1
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
2
|
Engel A, Wagner V, Hahn O, Foltz AG, Atkins M, Beganovic A, Guldner IH, Lu N, Saksena A, Fischer U, Ludwig N, Meese E, Wyss-Coray T, Keller A. A spatio-temporal brain miRNA expression atlas identifies sex-independent age-related microglial driven miR-155-5p increase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643430. [PMID: 40161726 PMCID: PMC11952541 DOI: 10.1101/2025.03.15.643430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
An in-depth understanding of the molecular processes composing aging is crucial to develop therapeutic approaches that decrease aging as a key risk factor for cognitive decline. Herein, we present a spatio-temporal brain atlas (15 different regions) of microRNA (miRNA) expression across the mouse lifespan (7 time points) and two aging interventions composed of 1009 samples. MiRNAs are promising therapeutic targets, as they silence genes by complementary base-pair binding of messenger RNAs and are known to mediate aging speed. We first established sex- and brain-region-specific miRNA expression patterns in young adult samples. Then we focused on sex-dependent and independent brain-region-specific miRNA expression changes during aging. The corpus callosum in males and the choroid plexus in females exhibited strong sex-specific age-related signatures. In this work, we identified three sex-independent brain aging miRNAs (miR-146a-5p, miR-155-5p and miR-5100). We showed for miR-155-5p that these expression changes are driven by aging microglia. MiR-155-5p targets mTOR signaling pathway components and other cellular communication pathways and is hence a promising therapeutic target.
Collapse
Affiliation(s)
- Annika Engel
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Viktoria Wagner
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Calico Life Sciences LLC, San Francisco, CA, USA
| | - Aulden G. Foltz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Amila Beganovic
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Ian H. Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aryaman Saksena
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Ulrike Fischer
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| |
Collapse
|
3
|
Zhang H, Wang J, Qu Y, Yang Y, Guo ZN. Brain injury biomarkers and applications in neurological diseases. Chin Med J (Engl) 2025; 138:5-14. [PMID: 38915214 PMCID: PMC11717530 DOI: 10.1097/cm9.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 06/26/2024] Open
Abstract
ABSTRACT Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Collapse
Affiliation(s)
- Han Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jing Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Di Pietro P, Abate AC, Izzo C, Toni AL, Rusciano MR, Folliero V, Dell’Annunziata F, Granata G, Visco V, Motta BM, Campanile A, Vitale C, Prete V, Gatto C, Scarpati G, Poggio P, Galasso G, Pagliano P, Piazza O, Santulli G, Franci G, Carrizzo A, Vecchione C, Ciccarelli M. Plasma miR-1-3p levels predict severity in hospitalized COVID-19 patients. Br J Pharmacol 2025; 182:451-467. [PMID: 39572402 PMCID: PMC11791538 DOI: 10.1111/bph.17392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background and Purpose: Accumulating evidence suggests circulating microRNAs (miRNAs) are important regulators of biological processes involved in COVID-19 complications. We sought to assess whether circulating miRNAs are associated with COVID-19 clinical phenotype and outcome. Experimental Approach: To discover signatures of circulating miRNAs associated with COVID-19 disease severity and mortality, miRNA quantification was performed on plasma samples collected at hospital admission from a cohort of 106 patients with mild or severe COVID-19. Variable importance projection scoring with partial least squared discriminant analysis and Random Forest Classifier were employed to identify key miRNAs associated with COVID-19 severity. ROC analysis was performed to detect promising miRNA able to discriminate between mild and severe COVID status. Key Results: Hsa-miR-1-3p was the most promising miRNA in differentiating COVID-19 patients who developed severe, rather than mild, disease. Hsa-miR-1-3p levels rose with increasing disease severity, and the highest levels were associated with prolonged hospital length of stay and worse survival. Longitudinal miRNA profiling demonstrated that plasma hsa-miR-1-3p expression levels were significantly increased in patients during acute infection compared with those observed 6 months after the disease onset. Specific blockade of miR-1-3p in SARS-CoV-2–infected endothelial cells decreased up-regulation of genes involved in endothelialto-mesenchymal transition, inflammation and thrombosis. Furthermore, miR-1-3p inhibition reversed the impaired angiogenic capacity induced by plasma from patients with severe COVID-19. Conclusion and Implications: Our data establish a novel role for miR-1-3p in the pathogenesis of COVID-19 infection and provide a strong rationale for its usefulness as early prognostic biomarkers of severity status and survival.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Granata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Alfonso Campanile
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Carolina Vitale
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Valeria Prete
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Cristina Gatto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | | | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
- Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York, USA
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| |
Collapse
|
5
|
Villena-Rueda BE, Kajitani GS, Ota VK, Honorato-Mauer J, Santoro ML, Bugiga AVG, Rosa JS, Asprino PF, Meneghetti P, Torrecilhas AC, Intasqui P, Bertolla RP, Foresti ML, da Graça Naffah-Mazzacoratti M, de Moraes Mello LEA, Belangero SI. miR-9-5p is Downregulated in Serum Extracellular Vesicles of Patients Treated with Biperiden After Traumatic Brain Injury. Mol Neurobiol 2024; 61:9595-9607. [PMID: 38664300 DOI: 10.1007/s12035-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/19/2024] [Indexed: 10/23/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood-brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.
