1
|
Chen H, Hou S, Zhang H, Zhou B, Xi H, Li X, Lufeng Z, Guo Q. RETRACTED: MiR-375 impairs breast cancer cell stemness by targeting the KLF5/G6PD signaling axis. ENVIRONMENTAL TOXICOLOGY 2025; 40:E31-E43. [PMID: 38470012 DOI: 10.1002/tox.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
Recurrence of breast cancer may be due to the presence of breast cancer stem cells (BCSC). Abnormal tumor cell growth is closely associated with increased reactive oxygen species (ROS) and disruption of redox homeostasis, and BCSCs exhibit low levels of ROS. The detailed mechanism between the low levels of ROS in BCSCs and their maintenance of stemness characteristics has not been reported. A growing number of studies have shown that tumor development is often accompanied by metabolic reprogramming, which is an important hallmark of tumor cells. As the first rate-limiting enzyme of pentose phosphate pathway (PPP), the expression of G6PD is precisely regulated in tumor cells, and there is a certain correlation between PPP and BCSCs. MiR-375 has been shown to inhibit stem cell-like properties in breast cancer, but the exact mechanism is not clear. Here, KLF5, as a transcription factor, was identified to bind to the promoter of G6PD to promote its expression, whereas miR-375 inhibited the expression of KLF5 by binding to the 3'UTR region of KLF5 mRNA and thus reduced the expression of G6PD expression, inhibits PPP to reduce NADPH, and increases ROS levels in breast cancer cells, thereby weakening breast cancer cell stemness. Our study reveals the specific mechanism by which miR-375 targets the KLF5/G6PD signaling axis to diminish the stemness of breast cancer cells, providing a therapeutic strategy against BCSCs.
Collapse
Affiliation(s)
- Haitao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, People's Republic of China
| | - Hongwei Zhang
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Bing Zhou
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Huifang Xi
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Xiaofang Li
- Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Zheng Lufeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Kaarijärvi R, Kaljunen H, Niemi O, Räsänen M, Paakinaho V, Ketola K. Matrix stiffness modulates androgen response genes and chromatin state in prostate cancer. NAR Cancer 2025; 7:zcaf010. [PMID: 40115748 PMCID: PMC11923743 DOI: 10.1093/narcan/zcaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/10/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025] Open
Abstract
The interplay between the extracellular matrix (ECM) and prostate cancer has been shown to increase ECM stiffness, correlating with more aggressive disease forms. However, the impact of ECM stiffness on the androgen receptor (AR), a key target in prostate cancer treatment, remains elusive. Here, we investigated whether matrix stiffness influences prostate cancer progression, transcriptional regulation, chromatin state, and AR function in AR-positive prostate cancer cells under varying ECM stiffness conditions. We utilized ATAC-seq (assay for transposase-accessible chromatin with sequencing) and RNA sequencing under different ECM conditions, along with the SUC2 metastatic prostate adenocarcinoma patient dataset, to investigate the role of ECM stiffness in chromatin state and androgen response genes, as well as its impact on prostate cancer progression. Results demonstrated that increased ECM stiffness elevated the expression of genes related to proliferation and differentiation. In contrast, androgen response genes were most highly induced in soft ECM conditions. Integrating chromatin accessibility with transcriptomic data revealed that androgen response genes were more transcriptionally available in soft ECM conditions. Additionally, increased ECM stiffness upregulated genes associated with low overall survival in the SUC2 dataset. Taken together, our results indicate that high expression of hard matrix stiffness genes may promote prostate cancer progression, leading to more aggressive disease forms associated with poor survival.
Collapse
Affiliation(s)
- Roosa Kaarijärvi
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Heidi Kaljunen
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Onni Niemi
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Merja Räsänen
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| |
Collapse
|
3
|
Lusby R, Demirdizen E, Inayatullah M, Kundu P, Maiques O, Zhang Z, Terp MG, Sanz-Moreno V, Tiwari VK. Pan-cancer drivers of metastasis. Mol Cancer 2025; 24:2. [PMID: 39748426 PMCID: PMC11697158 DOI: 10.1186/s12943-024-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Metastasis remains a leading cause of cancer-related mortality, irrespective of the primary tumour origin. However, the core gene regulatory program governing distinct stages of metastasis across cancers remains poorly understood. We investigate this through single-cell transcriptome analysis encompassing over two hundred patients with metastatic and non-metastatic tumours across six cancer types. Our analysis revealed a prognostic core gene signature that provides insights into the intricate cellular dynamics and gene regulatory networks driving metastasis progression at the pan-cancer and single-cell level. Notably, the dissection of transcription factor networks active across different stages of metastasis, combined with functional perturbation, identified SP1 and KLF5 as key regulators, acting as drivers and suppressors of metastasis, respectively, at critical steps of this transition across multiple cancer types. Through in vivo and in vitro loss of function of SP1 in cancer cells, we revealed its role in driving cancer cell survival, invasive growth, and metastatic colonisation. Furthermore, tumour cells and the microenvironment increasingly engage in communication through WNT signalling as metastasis progresses, driven by SP1. Further validating these observations, a drug repurposing analysis identified distinct FDA-approved drugs with anti-metastasis properties, including inhibitors of WNT signalling across various cancers.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Engin Demirdizen
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Paramita Kundu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Oscar Maiques
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Mikkel Green Terp
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, BT9 7AE, Belfast, UK.
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark.
