1
|
Cao Y, Hao Z, Liu M, Xue J, Wang Y, Wang Y, Li J, Lu Y, Wang C, Shi J. Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) Against Non-Small-Cell Lung Cancer: Elucidating Effective Ingredients and Mechanism of Action. Pharmaceuticals (Basel) 2024; 17:1515. [PMID: 39598428 PMCID: PMC11597303 DOI: 10.3390/ph17111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) is derived from the dried pseudobulb of the orchid family plants Cremastra appendiculata (D.Don) Makino, Pleione bulbocodioides (Franch.) Rolfe, or Pleione yunnanensis Rolfe, and has the properties of clearing heat, detoxification, resolving phlegm, and dispersing nodules. It is frequently used for the treatment of various malignant tumors in clinical practice, especially lung cancer. CPPP is divided into two commercial specifications in the market, Maocigu (MCG) and Bingqiuzi (BQZ). However, owing to a lack of appropriate research strategies, the active ingredients and molecular mechanisms involved have not yet been clarified. This study intended to discover the combination of effective anti-lung-cancer ingredients in CPPP and explore their potential mechanisms of action. In this study, UHPLC-MS fingerprints of MCG and BQZ were established separately. Inhibitory effects on the proliferative viability and migratory ability of A459 and H1299 cells were evaluated as pharmacodynamic indicators. GRA and BCA were used to determine spectrum-effect relationships. Next, the identification and analysis of components of drug-containing serum were performed using UHPLC-Q-Exactive Orbitrap MS. Then, the results of the two analyses were combined to jointly screen out the anti-lung-cancer candidate active monomers of CPPP, and their in vitro activities were verified. Afterward, all effective ingredient combinations of MCG (MCGC) and BQZ (BQZC) were prepared according to their contents in the original medicinal materials. Their anti-lung-cancer activities in vitro and in vivo were compared and verified. Finally, we used the human lung cancer cell line A549 and the Lewis tumor xenograft model to investigate how BQZC would influence autophagy and apoptosis processes and the mechanisms involved. Overall, 11 predominant anti-lung-cancer active ingredients from CPPP were screened. Next, MCGC and BQZC were prepared according to their contents in the original medicinal materials, respectively, and their anti-tumor effects were equivalent to those of the original materials in vitro and in vivo. We found that BQZC could inhibit lung cancer cell growth and induce protective autophagy and apoptosis in lung cancer cells by activating the AMPK-mTOR-ULK1/BMF signaling pathway. These results provide important evidence for the clinical application and deep development of CPPP against tumors.
Collapse
Affiliation(s)
- Yuxin Cao
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Zhuangzhuang Hao
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Mengmeng Liu
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Jingwen Xue
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Yuqing Wang
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Yu Wang
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Jiayuan Li
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Yifan Lu
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Chunguo Wang
- Institute of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Jinli Shi
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| |
Collapse
|
2
|
Ma D, Luo Q, Song G. Matrix stiffening facilitates stemness of liver cancer stem cells by YAP activation and BMF inhibition. BIOMATERIALS ADVANCES 2024; 163:213936. [PMID: 38959652 DOI: 10.1016/j.bioadv.2024.213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Matrix stiffening is one of the major risk factors for hepatocellular carcinoma (HCC) and drives tumor progression. The extracellular matrix (ECM) stiffness of HCC displays mechanical heterogeneity, with stiffness increasing from the core to the invasive frontier. The distribution of liver cancer stem cells (CSCs) is related to this mechanical property. However, it is not sufficiently understood how heterogeneous matrix stiffness regulates the stemness of CSCs. In this study, we developed an adjustable gelatin/alginate hydrogel to investigate the effect of various matrix stiffnesses on CSC stemness under three-dimensional culture conditions. Gelatin/alginate hydrogel with the stiffness of soft (5 kPa), medium (16 kPa), and stiff (81 kPa) were prepared by altering the concentration of calcium ions. It was found that a stiffer matrix promoted stemness-associated gene expression, reduced drug sensitivity, enhanced sphere-forming and clonogenic ability, and tumorigenic potential. Mechanistically, matrix stiffening facilitates CSC stemness by increasing Yes-associated protein (YAP) activity and inhibiting Bcl-2 modifying factor (BMF) expression. Knockdown of YAP or overexpression of BMF significantly attenuated matrix stiffening-induced stemness, suggesting the involvement of YAP and BMF in this process. Together, our results unravel the regulatory mechanism of heterogeneous matrix stiffness on CSC stemness and also provide a novel therapeutic strategy for eradicating CSCs and improving the efficiency of HCC treatment.
