S expression was present in patients with immunotherapy benefits. In conclusion, we determined that the testis-specific lncRNA RFPL3S functioned as a tumor suppressor in TGCT and could be used as a prognostic predictor of TGCT, as well as a marker to predict the effect of TGCT immunotherapy.
Collapse
Affiliation(s)
- Jie Guo
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Wang
- Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenzhen Jiang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le Tang
- Reproductive Medicine Center, Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
| | - Zhizhong Liu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Chen
- Department of Cosmedic, The First People’s Hospital of Changde City, Changde, China
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Hao Bo,
| |
Collapse
|
8
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|