| |
Collapse
|
4
|
Wang S, Liu C, Li Y, Qiao J, Chen X, Bao J, Li R, Xing Y. Suppression of KLF5 targets RREB1 to restrain the proliferation of ovarian cancer cells through ERK/MAPK signaling pathway. 3 Biotech 2025; 15:4. [PMID: 39676889 PMCID: PMC11635078 DOI: 10.1007/s13205-024-04171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
The overexpression of Kruppel-like factor 5 (KLF5) appears in several types of cancer. KLF5 may be an effective therapeutic target for treating OC, but its function in ovarian cancer (OC) remains unknown. The KLF5 mRNA expression levels in several OC cell lines were analyzed using RT-qPCR. Then, NC-siRNA or KLF5-siRNA was transfected into SK-OV-3 and OVCAR-3 cells. RT-qPCR and WB were used to detect the efficiency of KLF5 silence, CCK-8, colony formation assay, IHC staining, flow cytometry, and WB were performed to investigate the KLF5 function on OC cell proliferation and the activation of the extracellular signal-regulated Kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway. Next, a dual-luciferase and IF assay were used to determine the relationship between KLF5 and the Ras response element-binding protein (RREB1). SK-OV-3 and OVCAR-3 cells were treated with KLF5-siRNA and C16-PAF + EGF (MAPK agonist), separately or in combination. Proteins including KLF5, RREB1, p-p38, p-ERK1/2, ERK5, p-ERK5, Cyclin D1, CDK4, and CDK6 were quantified by WB. Finally, CCK-8, colony formation assay, and flow cytometry were employed again. KLF5 is highly expressed in OC cells compared with normal cells. When KLF5 knockdowns in SK-OV-3 and OVCAR-3 cells, the cell proliferation restrains, and the G1 phase prolongs. In addition, KLF5 silence caused a decrease of Cyclin D1, CDK4, CDK6, p-p38, p-ERK1/2, and p-ERK5/ERK5 expression levels. However, these statuses could be revised by C16-PAF + EGF. Results also found that when the ERK/MAPK signaling is activating, RREB1 is expressed low. The KLF5 silence could up-regulate the RREB1 expression. The KLF5 silence could restrain the OC cell proliferation and cell cycle. KLF5-siRNA may target upregulating RREB1 expression, thereby inhibiting the activation of the ERK/MAPK signaling pathway in OC cells.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Pathophysiology, Qinghai University Medical College, Xining, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatidosis Research, Qinghai University Affiliated Hospital, Xining, China
| | - Yongchuan Li
- Department of Gynaecology, Qinghai Red Cross Hospital, Xining, China
| | - Jinwan Qiao
- Department of Scientific Research and Teaching, Fifth People’s Hospital of Qinghai Province, Xining, China
| | - Xinling Chen
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Jin Bao
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ran Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Yanxia Xing
- Department of Gynaecology, The Fifth People’s Hospital of Qinghai Province, No.166, Nanshan East Road, Chengdong District, Xining, 810007 Qinghai China
| |
Collapse
|
5
|
Lu X, Hu K, Zhang D, Yin X, Nie J, Zhao K. KLF5 silencing restrains proliferation, invasion, migration and angiogenesis of gallbladder carcinoma cells by transcriptional regulation of PDGFA. J Cancer Res Clin Oncol 2024; 151:11. [PMID: 39704786 PMCID: PMC11662046 DOI: 10.1007/s00432-024-06059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Krüppel-like factor 5 (KLF5) is recognized as a tumor mediator in multiple types of tumors. Nevertheless, whether KLF5 plays a role in gallbladder cancer (GBC) remains to be elucidated. This study aims to clarify the role of KLF5 in the proliferation, migration and angiogenesis in GBC cells. METHODS The expressions of KLF5 and platelet-derived growth factor subunit A (PDGFA) in GBC cell lines were analyzed by qRT-PCR and western blot assay. Cell proliferation was assessed utilizing the Cell Counting Kit-8 assay and EDU staining. Cell apoptosis was evaluated using flow cytometry, and apoptosis-related proteins was examined by western blotting. The migratory and invasive capabilities were evaluated utilizing wound healing and Transwell. Angiogenesis was assessed by ELISA, tube formation assay and western blot. The interaction between KLF5 and PDGFA was confirmed by ChIP assay, as well as luciferase reporter assay. RESULTS In this study, we discovered that the levels of KLF5 and PDGFA were upregulated in GBC cells. Silencing of KLF5 reduced the viability and suppressed the proliferation of GBC cells, as well as promoting the apoptosis. In addition, KLF5 silencing restrained the invasion and migration and angiogenesis in NOZ and GBC-SD cells. KLF5 transcription activated PDGFA expression and KLF5 was proved to bind to PDGFA promoter in NOZ cells. Following the silencing of PDGFA, the proliferation, invasion, migration, angiogenesis and apoptosis exhibited similar changes to KLF5 silencing. Additionally, PDGFA overexpression reversed the effects of KLF5 silencing on NOZ cells. CONCLUSION Collectively, our results suggest that KLF5 regulates GBC cell proliferation, invasion, migration, angiogenesis, as well as apoptosis, via mediating PDGFA transcriptionally, which might provide a novel therapeutic strategy for treatment of human GBC.
Collapse
Affiliation(s)
- Xiaowei Lu
- Department of General Surgery, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, 310009, Zhejiang, China
| | - Kui Hu
- Department of General Surgery, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, 310009, Zhejiang, China
| | - Dandan Zhang
- Department of General Surgery, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, 310009, Zhejiang, China
| | - Xuefeng Yin
- Department of General Surgery, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, 310009, Zhejiang, China
| | - Jifeng Nie
- Department of Emergency Surgery, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, 310009, Zhejiang, China
| | - Kai Zhao
- Department of General Surgery, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
6
|
Zhang W, Han J, Wan P, Zhang M, Chang Y, Yan Y, Meng H, Hou M, Jin T. Variants of KLF5 and KLF12 were related to endometrial cancer risk in the Chinese population. Expert Rev Mol Diagn 2024:1-9. [PMID: 39648324 DOI: 10.1080/14737159.2024.2436394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES Krüppel‑like factors (KLFs) are implicated in the progression of endometrial cancer (EC). This present study explored the correlation between variants of KLF5, KLF12 and EC risk in the Chinese population. METHODS The Agena MassARRAY technology platform was utilized to genotype six single nucleotide polymorphisms (SNPs) in KLF5 and KLF12 genes among 509 women diagnosed with EC and 506 age-matched healthy women. Subsequently, the relationship between SNPs in KLF5 and KLF12 and EC risk was calculated using logistic regression analysis. The interactions between SNPs in KLF5 and KLF12 were analyzed to predict EC risk using multifactor dimensionality reduction (MDR) analysis. RESULTS KLF12 rs12429889 was significantly associated with EC risk (codominant: OR = 1.53, p = 0.003; dominant: OR = 1.54, p = 0.004). In addition, rs7329599 was significantly associated with EC risk in participants aged ≤55 years (codominant: OR = 0.63, p = 0.014; dominant: OR = 0.67, p = 0.024), whereas rs12429889 was significantly associated with EC risk in participants aged >55 years (codominant: OR = 1.98, p = 0.004; dominant: OR = 2.06, p = 0.002). CONCLUSION Our findings revealed a significant correlation between KLF12 rs12429889 and rs7329599 and EC risk, highlighting their potential as diagnostic biomarkers. [Figure: see text].