Collapse
Affiliation(s)
- Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
3
|
Liu Y, Shen Z, Wei X, Gu L, Zheng M, Zhang Y, Cheng X, Fu Y, Lu W. CircSLC39A8 attenuates paclitaxel resistance in ovarian cancer by regulating the miR‑185‑5p/BMF axis. Transl Oncol 2023; 36:101746. [PMID: 37499410 PMCID: PMC10413200 DOI: 10.1016/j.tranon.2023.101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Chemoresistance to paclitaxel (PTX) is one of the main reasons for treatment failure and poor prognosis in patients with advanced ovarian cancer. Therefore, it is imperative to explore the mechanisms related to chemotherapy resistance in ovarian cancer to find potential therapeutic targets. Circular RNAs (circRNAs) play important roles in cancer development and progression. However, their biological functions and clinical significance in ovarian cancer have not been fully elucidated. Therefore, in this study, we aimed to investigate the function and underlying mechanism of hsa_circ_0002782 (circSLC39A8), identified by circRNA sequencing, in regulating PTX resistance. The effects of circSLC39A8 on PTX resistance was assessed by cell viability, colony formation, flow cytometry assays and an in vivo subcutaneous xenografted tumor mouse model. RNA immunoprecipitation and dual-luciferase reporter assays were performed to verify the interaction between circSLC39A8 and the miR-185-5p/BMF signal axis. We found that circSLC39A8 was downregulated in PTX-resistant ovarian cancer cells and tissues, and its low expression was associated with poor prognosis. Biologically, circSLC39A8 knockdown promoted PTX resistance in vitro and in vivo, while circSLC39A8 overexpression showed the opposite effect. Mechanistically, circSLC39A8, acting as an endogenous sponge for miR-185-5p, could relieve the inhibition of miR-185-5p on the expression of its downstream target, BMF; thus enhancing the sensitivity of ovarian cancer to PTX. Our findings demonstrate that circSLC39A8 can promote PTX sensitivity by regulating the miR-185-5p/BMF axis. This may be a valuable prognostic biomarker and a promising therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuwan Liu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Zhangjin Shen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinyi Wei
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Lingkai Gu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Mengxia Zheng
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Yanan Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunfeng Fu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Pan F, Chocarro S, Ramos M, Chen Y, Alonso de la Vega A, Somogyi K, Sotillo R. FOXM1 is critical for the fitness recovery of chromosomally unstable cells. Cell Death Dis 2023; 14:430. [PMID: 37452072 PMCID: PMC10349069 DOI: 10.1038/s41419-023-05946-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Tumor progression and evolution are frequently associated with chromosomal instability (CIN). Tumor cells often express high levels of the mitotic checkpoint protein MAD2, leading to mitotic arrest and cell death. However, some tumor cells are capable of exiting mitosis and consequently increasing CIN. How cells escape the mitotic arrest induced by MAD2 and proliferate with CIN is not well understood. Here, we explored loss-of-function screens and drug sensitivity tests associated with MAD2 levels in aneuploid cells and identified that aneuploid cells with high MAD2 levels are more sensitive to FOXM1 depletion. Inhibition of FOXM1 promotes MAD2-mediated mitotic arrest and exacerbates CIN. Conversely, elevating FOXM1 expression in MAD2-overexpressing human cell lines reverts prolonged mitosis and rescues mitotic errors, cell death and proliferative disadvantages. Mechanistically, we found that FOXM1 facilitates mitotic exit by inhibiting the spindle assembly checkpoint (SAC) and the expression of Cyclin B. Notably, we observed that FOXM1 is upregulated upon aneuploid induction in cells with dysfunctional SAC and error-prone mitosis, and these cells are sensitive to FOXM1 knockdown, indicating a novel vulnerability of aneuploid cells.