Collapse
Affiliation(s)
- Beatriz Enguidanos Villena-Rueda
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Satoru Kajitani
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jessica Honorato-Mauer
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos Leite Santoro
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Molecular Biology Division, Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joice Santos Rosa
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Paula Meneghetti
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Intasqui
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maira Licia Foresti
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | | | - Luiz Eugênio Araújo de Moraes Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil.
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
6
|
Feng C, Tian Q, Tang X, Yu J, Li H, Geng C, Xu L. microRNA-9a-5p disrupts the ELAVL1/VEGF axis to alleviate traumatic brain injury. Exp Neurol 2024; 375:114721. [PMID: 38342180 DOI: 10.1016/j.expneurol.2024.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Plasma microRNA (miR)-9 has been identified as a promising diagnostic biomarker for traumatic brain injury (TBI). This study aims to investigate the possible role and mechanisms of miR-9a-5p affecting TBI. Microarray-based gene expression profiling of TBI was used for screening differentially expressed miRNAs and genes. TBI rat models were established. miR-9a-5p, ELAVL1 and VEGF expression in the brain tissue of TBI rats was detected. The relationship among miR-9a-5p, ELAVL1 and VEGF was tested. TBI modeled rats were injected with miR-9a-5p-, ELAVL1 or VEGF-related sequences to identify their effects on TBI. miR-9a-5p was poorly expressed in the brain tissue of rats with TBI. ELAVL1 was a downstream target gene of miR-9a-5p, which could negatively regulate its expression. Enforced miR-9a-5p expression prevented brain tissue damage in TBI rats by targeting ELAVL1. Meanwhile, ELAVL1 could increase the expression of VEGF, which was highly expressed in the brain tissue of rats with TBI. In addition, ectopically expressed miR-9a-5p alleviated brain tissue damage in TBI rats by downregulating the ELAVL1/VEGF axis. Overall, miR-9a-5p can potentially reduce brain tissue damage in TBI rats by targeting ELAVL1 and down-regulating VEGF expression.
Collapse
Affiliation(s)
- Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Qiuyan Tian
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Xiaojuan Tang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Jian Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Hong Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, PR China
| | - Changxing Geng
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, PR China.
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, PR China.