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Panpan Wan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Yanting Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Yan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Hang Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Mengnan Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
8
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
9
|
Tuo Z, Zhang H, He K, Jiang Z, Jiang C, Chen X, Yuan H. Pan-cancer analysis of STAT3 indicates its potential prognostic value and correlation with immune cell infiltration in prostate cancer. Discov Oncol 2024; 15:654. [PMID: 39541053 PMCID: PMC11564492 DOI: 10.1007/s12672-024-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Targeting the STAT3 signaling pathway is a promising therapeutic approach for cancer patients. However, the association between STAT3 expression, the tumor immune microenvironment, and genetic variation remains unclear across human cancers, especially prostate cancer. METHODS We used R software and other tools to analyze pan-cancer and mutation data from publicly available databases statistically. A comprehensive investigation was performed to assess the genetic heterogeneity and clinical relevance of STAT3 in various malignancies, with a specific focus on its role in the immune landscape and prognostic significance in prostate cancer. The findings were validated through immunohistochemistry (IHC) and multiplex immunofluorescence (mIF). RESULTS STAT3 expression is abnormal in the majority of cancer tissues, which is strongly correlated with these patients' prognosis. Eight measures of tumor heterogeneity and six measures of tumor stemness of multiple tumor types showed a strong correlation with STAT3 expression. Furthermore, in individuals with prostate cancer, STAT3 expression indicated the degree of immune cell infiltration and the advancement of the disease. IHC analysis revealed that STAT3 was down-regulated in prostate tumor tissues, while mIF analysis demonstrated that STAT3 signaling (p-STAT3) was extensively active in tumor tissues and positive lymph node tissues. CONCLUSION STAT3 may serve as a valuable prognostic biomarker and therapeutic target across various cancers, with particular relevance to prostate cancer.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hesong Zhang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Wuhu, Wuhu, People's Republic of China
| | - Ke He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
10
|
Xie H, Dan M, Cen Y, Ning J, Sun C, Zhu G, Feng S, Wang H, Pu J. AR expression-independent XRCC3 mediates DNA damage-induced p53/Bax signaling pathway activation against prostate cancer. J Cancer Res Clin Oncol 2024; 150:463. [PMID: 39414634 PMCID: PMC11485149 DOI: 10.1007/s00432-024-05989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) resistance is closely associated with altered AR status. Aberrant AR expression is critical for the induction of ADT resistance, necessitating the identification of an anti-PCa target independent of AR expression. METHODS Transcriptomic data and clinical information of PRAD were obtained from TCGA database. Genes with PCa-related and AR expression-independent were screened by bioinformatics, and characterized by PPI and GO functional enrichment analyses. Candidate genes were locked by co-expression correlation and disease-free survival (DFS) analyses. A prognostic gene set was established using LASSO Cox regression algorithm. Cox proportional risk regression was performed to identify a key prognostic gene. Expression of the target protein in PCa tissues was verified by The Human Protein Atlas database. In vitro validation of cellular function and molecular mechanism by knockdown and overexpression of the target gene. RESULTS Two AR expression-independent genes (SLC43A1 and XRCC3) were available for the optimal prognostic model. This gene set effectively predicted PRAD patients' DFS at 1-, 3- and 5-year, where XRCC3 and tumor (T) stage were independent risk factors. XRCC3 was higher expressed in PRAD patients with T3-T4 stages and accompanied by poorer DFS. IHC staining also validated its higher expression in high-risk PCa tissues. In vitro experiments demonstrated that silencing XRCC3 significantly inhibited 22Rv1 and DU145 cell proliferation, migration and invasion, while promoted apoptosis. Further, silencing XRCC3 promoted DNA damage-induced p53/Bax signaling pathway activation, which was absent with overexpression. CONCLUSION Silencing XRCC3 exerts anti-PCa effects by promoting DNA damage-induced p53/Bax signaling pathway activation in an AR expression-independent manner.
Collapse
Affiliation(s)
- Hailong Xie
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Mingjiang Dan
- Department of Urology, Huiya Hospital of the First Affiliated Hospital of Sun Yat Sen University, Huizhou, 516081, China
| | - Yi Cen
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Chong Sun
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Guangbin Zhu
- Department of Medical Imaging, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Shourui Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haiyan Wang
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518100, China.
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
11
|
Eom SY, Kim MM. The effect of IGFBP3 gene knockout by the CRISPR/Cas9 system on the IGF-1 pathway in murine cells. Arch Gerontol Geriatr 2024; 125:105484. [PMID: 38838451 DOI: 10.1016/j.archger.2024.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The IGF-1 signaling pathway has been deeply involved in the aging mechanism. The insulin-like growth factor binding protein 3 (IGFBP-3) is a protein that binds to IGF-1 that regulates growth, survival, and aging. OBJECTIVE The purpose of this study was to investigate the impact of the IGFBP3 gene knockout (KO) on the expressions of aging-related proteins and genes using the CRISPR/Cas9 system. METHODS The IGFBP3 gene knockout (KO) was performed by the CRISPR/Cas9 system. Sanger DNA sequencing and Indel analyses were used to verify the induction of mutation. RESULTS First, Sanger DNA sequencing was used to analyze the IGFBP3 gene knockout in murine cells (B16F1). The isolation of three colonies with the mutated DNA sequences in the IGFBP3 gene was validated. In addition, the expression levels of the IGFBP3 gene and protein in the edited B16F1 cells were lower than in those of normal B16F1 cells in western blot analysis as well as RT-PCR and qPCR. Moreover, IGFBP3 gene KO cells enhanced the level of SA-ß-gal staining and short telomere length compared to normal B16F1 cells. In particular, it was found that the expression levels of senescence-related proteins such as PI3K, AKT1, PDK1, and p53 were higher in IGFBP3 gene KO cells than in normal cells in both the absence and presence of IGF-1. CONCLUSIONS Therefore, the above findings could provide a clue that IGFBP3 could play a key role in the aging mechanism.