Collapse
Affiliation(s)
- Fan Pan
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Tammaccaro SL, Prigent P, Le Bail JC, Dos-Santos O, Dassencourt L, Eskandar M, Buzy A, Venier O, Guillemot JC, Veeranagouda Y, Didier M, Spanakis E, Kanno T, Cesaroni M, Mathieu S, Canard L, Casse A, Windenberger F, Calvet L, Noblet L, Sidhu S, Debussche L, Moll J, Valtingojer I. TEAD Inhibitors Sensitize KRASG12C Inhibitors via Dual Cell Cycle Arrest in KRASG12C-Mutant NSCLC. Pharmaceuticals (Basel) 2023; 16:ph16040553. [PMID: 37111311 PMCID: PMC10142471 DOI: 10.3390/ph16040553] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
KRASG12C is one of the most common mutations detected in non-small cell lung cancer (NSCLC) patients, and it is a marker of poor prognosis. The first FDA-approved KRASG12C inhibitors, sotorasib and adagrasib, have been an enormous breakthrough for patients with KRASG12C mutant NSCLC; however, resistance to therapy is emerging. The transcriptional coactivators YAP1/TAZ and the family of transcription factors TEAD1-4 are the downstream effectors of the Hippo pathway and regulate essential cellular processes such as cell proliferation and cell survival. YAP1/TAZ-TEAD activity has further been implicated as a mechanism of resistance to targeted therapies. Here, we investigate the effect of combining TEAD inhibitors with KRASG12C inhibitors in KRASG12C mutant NSCLC tumor models. We show that TEAD inhibitors, while being inactive as single agents in KRASG12C-driven NSCLC cells, enhance KRASG12C inhibitor-mediated anti-tumor efficacy in vitro and in vivo. Mechanistically, the dual inhibition of KRASG12C and TEAD results in the downregulation of MYC and E2F signatures and in the alteration of the G2/M checkpoint, converging in an increase in G1 and a decrease in G2/M cell cycle phases. Our data suggest that the co-inhibition of KRASG12C and TEAD leads to a specific dual cell cycle arrest in KRASG12C NSCLC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Armelle Buzy
- Bio Structure and Biophysics, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Olivier Venier
- Small Molecules Medicinal Chemistry, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Jean-Claude Guillemot
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Yaligara Veeranagouda
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Michel Didier
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | | | - Tokuwa Kanno
- Precision Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Matteo Cesaroni
- Precision Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Stephane Mathieu
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Luc Canard
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Alhassan Casse
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Fanny Windenberger
- Non-Clinical Efficacy and Safety, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | | | | | | | | | - Jurgen Moll
- Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | | |
Collapse
|
6
|
Yu W, Wang G, Li LX, Zhang H, Gui X, Zhou JX, Calvet JP, Li X. Transcription factor FoxM1 promotes cyst growth in PKD1 mutant ADPKD. Hum Mol Genet 2023; 32:1114-1126. [PMID: 36322156 PMCID: PMC10026255 DOI: 10.1093/hmg/ddac273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in the PKD1 and PKD2 genes, and it is characterized by renal cyst formation, inflammation and fibrosis. Forkhead box protein M1 (FoxM1), a transcription factor of the Forkhead box (Fox) protein super family, has been reported to promote tumor formation, inflammation and fibrosis in many organs. However, the role and mechanism of FoxM1 in regulation of ADPKD progression is still poorly understood. Here, we show that FoxM1 is an important regulator of cyst growth in ADPKD. FoxM1 is upregulated in cyst-lining epithelial cells in Pkd1 mutant mouse kidneys and human ADPKD kidneys. FoxM1 promotes cystic renal epithelial cell proliferation by increasing the expression of Akt and Stat3 and the activation of ERK and Rb. FoxM1 also regulates cystic renal epithelial cell apoptosis through NF-κB signaling pathways. In addition, FoxM1 regulates the recruitment and retention of macrophages in Pkd1 mutant mouse kidneys, a process that is associated with FoxM1-mediated upregulation of monocyte chemotactic protein 1. Targeting FoxM1 with its specific inhibitor, FDI-6, delays cyst growth in rapidly progressing and slowly progressing Pkd1 mutant mouse kidneys. This study suggests that FoxM1 is a central and upstream regulator of ADPKD pathogenesis and provides a rationale for targeting FoxM1 as a therapeutic strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Wenyan Yu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Guojuan Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, The Affiliated Hospital of University of Jiangxi of Traditional Chinese Medicine, Nanchang 330006, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Eye Institute of Shaanxi Province; Xi’an First Hospital, Xi’an 710002, Shaanxi Province, China
| | - Xuehong Gui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Calvet
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Weiss JG, Gallob F, Rieder P, Villunger A. Apoptosis as a Barrier against CIN and Aneuploidy. Cancers (Basel) 2022; 15:cancers15010030. [PMID: 36612027 PMCID: PMC9817872 DOI: 10.3390/cancers15010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.