| |
Collapse
|
7
|
Shao X, Zhang M, Fang J, Ge R, Su Y, Liu H, Zhang D, Wang Q. Analysis of the lncRNA-miRNA-mRNA network to explore the regulation mechanism in human traumatic brain injury. Neuroreport 2024; 35:328-336. [PMID: 38407897 DOI: 10.1097/wnr.0000000000002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Traumatic brain injury (TBI) refers to brain dysfunction with or without traumatic structural injury induced by an external force. Nevertheless, the molecular mechanism of TBI remains undefined. Differentially expressed (DE) lncRNAs, DEmRNAs and DEmiRNAs were selected between human TBI tissues and the adjacent histologically normal tissue by high-throughput sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of overlapping DEmRNAs between predicted mRNAs of DEmiRNAs and DEmRNAs. The competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was established in light of the ceRNA theory. In the ceRNA network, the key lncRNAs were screened out. Then key lncRNAs related ceRNA subnetwork was constructed. After that, qRT-PCR was applied to validate the expression levels of hub genes. 114 DElncRNAs, 1807 DEmRNAs and 6 DEmiRNAs were DE in TBI. The TBI-related ceRNA network was built with 73 lncRNA nodes, 81 mRNA nodes and 6 miRNAs. According to topological analysis, two hub lncRNAs (ENST00000562897 and ENST00000640877) were selected to construct the ceRNA subnetwork. Subsequently, key lncRNA-miRNA-mRNA regulatory axes constructed by two lncRNAs including ENST00000562897 and ENST00000640877, two miRNAs including miR-6721-5p and miR-129-1-3p, two mRNAs including ketohexokinase (KHK) and cyclic nucleotide-gated channel beta1 (CNGB1), were identified. Furthermore, qRT-PCR results displayed that the expression of ENST00000562897, KHK and CNGB1 were significantly decreased in TBI, while the miR-6721-5p expression levels were markedly increased in TBI. The results of our study reveal a new insight into understanding the ceRNA regulation mechanism in TBI and select key lncRNA-miRNA-mRNA axes for prevention and treatment of TBI.
Collapse
Affiliation(s)
- Xuefei Shao
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Maosong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Jincheng Fang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Ruixiang Ge
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Yue Su
- Graduate School of Wannan Medical College, Wuhu, China
| | - Hongbing Liu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Daojin Zhang
- Graduate School of Wannan Medical College, Wuhu, China
| | - Qifu Wang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| |
Collapse
|
8
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
9
|
Shen Y, Chen X, Song Z, Yao H, Han A, Zhang Y, Cai Y, Hu B. MicroRNA-9 promotes axon regeneration of mauthner-cell in zebrafish via her6/ calcium activity pathway. Cell Mol Life Sci 2024; 81:104. [PMID: 38411738 PMCID: PMC10899279 DOI: 10.1007/s00018-024-05117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
MicroRNA (miRNA), functioning as a post-transcriptional regulatory element, plays a significant role in numerous regulatory mechanisms and serves as a crucial intrinsic factor influencing axon regeneration. Prior investigations have elucidated the involvement of miRNA-9 in various processes, however, its specific contribution to axon regeneration in the central nervous system (CNS) remains uncertain. Hence, the zebrafish Mauthner axon regeneration model was employed to manipulate the expression of miRNA-9 in single cells, revealing that upregulation of miRNA-9 facilitated axon regeneration. Additionally, her6, a downstream target gene of miRNA-9, was identified as a novel gene associated with axon regeneration. Suppression of her6 resulted in enhanced Mauthner axon regeneration, as evidenced by the significantly improved regenerative capacity observed in her6 knockout zebrafish. In addition, modulation of her6 expression affects intracellular calcium levels in neurons and promoting her6 expression leads to a decrease in calcium levels in vivo using the new NEMOf calcium indicator. Moreover, the administration of the neural activity activator, pentylenetetrazol (PTZ) partially compensated for the inhibitory effect of her6 overexpression on the calcium level and promoted axon regeneration. Taken together, our study revealed a role for miRNA-9 in the process of axon regeneration in the CNS, which improved intracellular calcium activity and promoted axon regeneration by inhibiting the expression of downstream target gene her6. In our study, miRNA-9 emerged as a novel and intriguing target in the intricate regulation of axon regeneration and offered compelling evidence for the intricate relationship between calcium activity and the facilitation of axon regeneration.