Collapse
Affiliation(s)
- Su Yeon Eom
- Department of Applied Chemistry Food Science and Technology, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
12
|
Jubran J, Slutsky R, Rozenblum N, Rokach L, Ben-David U, Yeger-Lotem E. Machine-learning analysis reveals an important role for negative selection in shaping cancer aneuploidy landscapes. Genome Biol 2024; 25:95. [PMID: 38622679 PMCID: PMC11020441 DOI: 10.1186/s13059-024-03225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression. RESULTS Here, we apply interpretable machine learning methods to study tissue-selective aneuploidy patterns. We define 20 types of features corresponding to genomic attributes of chromosome-arms, normal tissues, primary tumors, and cancer cell lines (CCLs), and use them to model gains and losses of chromosome arms in 24 cancer types. To reveal the factors that shape the tissue-specific cancer aneuploidy landscapes, we interpret the machine learning models by estimating the relative contribution of each feature to the models. While confirming known drivers of positive selection, our quantitative analysis highlights the importance of negative selection for shaping aneuploidy landscapes. This is exemplified by tumor suppressor gene density being a better predictor of gain patterns than oncogene density, and vice versa for loss patterns. We also identify the importance of tissue-selective features and demonstrate them experimentally, revealing KLF5 as an important driver for chr13q gain in colon cancer. Further supporting an important role for negative selection in shaping the aneuploidy landscapes, we find compensation by paralogs to be among the top predictors of chromosome arm loss prevalence and demonstrate this relationship for one paralog interaction. Similar factors shape aneuploidy patterns in human CCLs, demonstrating their relevance for aneuploidy research. CONCLUSIONS Our quantitative, interpretable machine learning models improve the understanding of the genomic properties that shape cancer aneuploidy landscapes.
Collapse
Affiliation(s)
- Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel Slutsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Rozenblum
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Rokach
- Department of Software & Information Systems Engineering, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
13
|
Jha K, Kumar A, Bhatnagar K, Patra A, Bhavesh NS, Singh B, Chaudhary S. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195003. [PMID: 37992989 DOI: 10.1016/j.bbagrm.2023.195003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Post-translational modifications (PTMs) of transcription factors regulate transcriptional activity and play a key role in essentially all biological processes and generate indispensable insight towards biological function including activity state, subcellular localization, protein solubility, protein folding, substrate trafficking, and protein-protein interactions. Amino acids modified chemically via PTMs, function as molecular switches and affect the protein function and characterization and increase the proteome complexity. Krüppel-like transcription factors (KLFs) control essential cellular processes including proliferation, differentiation, migration, programmed cell death and various cancer-relevant processes. We investigated the interactions of KLF group-2 members with their binding partners to assess the role of acetylation and phosphorylation in KLFs on their binding affinity. It was observed that acetylation and phosphorylation at different positions in KLFs have a variable effect on binding with specific partners. KLF2-EP300, KLF4-SP1, KLF6-ATF3, KLF6-JUN, and KLF7-JUN show stabilization upon acetylation or phosphorylation at variable positions. On the other hand, KLF4-CBP, KLF4-EP300, KLF5-CBP, KLF5-WWP1, KLF6-SP1, and KLF7-ATF3 show stabilization or destabilization due to acetylation or phosphorylation at variable positions in KLFs. This provides a molecular explanation of the experimentally observed dual role of KLF group-2 members as a suppressor or activator of cancers in a PTM-dependent manner.
Collapse
Affiliation(s)
- Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Bipin Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India; Centre for Life Sciences, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
14
|
Qu X, Xu C, Yang W, Li Q, Tu S, Gao C. KLF5 inhibits the migration and invasion in cervical cancer cell lines by regulating SNAI1. Cancer Biomark 2024; 39:231-243. [PMID: 38217587 PMCID: PMC11191462 DOI: 10.3233/cbm-230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an important biological process by which malignant tumor cells to acquire migration and invasion abilities. This study explored the role of KLF5 in the EMT process of in cervical cancer cell lines. OBJECTIVE Krüpple-like factor 5 (KLF5) is a basic transcriptional factor that plays a key role in cell-cycle arrest and inhibition of apoptosis. However, the molecular mechanism by which KLF5 mediates the biological functions of cervical cancer cell lines has not been elucidated. Here, we focus on the potential function of ELF5 in regulating the EMT process in in vitro model of cervical cancer cell lines. METHOD Western-blot and real-time quantitative PCR were used to detect the expression of EMT-related genes in HeLa cells. MTT assays, cell scratch and Transwell assays were used to assess HeLa cells proliferation and invasion capability. Using the bioinformatics tool JASPAR, we identified a high-scoring KLF5-like binding sequence in the SNAI1 gene promoter. Luciferase reporter assays was used to detect transcriptional activity for different SNAI1 promoter truncates. RESULT After overexpressing the KLF5 gene in HeLa cells, KLF5 not only significantly inhibited the invasion and migration of HeLa cells, but also increased the expression of E-cadherin and decreased the expression of N-cadherin and MMP9. In addition, the mRNA expression of upstream regulators of E-cadherin, such as SNAI1, SLUG, ZEB1/2 and TWIST1 was also decreased. Furthermore, KLF5 inhibiting the expression of the SNAI1 gene via binding its promoter region, and the EMT of Hela cells was promoted after overexpression of the SNAI1 gene. CONCLUSION These results indicate that KLF5 can downregulate the EMT process of HeLa cells by decreasing the expression of the SNAI1 gene, thereby inhibiting the migration and invasion of HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Xinjian Qu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chang Xu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wenbo Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Qianqian Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
15
|
Zhu Y, Ren J, Wu X, Zhang Y, Wang Y, Xu J, Tan Q, Jiang Y, Li Y. lncRNA ENST00000422059 promotes cell proliferation and inhibits cell apoptosis in breast cancer by regulating the miR-145-5p/KLF5 axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1892-1901. [PMID: 37997376 PMCID: PMC10753370 DOI: 10.3724/abbs.2023226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/01/2023] [Indexed: 11/25/2023] Open