Collapse
Affiliation(s)
- Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43–512-9003-70380; Fax: +43–512-9003-73960
| |
Collapse
|
8
|
Hicks JA, Pike BE, Liu HC. Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. Front Physiol 2022; 13:1020870. [PMID: 36353371 PMCID: PMC9639855 DOI: 10.3389/fphys.2022.1020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.
Collapse
Affiliation(s)
| | | | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
9
|
Bochyńska A, Stenzel AT, Boroujeni RS, Kuo CC, Barsoum M, Liang W, Bussmann P, Costa IG, Lüscher-Firzlaff J, Lüscher B. Induction of senescence upon loss of the Ash2l core subunit of H3K4 methyltransferase complexes. Nucleic Acids Res 2022; 50:7889-7905. [PMID: 35819198 PMCID: PMC9371893 DOI: 10.1093/nar/gkac591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Gene expression is controlled in part by post-translational modifications of core histones. Methylation of lysine 4 of histone H3 (H3K4), associated with open chromatin and gene transcription, is catalyzed by type 2 lysine methyltransferase complexes that require WDR5, RBBP5, ASH2L and DPY30 as core subunits. Ash2l is essential during embryogenesis and for maintaining adult tissues. To expand on the mechanistic understanding of Ash2l, we generated mouse embryo fibroblasts (MEFs) with conditional Ash2l alleles. Upon loss of Ash2l, methylation of H3K4 and gene expression were downregulated, which correlated with inhibition of proliferation and cell cycle progression. Moreover, we observed induction of senescence concomitant with a set of downregulated signature genes but independent of SASP. Many of the signature genes are FoxM1 responsive. Indeed, exogenous FOXM1 was sufficient to delay senescence. Thus, although the loss of Ash2l in MEFs has broad and complex consequences, a distinct set of downregulated genes promotes senescence.
Collapse
Affiliation(s)
- Agnieszka Bochyńska
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Alexander T Stenzel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Roksaneh Sayadi Boroujeni
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany.,Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mirna Barsoum
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Weili Liang
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Philip Bussmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| |
Collapse
|
10
|
Liang X, Li L, Fan Y. Diagnostic, Prognostic, and Immunological Roles of HELLS in Pan-Cancer: A Bioinformatics Analysis. Front Immunol 2022; 13:870726. [PMID: 35774795 PMCID: PMC9237247 DOI: 10.3389/fimmu.2022.870726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate repair of DNA damage drives carcinogenesis. Lymphoid-specific helicase (HELLS) is an important component of the chromatin remodeling complex that helps repair DNA through various mechanisms such as DNA methylation, histone posttranslational modification, and nucleosome remodeling. Its role in human cancer initiation and progression has garnered recent attention. Our study aims to provide a more systematic and comprehensive understanding of the role of HELLS in the development and progression of multiple malignancies through analysis of HELLS in cancers. Methods We explored the role of HELLS in cancers using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple web platforms and software were used for data analysis, including R, Cytoscape, HPA, Archs4, TISIDB, cBioPortal, STRING, GSCALite, and CancerSEA. Results High HELLS expression was found in a variety of cancers and differentially expressed across molecular and immune subtypes. HELLS was involved in many cancer pathways. Its expression positively correlated with Th2 and Tcm cells in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. Conclusions Our study elucidates the role HELLS plays in promotion, inhibition, and treatment of different cancers. HELLS is a potential cancer diagnostic and prognostic biomarker with immune, targeted, or cytotoxic therapeutic value. This work is a prerequisite to clinical validation and treatment of HELLS in cancers.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linji Li
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yuchao Fan,
| |
Collapse
|