Collapse
Affiliation(s)
- Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Along Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yawen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Cai
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
10
|
Tufan E, Taheri S, Karaca Z, Mehmetbeyoglu E, Yilmaz Sukranli Z, Korkmaz Bayram K, Ulutabanca H, Tanrıverdi F, Unluhizarci K, Rassoulzadegan M, Kelestimur F. Alterations in Serum miR-126-3p Levels over Time: A Marker of Pituitary Insufficiency following Head Trauma. Neuroendocrinology 2023; 114:315-330. [PMID: 38071970 PMCID: PMC10997266 DOI: 10.1159/000535748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/04/2023] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) pose a high risk of pituitary insufficiency development in patients. We have previously reported alterations in miR-126-3p levels in sera from patients with TBI-induced pituitary deficiency. METHODS To investigate why TBI-induced pituitary deficiency develops only in some patients and to reveal the relationship between miR-126-3p with hormone axes, we used mice that were epigenetically modified with miR-126-3p at the embryonic stage. These modified mice were subjected to mild TBI (mTBI) according to the Marmarou's weight-drop model at 2 months of age. The levels of miR-126-3p were assessed at 1 and 30 days in serum after mTBI. Changes in miR-126-3p levels after mTBI of wild-type and miR-126-3p* modified mouse lines validated our human results. Additionally, hypothalamus, pituitary, and adrenal tissues were analyzed for transcripts and associated serum hormone levels. RESULTS We report that miR-126-3p directly affects hypothalamus-pituitary-adrenal (HPA) axis upregulation and ACTH secretion in the acute phase after mTBI. We also demonstrated that miR-126-3p suppresses Gnrh transcripts in the hypothalamus and pituitary, but this is not reflected in serum FSH/LH levels. The increase in ACTH levels in the acute phase may indicate that upregulation of miR-126-3p at the embryonic stage has a protective effect on the HPA axis after TBI. Notably, the most prominent transcriptional response is found in the adrenals, highlighting their role in the pathophysiology of TBI. CONCLUSION Our study revealed the role of miR-126-3p in TBI and pituitary deficiency developing after TBI, and the obtained data will significantly contribute to elucidating the mechanism of pituitary deficiency development after TBI and development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Esra Tufan
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Serpil Taheri
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey,
- Department of Medical Biology, Erciyes University Medical School, Kayseri, Turkey,
| | - Züleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Cancer and Genetics, Cardiff University, Cardiff, UK
| | | | - Kezban Korkmaz Bayram
- Department of Medical Genetics, Yıldırım Beyazıd University Medical School, Ankara, Turkey
| | - Halil Ulutabanca
- Department of Neurosurgery, Erciyes University Medical School, Kayseri, Turkey
| | - Fatih Tanrıverdi
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Kursad Unluhizarci
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Minoo Rassoulzadegan
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University Medical School, Istanbul, Turkey
| |
Collapse
|
11
|
Poisson LM, Kaur N, Felicella MM, Singh J. System-based integrated metabolomics and microRNA analysis identifies potential molecular alterations in human X-linked cerebral adrenoleukodystrophy brain. Hum Mol Genet 2023; 32:3249-3262. [PMID: 37656183 PMCID: PMC10656705 DOI: 10.1093/hmg/ddad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
X-linked adrenoleukodystrophy is a severe demyelinating neurodegenerative disease mainly affecting males. The severe cerebral adrenoleukodystrophy (cALD) phenotype has a poor prognosis and underlying mechanism of onset and progression of neuropathology remains poorly understood. In this study we aim to integrate metabolomic and microRNA (miRNA) datasets to identify variances associated with cALD. Postmortem brain tissue samples from five healthy controls (CTL) and five cALD patients were utilized in this study. White matter from ALD patients was obtained from normal-appearing areas, away from lesions (NLA) and from the periphery of lesions- plaque shadow (PLS). Metabolomics was performed by gas chromatography coupled with time-of-flight mass spectrometry and miRNA expression analysis was performed by next generation sequencing (RNAseq). Principal component analysis revealed that among the three sample groups (CTL, NLA and PLS) there were 19 miRNA, including several novel miRNA, of which 17 were increased with disease severity and 2 were decreased. Untargeted metabolomics revealed 13 metabolites with disease severity-related patterns with 7 increased and 6 decreased with disease severity. Ingenuity pathway analysis of differentially altered metabolites and miRNA comparing CTL with NLA and NLA with PLS, identified several hubs of metabolite and signaling molecules and their upstream regulation by miRNA. The transomic approach to map the crosstalk between miRNA and metabolomics suggests involvement of specific molecular and metabolic pathways in cALD and offers opportunity to understand the complex underlying mechanism of disease severity in cALD.