Abstract
Krüppel-like zinc-finger transcription factor 5 (KLF5) is a vital regulator of breast cancer (BC) onset and progression. The mechanism by which KLF5 regulates BC is still not clearly known. In this study, bioinformatics analysis shows that BC-affected individuals with elevated KLF5 expression levels have poor clinical outcomes. We further verify that miR-145-5p regulated KLF5 expression to promote cell apoptosis and inhibit cell proliferation in BC via dual-luciferase reporter assay, western blot analysis, qRT-PCR, CCK-8 assay and cell apoptosis assay. In addition, based on bioinformatics analysis, the binding of ENST00000422059 with miR-145-5p is confirmed by dual-luciferase reporter assay. Subsequently, FISH, western blot analysis, qRT-PCR, CCK-8 and cell apoptosis assays verified that ENST00000422059 increases KLF5 protein expression by sponging miRNA to promote cell proliferation and inhibit cell apoptosis. Finally, ENST00000422059 is found to accelerate tumor progression by regulating the miR-145-5p/KLF5 axis in vivo. In conclusion, this study suggests that ENST00000422059 upregulates KLF5 by sponging miR-145-5p to promote BC progression.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Junling Ren
- Department of Thyroid and Breastthe Second Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Xu Wu
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Yuan Zhang
- Provincial Key Laboratory of Biological Macro-molecules ResearchWannan Medical CollegeWuhu241002China
| | - Ying Wang
- Provincial Key Laboratory of Biological Macro-molecules ResearchWannan Medical CollegeWuhu241002China
| | - Jinwen Xu
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
- Department of Pathogen Biology and ImmunologyJiaxing University College of MedicineJiaxing314000China
- Provincial Key Laboratory of Biological Macro-molecules ResearchWannan Medical CollegeWuhu241002China
- Department of Thyroid and Breastthe Second Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Qiuyu Tan
- Provincial Key Laboratory of Biological Macro-molecules ResearchWannan Medical CollegeWuhu241002China
| | - Yuxin Jiang
- Department of Pathogen Biology and ImmunologyJiaxing University College of MedicineJiaxing314000China
| | - Yulei Li
- Provincial Key Laboratory of Biological Macro-molecules ResearchWannan Medical CollegeWuhu241002China
| |
Collapse
|
16
|
Wang F, Luo M, Cheng Y. KLF5 promotes esophageal squamous cell cancer through the transcriptional activation of FGFBP1. Med Oncol 2023; 41:17. [PMID: 38087142 PMCID: PMC10716083 DOI: 10.1007/s12032-023-02244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 12/18/2023]
Abstract
Krüpple-like factor 5 (KLF5) is a zinc-finger-containing transcription factor implicated in several human malignancies, but its potential regulatory mechanisms implicated in esophageal squamous cell carcinoma (ESCC) remain elusive. Here, we show that KLF5 is upregulated in ESCC, where its level was significantly associated with tumor differentiation and lymph node metastasis status. Upregulated KLF5 expression promoted the proliferation, migration, and invasion of ESCC cells. Reduced KLF5 showed the opposite effects. Mechanistically, KLF5 exerts its tumor promotion effect by up-regulating fibroblast growth factor binding protein 1 (FGF-BP1) and snail family transcriptional repressor 2 (SNAIL2). KLF5 binds to the promoter regions of FGF-BP1 and transcriptionally activates its expression. Our study indicated that KLF5 could promote esophageal squamous cell cancer proliferation, migration, and invasion by upregulating FGF-BP1/SNAIL2 signaling. Our work suggests that KLF5 might be a proto-oncogene in ESCC and implicated in ESCC metastasis.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Oncology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Ming Luo
- Imaging Department, Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yufeng Cheng
- Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Wenhua Road, Lixia District, Jinan, Shandong, China.
| |
Collapse
|
17
|
Tien TY, Wu YJ, Su CH, Hsieh CL, Wang BJ, Lee YN, Su Y, Yeh HI. Pannexin 1 Modulates Angiogenic Activities of Human Endothelial Colony-Forming Cells Through IGF-1 Mechanism and Is a Marker of Senescence. Arterioscler Thromb Vasc Biol 2023; 43:1935-1951. [PMID: 37589139 DOI: 10.1161/atvbaha.123.319529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND We examined the role of Panxs (pannexins) in human endothelial progenitor cell (EPC) senescence. METHODS Young and replication-induced senescent endothelial colony-forming cells (ECFCs) derived from human circulating EPCs were used to examine cellular activities and senescence-associated indicators after transfection of short interference RNA specific to Panx1 or lentivirus-mediated Panx1 overexpression. Hind limb ischemia mice were used as in vivo angiogenesis model. Protein and phospho-kinase arrays were used to determine underlying mechanisms. RESULTS Panx1 was the predominant Panx isoform in human ECFCs and upregulated in both replication-induced senescent ECFCs and circulating EPCs from aged mice and humans. Cellular activities of the young ECFCs were enhanced by Panx1 downregulation but attenuated by its upregulation. In addition, reduction of Panx1 in the senescent ECFCs could rejuvenate cellular activities with reduced senescence-associated indicators, including senescence-associated β-galactosidase activity, p16INK4a (cyclin-dependent kinase inhibitor 2A), p21 (cyclin-dependent kinase inhibitor 1), acetyl-p53 (tumor protein P53), and phospho-histone H2A.X (histone family member X). In mouse ischemic hind limbs injected senescent ECFCs, blood perfusion ratio, salvaged limb outcome, and capillary density were all improved by Panx1 knockdown. IGF-1 (insulin-like growth factor 1) was significantly increased in the supernatant from senescent ECFCs after Panx1 knockdown. The enhanced activities and paracrine effects of Panx1 knockdown senescent ECFCs were completely inhibited by anti-IGF-1 antibodies. FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), and STAT3 (signal transducer and activator of transcription 3) were activated in senescent ECFCs with Panx1 knockdown, in which the intracellular calcium level was reduced, and the activation was inhibited by supplemented calcium. The increased IGF-1 in Panx1-knockdown ECFCs was abrogated, respectively, by inhibitors of FAK (PF562271), ERK (U0126), and STAT3 (NSC74859) and supplemented calcium. CONCLUSIONS Panx1 expression is upregulated in human ECFCs/EPCs with replication-induced senescence and during aging. Angiogenic potential of senescent ECFCs is improved by Panx1 reduction through increased IGF-1 production via activation of the FAK-ERK axis following calcium influx reduction. Our findings provide new strategies to evaluate EPC activities and rejuvenate senescent EPCs for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Ting-Yi Tien
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (T.-Y.T., Y.S.)
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yih-Jer Wu
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| | - Cheng-Huang Su
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| | - Chin-Ling Hsieh
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Bo-Jeng Wang
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Nan Lee
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yeu Su
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (T.-Y.T., Y.S.)
| | - Hung-I Yeh
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| |
Collapse
|
18
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
21
|
Wu Q, Liu Z, Gao Z, Luo Y, Li F, Yang C, Wang T, Meng X, Chen H, Li J, Kong Y, Dong C, Sun S, Chen C. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8 + T-cell-dependent antitumor immunity. Theranostics 2023; 13:1381-1400. [PMID: 36923542 PMCID: PMC10008740 DOI: 10.7150/thno.82182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Immune checkpoint blockers (ICBs) are revolutionized therapeutic strategies for cancer, but most patients with solid neoplasms remain resistant to ICBs, partly because of the difficulty in reversing the highly immunosuppressive tumor microenvironment (TME). Exploring the strategies for tumor immunotherapy is highly dependent on the discovery of molecular mechanisms of tumor immune escape and potential therapeutic target. Krüppel-like Factor 5 (KLF5) is a cell-intrinsic oncogene to promote tumorigenesis. However, the cell-extrinsic effects of KLF5 on suppressing the immune response to cancer remain unclear. Methods: We analyzed the immunosuppressive role of KLF5 in mice models transplanted with KLF5-deleted/overexpressing tumor cells. We performed RNA sequencing, immunohistochemistry, western blotting, real time-PCR, ELISA, luciferase assay, chromatin immunoprecipitation (ChIP), and flow cytometry to demonstrate the effects of KLF5 on CD8+ T cell infiltration and related molecular mechanism. Single-cell RNA sequencing and spatial transcriptomics analysis were applied to further decipher the association between KLF5 expression and infiltrating immune cells. The efficacy of KLF5/COX2 inhibitors combined with anti-programmed cell death protein 1 (anti-PD1) therapy were explored in pre-clinical models. Finally, a gene-expression signature depending on KLF5/COX2 axis and associated immune markers was created to predict patient survival. Results: KLF5 inactivation decelerated basal-like breast tumor growth in a CD8+ T-cell-dependent manner. Transcriptomic profiling revealed that KLF5 loss in tumors increases the number and activated function of T lymphocytes. Mechanistically, KLF5 binds to the promoter of the COX2 gene and promotes COX2 transcription; subsequently, KLF5 deficiency decreases prostaglandin E2 (PGE2) release from tumor cells by reducing COX2 expression. Inhibition of the KLF5/COX2 axis increases the number and functionality of intratumoral antitumor T cells to synergize the antitumorigenic effects of anti-PD1 therapy. Analysis of patient datasets at single-cell and spatial resolution shows that low expression of KLF5 is associated with an immune-supportive TME. Finally, we generate a KLF5/COX2-associated immune score (KC-IS) to predict patient survival. Conclusions: Our results identified a novel mechanism responsible for KLF5-mediated immunosuppression in TME, and targeting the KLF5/COX2/PGE2 axis is a critical immunotherapy sensitizer.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - ChuanYu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tiantian Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China
| | - Xiangyu Meng
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Kong
- Pathology department, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| |
Collapse
|
22
|
HAT- and HDAC-Targeted Protein Acetylation in the Occurrence and Treatment of Epilepsy. Biomedicines 2022; 11:biomedicines11010088. [PMID: 36672596 PMCID: PMC9856006 DOI: 10.3390/biomedicines11010088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a common and severe chronic neurological disorder. Recently, post-translational modification (PTM) mechanisms, especially protein acetylation modifications, have been widely studied in various epilepsy models or patients. Acetylation is regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs catalyze the transfer of the acetyl group to a lysine residue, while HDACs catalyze acetyl group removal. The expression of many genes related to epilepsy is regulated by histone acetylation and deacetylation. Moreover, the acetylation modification of some non-histone substrates is also associated with epilepsy. Various molecules have been developed as HDAC inhibitors (HDACi), which have become potential antiepileptic drugs for epilepsy treatment. In this review, we summarize the changes in acetylation modification in epileptogenesis and the applications of HDACi in the treatment of epilepsy as well as the mechanisms involved. As most of the published research has focused on the differential expression of proteins that are known to be acetylated and the knowledge of whole acetylome changes in epilepsy is still minimal, a further understanding of acetylation regulation will help us explore the pathological mechanism of epilepsy and provide novel ideas for treating epilepsy.
Collapse
|
23
|
Yuan CH, Hsu WC, Huang AM, Yuan BC, Chen IH, Hsu CA, Chen RF, Chu YM, Lin HH, Ke HL. MicroRNA-145-5p modulates Krüppel-like factor 5 and inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma. BMC Mol Cell Biol 2022; 23:28. [PMID: 35836107 PMCID: PMC9284881 DOI: 10.1186/s12860-022-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background In several human cancers, Krüppel-like factor 5 (KLF5), a zinc finger transcription factor, can contribute to both tumor progression or suppression; however, the precise role of KLF5 in nasopharyngeal carcinoma (NPC) remains poorly understood. In this study, the association between KLF5 and microRNA-145-5p (miR-145-5p) in NPC cells was elucidated. Results Our results showed that KLF5 expression was up-regulated in NPC group compared to normal group. We found that KLF5 exhibited an oncogenic role in NPC cells. The upregulation of miR-145-5p inhibited the proliferation, migration, and invasion of NPC cells. It was observed that miR-145-5p could down-regulate the mRNA and protein expression of KLF5 in NPC cell lines. Additionally, the activity of focal adhesion kinase (FAK), a migration marker, was regulated by miR-145-5p and KLF5 in NPC cells. Conclusions The results of this study indicated that miR-145-5p could repress the proliferation, migration, and invasion of NPC cells via KLF5/FAK regulation, and could be a potential therapeutic target for patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00430-9.