Collapse
Affiliation(s)
- Laila M Poisson
- Department of Public Health Science, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| | - Navtej Kaur
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| | - Michelle M Felicella
- Department of Pathology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
Yang R, Yang B, Liu W, Tan C, Chen H, Wang X. Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. J Neuroinflammation 2023; 20:173. [PMID: 37481642 PMCID: PMC10363317 DOI: 10.1186/s12974-023-02856-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
Neuroinflammation has been implicated in the initiation and progression of several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injury, spinal cord injury, viral encephalitis, and bacterial encephalitis. Microglia and astrocytes are essential in neural development, maintenance of synaptic connections, and homeostasis in a healthy brain. The activation of astrocytes and microglia is a defense mechanism of the brain against damaged tissues and harmful pathogens. However, their activation triggers neuroinflammation, which can exacerbate or induce CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that lack coding capabilities but can actively regulate mRNA expression and function through various mechanisms. ncRNAs are highly expressed in astrocytes and microglia and are potential mediators of neuroinflammation. We reviewed the recent research progress on the role of miRNAs, lncRNAs, and circRNAs in regulating neuroinflammation in various CNS diseases. Understanding how these ncRNAs affect neuroinflammation will provide important therapeutic insights for preventing and managing CNS dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Bo Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Keqian Biological Co., Ltd., Wuhan, 430070, China
| | - Wei Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
13
|
Chmielewska N, Wawer A, Wicik Z, Osuch B, Maciejak P, Szyndler J. miR-9a-5p expression is decreased in the hippocampus of rats resistant to lamotrigine: A behavioural, molecular and bioinformatics assessment. Neuropharmacology 2023; 227:109425. [PMID: 36709037 DOI: 10.1016/j.neuropharm.2023.109425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
The major obstacle in developing new treatment strategies for refractory epilepsy is the complexity and poor understanding of its mechanisms. Utilizing the model of lamotrigine-resistant seizures, we evaluated whether changes in the expression of sodium channel subunits are responsible for the diminished responsiveness to lamotrigine (LTG) and if miRNAs, may also be associated. Male rats were administered LTG (5 mg/kg) before each stimulation during kindling acquisition. Challenge stimulation following LTG exposure (30 mg/kg) was performed to confirm resistance in fully kindled rats. RT-PCR was used to measure the mRNA levels of sodium channel subunits (SCN1A, SCN2A, and SCN3A) and miRNAs (miR-155-5p, miR-30b-5p, miR-137-3p, miR-342-5p, miR-301a-3p, miR-212-3p, miR-9a-5p, and miR-133a-3p). Western blot analysis was utilized to measure Nav1.2 protein, and bioinformatics tools were used to perform target prediction and enrichment analysis for miR-9a-5p, the only affected miRNA according to the responsiveness to LTG. Amygdala kindling seizures downregulated Nav1.2, miR-137-3p, miR-342-5p, miR-155-5p, and miR-9a-5p as well as upregulated miR-212-3p. miR-9a-5p was the only molecule decreased in rats resistant to LTG. The bioinformatic assessment and disease enrichment analysis revealed that miR-9a-5p targets expressed with high confidence in the hippocampus are the most significantly associated with epilepsy. Due to the miR-9a-5p dysregulation, major pathways affected are neurotrophic processes, neurotransmission, inflammatory response, cell proliferation and apoptosis. Interaction network analysis identified LTG target SCN2A as interacting with highest number of genes regulated by miR-9-5p. Further studies are needed to propose specific genes and miRNAs responsible for diminished responsiveness to LTG. miR-9a-5p targets, like KCNA4, KCNA2, CACNB2, SCN4B, KCNC1, should receive special attention in them.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Bartosz Osuch
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| |
Collapse
|
14
|
Michinaga S, Hishinuma S, Koyama Y. Roles of Astrocytic Endothelin ET B Receptor in Traumatic Brain Injury. Cells 2023; 12:cells12050719. [PMID: 36899860 PMCID: PMC10000579 DOI: 10.3390/cells12050719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Tokyo 204-8588, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
15
|
Kuo MC, Liu SCH, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson's disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021; 28:78. [PMID: 34794432 PMCID: PMC8603508 DOI: 10.1186/s12929-021-00775-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
The discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biology. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially Parkinson's disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analytical tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Parkinson's disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids are particularly emphasized.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Medicine, Section of Neurology, Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sam Chi-Hao Liu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Mira RG, Lira M, Cerpa W. Traumatic Brain Injury: Mechanisms of Glial Response. Front Physiol 2021; 12:740939. [PMID: 34744783 PMCID: PMC8569708 DOI: 10.3389/fphys.2021.740939] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain’s response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain’s ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
17
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Patra S, Elahi N, Armorer A, Arunachalam S, Omala J, Hamid I, Ashton AW, Joyce D, Jiao X, Pestell RG. Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors. Front Oncol 2021; 11:700629. [PMID: 34631530 PMCID: PMC8495201 DOI: 10.3389/fonc.2021.700629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Reprogramming of metabolic priorities promotes tumor progression. Our understanding of the Warburg effect, based on studies of cultured cancer cells, has evolved to a more complex understanding of tumor metabolism within an ecosystem that provides and catabolizes diverse nutrients provided by the local tumor microenvironment. Recent studies have illustrated that heterogeneous metabolic changes occur at the level of tumor type, tumor subtype, within the tumor itself, and within the tumor microenvironment. Thus, altered metabolism occurs in cancer cells and in the tumor microenvironment (fibroblasts, immune cells and fat cells). Herein we describe how these growth advantages are obtained through either “convergent” genetic changes, in which common metabolic properties are induced as a final common pathway induced by diverse oncogene factors, or “divergent” genetic changes, in which distinct factors lead to subtype-selective phenotypes and thereby tumor heterogeneity. Metabolic heterogeneity allows subtyping of cancers and further metabolic heterogeneity occurs within the same tumor mass thought of as “microenvironmental metabolic nesting”. Furthermore, recent findings show that mutations of metabolic genes arise in the majority of tumors providing an opportunity for the development of more robust metabolic models of an individual patient’s tumor. The focus of this review is on the mechanisms governing this metabolic heterogeneity in breast cancer.
Collapse
Affiliation(s)
- Sayani Patra
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Naveed Elahi
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Aaron Armorer
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Swathi Arunachalam
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Joshua Omala
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Iman Hamid
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba.,Program in Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Xuanmao Jiao
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Richard G Pestell
- Pensylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, United States.,Xavier University School of Medicine at Aruba, Oranjestad, Aruba.,Cancer Center, Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
19
|
Michinaga S, Koyama Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22126418. [PMID: 34203960 PMCID: PMC8232783 DOI: 10.3390/ijms22126418] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan;
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
20
|
Zhao M, Sun B, Wang Y, Qu G, Yang H, Wang P. miR-27-3p Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to the Antitumor Agent Olaparib by Targeting PSEN-1, the Catalytic Subunit of Γ-Secretase. Front Oncol 2021; 11:694491. [PMID: 34169001 PMCID: PMC8217819 DOI: 10.3389/fonc.2021.694491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Olaparib has been used in the treatment of triple-negative breast cancer (TNBC) with BRCA mutations. In the present study, we demonstrated the effect of miR-27-3p on the γ-secretase pathway by regulating the sensitivity of TNBC cells to olaparib. miR-27-3p, a microRNA with the potential to target PSEN-1, the catalytic subunit of γ-secretase mediating the second step of the cleavage of the Notch protein, was identified by the online tool miRDB and found to inhibit the expression of PSEN-1 by directly targeting the 3'-untranslated region (3'-UTR) of PSEN-1. The overexpression of miR-27-3p inhibited the activation of the Notch pathway via the inhibition of the cleavage of the Notch protein, mediated by γ-secretase, and, in turn, enhanced the sensitivity of TNBC cells to the antitumor agent olaparib. Transfection with PSEN-1 containing mutated targeting sites for miR-27-3p or the expression vector of the Notch protein intracellular domain (NICD) almost completely blocked the effect of miR-27-3p on the Notch pathway or the sensitivity of TNBC cells to olaparib, respectively. Therefore, our results suggest that the miR-27-3p/γ-secretase axis participates in the regulation of TNBC and that the overexpression of miR-27-3p represents a potential approach to enhancing the sensitivity of TNBC to olaparib.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baisheng Sun
- Emergency Department, Fifth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yan Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Gengbao Qu
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding City, China
| | - Pilin Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|