Collapse
|
24
|
Guan H, Mao L, Wang J, Wang S, Yang S, Wu H, Sun W, Chen Z, Chen M. Exosomal RNF157 mRNA from prostate cancer cells contributes to M2 macrophage polarization through destabilizing HDAC1. Front Oncol 2022; 12:1021270. [PMID: 36263220 PMCID: PMC9573993 DOI: 10.3389/fonc.2022.1021270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background Exosomes have been identified to mediate the transmission of RNAs among different cells in tumor microenvironment, thus affecting the progression of different diseases. However, exosomal messenger RNAs (mRNAs) have been rarely explored. RNF157 mRNA has been found to be up-regulated in PCa patients’ exosomes, but the role of exosomal RNF157 mRNA in PCa development remains unclear. Methods Online databases were utilized for predicting gene expression and binding correlation between different factors. RT-qPCR and western blot assays were respectively done to analyze RNA and protein expressions. Flow cytometry analysis was implemented to analyze M2 polarization. Results RNF157 expression was high in PCa tissues and cells. M2 polarization of macrophages was enhanced after co-culture with PCa cells or with exosomes released by PCa cells. Upon RNF157 knockdown in PCa cells, the extracted exosomes could not lead to the facilitated M2 polarization. Mechanistically, RNF157 could bind to HDAC1 and contribute to HDAC1 ubiquitination, which led to HDAC1 degradation and resulting in promoting M2 polarization of macrophages. Animal experiments validated that exosomal RNF157 accelerated PCa tumor growth through facilitating macrophage M2 polarization. Conclusion Exosome-mediated RNF157 mRNA from PCa cells results in M2 macrophage polarization via destabilizing HDAC1, consequently promoting PCa tumor progression.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jinfeng Wang
- Department of Urology, Yancheng No. 3 People’s Hospital, Yancheng, China
| | - Sheng Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongliang Wu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenyan Sun
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Chen
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Ming Chen, ; Zhijun Chen,
| | - Ming Chen
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
- *Correspondence: Ming Chen, ; Zhijun Chen,
| |
Collapse
|
25
|
Dai X, Chen Y, Chen N, Dou J, Zhuang H, Wang J, Zhao X, Zhang X, Zhao H. KLF5-mediated aquaporin 3 activated autophagy to facilitate cisplatin resistance of gastric cancer. Immunopharmacol Immunotoxicol 2022; 45:140-152. [PMID: 36083020 DOI: 10.1080/08923973.2022.2122498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Resistance to chemotherapeutic drugs limits the control of gastric cancer (GC) development. The study intended to probe into the mechanism of aquaporin 3 (AQP3) on the chemoresistance of GC. METHODS Cisplatin (CDDP)-resistant cells were constructed. Parental AGS and HGC-27 cells and their respective CDDP-resistant cells were transfected with AQP3 overexpression plasmid, AQP3 short hairpin RNA (sh-AQP3) and sh-Kruppel-like factor 5 (shKLF5). The expressions of AQP3 and factors related to autophagy (LC3 I, LC3 II, Atg5, Beclin-1, p62)/epithelial-mesenchymal transition (EMT; E-cadherin and snail) were assessed by Western blot and qRT-PCR. Cell counting kit-8 assay was adopted to test cell viability and half maximal inhibitory concentration (IC 50) was determined. Transwell assay was used for the examination of cell migration and invasion. The regulatory relationship of AQP3 and KLF5 was tested by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays. RESULTS AQP3 was highly-expressed in GC cells and its level was even higher in CDDP-resistant GC cells. AQP3 silencing inhibited viability, autophagy and EMT in CDDP-resistant GC cells, while AQP3 overexpression had the opposite effect. KLF5 positively modulated AQP3 in GC cells resistant to CDDP. KLF5 knockdown reversed AQP3-induced autophagy, viability, migration, invasion and EMT in CDDP-resistant GC cells. CONCLUSION KLF5-modulated AQP3 activated autophagy to facilitate the resistance of GC to CDDP.
Collapse
Affiliation(s)
- Xudong Dai
- Department of General Surgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University
| | - Yong Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Ning Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Jin Dou
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Haiwen Zhuang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Jian Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Xin Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Haijian Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| |
Collapse
|
26
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nat Commun 2021; 12:6377. [PMID: 34737261 PMCID: PMC8568894 DOI: 10.1038/s41467-021-26612-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.
Collapse
|
28
|
Li L, Liu J, Wang X, Xiong X, Huang S, Wang X. Microarray analysis of differentially expressed long non-coding RNAs in daidzein-treated lung cancer cells. Oncol Lett 2021; 22:789. [PMID: 34630702 PMCID: PMC8488333 DOI: 10.3892/ol.2021.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/26/2021] [Indexed: 12/03/2022] Open
Abstract
Daidzein has been found to significantly inhibit the proliferation of lung cancer cells, while its potential molecular mechanisms remain unclear. To determine the molecular mechanism of daidzein on lung cancer cells, the Capital Bio Technology Human long non-coding (lnc) RNA Array v4, 4×180K chip was used to detect the gene expression profiles of 40,000 lncRNAs and 34,000 mRNAs in a human cancer cell line. Reverse transcription-quantitative (RT-q) PCR analysis was performed to detect the expression levels of target lncRNA and mRNAs in the H1299 cells treated with and without daidzein, using the lncRNA and mRNA gene chip. Bioinformatics analysis was performed to determine the differentially expressed genes from the results of the chip assays. There were 119 and 40 differentially expressed lncRNAs and mRNAs, respectively, that had a 2-fold change in expression level. A total of eight lncRNAs were upregulated in the H1299 lung cancer cells, while 111 lncRNAs were downregulated. Furthermore, five mRNAs were upregulated, and 35 mRNAs were downregulated. A total of six differentially expressed lncRNAs (ENST00000608897.1, ENST00000444196.1, ENST00000608741.1, XR_242163.1, ENST00000505196.1 and ENST00000498032.1) were randomly selected to validate the microarray data, which were consistent with the RT-qPCR analysis results. Differentially expressed mRNAs were enriched in important Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Taken together, the results of the present study demonstrated that daidzein affected the expression level of lncRNAs in lung cancer cells, suggesting that daidzein may have potential effects on lung cancer cells.
Collapse
Affiliation(s)
- Laifang Li
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, P.R. China
| | - Jun Liu
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, P.R. China
| | - Xiaobo Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, P.R. China
| | - Xiaowei Xiong
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaoxin Huang
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, P.R. China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, P.R. China
| |
Collapse
|
29
|
Lo Cascio C, McNamara JB, Melendez EL, Lewis EM, Dufault ME, Sanai N, Plaisier CL, Mehta S. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight 2021; 6:e149232. [PMID: 34494550 PMCID: PMC8492336 DOI: 10.1172/jci.insight.149232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the histone deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear. In neural stem cells, HDAC2 is the indispensable deacetylase to ensure normal brain development and survival in the absence of HDAC1. Surprisingly, we find that HDAC1 is the essential class I deacetylase in glioma stem cells, and its loss is not compensated for by HDAC2. Using cell-based and biochemical assays, transcriptomic analyses, and patient-derived xenograft models, we find that knockdown of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner. We demonstrate marked suppression in tumor growth upon targeting of HDAC1 and identify compensatory pathways that provide insights into combination therapies for GBM. Our study highlights the importance of HDAC1 in GBM and the need to develop isoform-specific drugs.
Collapse
Affiliation(s)
- Costanza Lo Cascio
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, and
| | - James B McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ernesto L Melendez
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Matthew E Dufault
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
30
|
Wei J, Wang Z, Wang W, Liu X, Wan J, Yuan Y, Li X, Ma L, Liu X. Oxidative Stress Activated by Sorafenib Alters the Temozolomide Sensitivity of Human Glioma Cells Through Autophagy and JAK2/STAT3-AIF Axis. Front Cell Dev Biol 2021; 9:660005. [PMID: 34277607 PMCID: PMC8282178 DOI: 10.3389/fcell.2021.660005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The development of temozolomide (TMZ) resistance in glioma leads to poor patient prognosis. Sorafenib, a novel diaryl urea compound and multikinase inhibitor, has the ability to effectively cross the blood-brain barrier. However, the effect of sorafenib on glioma cells and the molecular mechanism underlying the ability of sorafenib to enhance the antitumor effects of TMZ remain elusive. Here, we found that sorafenib could enhance the cytotoxic effects of TMZ in glioma cells in vitro and in vivo. Mechanistically, the combination of sorafenib and TMZ induced mitochondrial depolarization and apoptosis inducing factor (AIF) translocation from mitochondria to nuclei, and this process was dependent on STAT3 inhibition. Moreover, the combination of sorafenib and TMZ inhibited JAK2/STAT3 phosphorylation and STAT3 translocation to mitochondria. Inhibition of STAT3 activation promoted the autophagy-associated apoptosis induced by the combination of sorafenib and TMZ. Furthermore, the combined sorafenib and TMZ treatment induced oxidative stress while reactive oxygen species (ROS) clearance reversed the treatment-induced inhibition of JAK2/STAT3. The results indicate that sorafenib enhanced the temozolomide sensitivity of human glioma cells by inducing oxidative stress-mediated autophagy and JAK2/STAT3-AIF axis.
Collapse
Affiliation(s)
- Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoge Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
32
|
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol 2021; 9:641449. [PMID: 33829018 PMCID: PMC8019779 DOI: 10.3389/fcell.2021.641449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, many studies have demonstrated that the insulin-like growth factor-1 (IGF-1) is involved in a number of patho-physiological processes, as well as in the development of different types of solid tumors, including breast cancer (BC). Preclinical and clinical data showed that IGF-1 receptor (R) is overexpressed and hyper-phosphorylated in several subtypes of BCs. The central implications of this pathway in tumor cell proliferation and metastasis make it an important therapeutic target. Moreover, the IGF-1 axis has shown strong interconnection with estrogen regulation and endocrine therapy, suggesting a possible solution to anti-estrogen resistance. IGF-1R might also interfere with other pivotal therapeutic strategies, such as anti HER2 treatments and mTOR inhibitors; several clinical trials are ongoing evaluating the role of IGF-1R inhibition in modulating resistance mechanisms to target therapies. Our aim is to offer an overview of the most recent and significant field of application of IGF-1 inhibitors and relevant therapeutic strategies, weighing their possible future impact on clinical practice.
Collapse
Affiliation(s)
- Anna Ianza
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marianna Sirico
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
33
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Bai JY, Jin B, Ma JB, Liu TJ, Yang C, Chong Y, Wang X, He D, Guo P. HOTAIR and androgen receptor synergistically increase GLI2 transcription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. Cancer Lett 2021; 498:70-79. [PMID: 33157157 DOI: 10.1016/j.canlet.2020.10.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a major characteristic of renal cell carcinoma (RCC). Herein, we report a novel mechanism of how lncRNA and androgen receptor (AR) drive the Hedgehog pathway to promote tumor angiogenesis in RCC. We found that the high expression of lncRNA HOTAIR in RCC is associated with poor prognosis. Moreover, HOTAIR and AR form a feedback loop to promote the expression of each other. Interestingly, we also found that in RCC, HOTAIR is associated with the Hedgehog pathway, especially GLI2, via bioinformatics analysis. Furthermore, HOTAIR promotes GLI2 expression in the presence of AR. Mechanistically, HOTAIR interacts with AR and they cooperatively bind to GLI2 promoter and increase its transcription activity. We further confirmed how HOTAIR-AR axis regulates GLI2 expression by analyzing its function in RCC cells and found that HOTAIR and AR synergistically enhanced the expression of GLI2 downstream genes, such as VEGFA, PDGFA, and cancer stem cell transcription factors, and promoted tumor angiogenesis and cancer stemness in RCC cells both in vitro and in tumor xenografts. Overall, these findings suggest that HOTAIR and GLI2 could be novel therapeutic targets against RCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Line
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/genetics
- HEK293 Cells
- Hedgehog Proteins/genetics
- Human Umbilical Vein Endothelial Cells
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Male
- Mice, Nude
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Nuclear Proteins/genetics
- Platelet-Derived Growth Factor/genetics
- Promoter Regions, Genetic/genetics
- RNA, Long Noncoding/genetics
- Receptors, Androgen/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription, Genetic/genetics
- Zinc Finger Protein Gli2/genetics
- Mice
Collapse
Affiliation(s)
- Ji-Yu Bai
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ben Jin
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Bin Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tian-Jie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
35
|
Identifying of miR-98-5p/IGF1 axis contributes breast cancer progression using comprehensive bioinformatic analyses methods and experiments validation. Life Sci 2020; 261:118435. [PMID: 32950571 DOI: 10.1016/j.lfs.2020.118435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BC) is a huge health threat for women worldwide. Although numerous microRNAs (miRNA) have been found to be aberrantly expressed in BC, the construction of a comprehensive miRNA-messenger RNA (mRNA) network is still needed. METHODS Limma package was used to identify differentially expressed miRNAs (DEMs) in microarray datasets downloaded from GEO database. Genes targeted by DEMs were analyzed using mirTarBase. Gene Ontology and pathway enrichment analysis for these genes were performed at DAVID. Expression correlations of DEMs and target genes were analyzed at ENCORI. Based on these results, a miRNA-mRNA regulatory network was constructed. RESULTS A total of 17 overlapping DEMs were identified at these two microarray datasets. Expression of DEMs in BC tissues compared with normal tissues were further validated by ENCORI. By utilizing miRTarBase, a total of 167 target genes for DEMs were obtained. 10 hub genes (AKT1, MYC, VEGFA, CCND1, PTEN, IL6, CASP3, KRAS, IGF1, ESR1) were identified. Through analyzing the effects of hub genes on overall survival of BC patients and their expression correlation with miRNAs, we found hsa-miR-98-5p/IGF1 axis may play a crucial role in BC progression. The connections of hsa-miR-98-5p and IGF1 were further validated by luciferase activity reporter assay and functional assays. CONCLUSIONS In this work, a miRNA-mRNA network related to BC progression was built, and identified one important miRNA-mRNA axis in BC.
Collapse
|