1
|
Diegmüller F, Leers J, Hake SB. The "Ins and Outs and What-Abouts" of H2A.Z: A tribute to C. David Allis. J Biol Chem 2025; 301:108154. [PMID: 39761855 PMCID: PMC11808731 DOI: 10.1016/j.jbc.2025.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.Z, a nucleosome component he was the first to discover as hv1 in Tetrahymena. We summarize the latest findings from the past 5 years regarding the mammalian H2A.Z histone, focusing on its deposition and eviction mechanisms, its roles in transcriptional regulation, DNA damage repair, chromatin structure organization, and embryonic development, as well as how its deregulation or mutation(s) of its histone chaperones contribute to disease development. As Dave liked to say 'Every amino acid matters'; the discovery and characterization of functionally different H2A.Z's isoforms, which vary only in three amino acids, prove him-once again-right.
Collapse
Affiliation(s)
- Felix Diegmüller
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Ramos RH, Bardelotte YA, de Oliveira Lage Ferreira C, Simao A. Identifying key genes in cancer networks using persistent homology. Sci Rep 2025; 15:2751. [PMID: 39838168 PMCID: PMC11751331 DOI: 10.1038/s41598-025-87265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Identifying driver genes is crucial for understanding oncogenesis and developing targeted cancer therapies. Driver discovery methods using protein or pathway networks rely on traditional network science measures, focusing on nodes, edges, or community metrics. These methods can overlook the high-dimensional interactions that cancer genes have within cancer networks. This study presents a novel method using Persistent Homology to analyze the role of driver genes in higher-order structures within Cancer Consensus Networks derived from main cellular pathways. We integrate mutation data from six cancer types and three biological functions: DNA Repair, Chromatin Organization, and Programmed Cell Death. We systematically evaluated the impact of gene removal on topological voids ([Formula: see text] structures) within the Cancer Consensus Networks. Our results reveal that only known driver genes and cancer-associated genes influence these structures, while passenger genes do not. Although centrality measures alone proved insufficient to fully characterize impact genes, combining higher-order topological analysis with traditional network metrics can improve the precision of distinguishing between drivers and passengers. This work shows that cancer genes play an important role in higher-order structures, going beyond pairwise measures, and provides an approach to distinguish drivers and cancer-associated genes from passenger genes.
Collapse
Affiliation(s)
- Rodrigo Henrique Ramos
- University of São Paulo, ICMC, São Carlos, 13566-590, Brazil.
- Federal Institute of São Paulo, São Carlos, 13565-820, Brazil.
| | | | | | - Adenilso Simao
- University of São Paulo, ICMC, São Carlos, 13566-590, Brazil
| |
Collapse
|
3
|
Yin X, Li J, Zhao J, Zheng W, Zhang A, Ma J. Epigenetic modifications involving ncRNAs in digestive system cancers: focus on histone modification. Clin Epigenetics 2024; 16:162. [PMID: 39563475 PMCID: PMC11577885 DOI: 10.1186/s13148-024-01773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, epigenetic modifications have been strongly linked to tumor development, with histone modifications representing a key epigenetic mechanism. In addition, non-coding RNAs (ncRNAs) play a critical role in regulating cancer-related pathways. The abnormal interaction between histone modifications and ncRNAs, both pivotal epigenetic regulators, has been widely observed across various cancer types. Here, we systematically explore the molecular mechanisms through which histone modifications and ncRNAs contribute in the pathogenesis of digestive system cancers, and aberrant ncRNA-mediated histone modifications manipulate various biological behaviors of tumor cells including proliferation, migration, angiogenesis, etc. In addition, we provide new insights into diagnostic, prognostic markers, therapeutic targets and chemoradiation resistance for digestive system cancers from the epigenetic perspective.
Collapse
Affiliation(s)
- Xiaodi Yin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Jingyi Li
- Intensive Care Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Weihan Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Aohua Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China
| | - Jun Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, #2 Jingba Road, Zhengzhou, 450014, China.
| |
Collapse
|
4
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
5
|
Meng W, Lu X, Wang G, Xiao Q, Gao J. ZNF692 drives malignant development of hepatocellular carcinoma cells by promoting ALDOA-dependent glycolysis. Funct Integr Genomics 2024; 24:53. [PMID: 38453820 PMCID: PMC10920453 DOI: 10.1007/s10142-024-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.
Collapse
Affiliation(s)
- Weiwei Meng
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Xiaojuan Lu
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Guanglei Wang
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Qingyu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, Guangdong, 518108, P.R. China
| | - Jing Gao
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China.
| |
Collapse
|
6
|
Chen G, Sun W, Li Y, Li M, Jia X, Wang J, Lai S. miR-196a Promotes Proliferation of Mammary Epithelial Cells by Targeting CDKN1B. Animals (Basel) 2023; 13:3682. [PMID: 38067033 PMCID: PMC10705059 DOI: 10.3390/ani13233682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 09/11/2024] Open
Abstract
Heat stress (HS) has become one of the key challenges faced by the dairy industry due to global warming. Studies have reported that miR-196a may exert a role in the organism's response to HS, enhancing cell proliferation and mitigating cellular stress. However, its specific role in bovine mammary epithelial cells (BMECs) remains to be elucidated. In this study, we aimed to investigate whether miR-196a could protect BMECs against proliferation arrest induced by HS and explore its potential underlying mechanism. In this research, we developed an HS model for BMECs and observed a significant suppression of cell proliferation as well as a significant decrease in miR-196a expression when BMECs were exposed to HS. Importantly, when miR-196a was overexpressed, it alleviated the inhibitory effect of HS on cell proliferation. We conducted RNA-seq and identified 105 differentially expressed genes (DEGs). Some of these DEGs were associated with pathways related to thermogenesis and proliferation. Through RT-qPCR, Western blotting, and dual-luciferase reporter assays, we identified CDKN1B as a target gene of miR-196a. In summary, our findings highlight that miR-196a may promote BMEC proliferation by inhibiting CDKN1B and suggest that the miR-196a/CDKN1B axis may be a potential pathway by which miR-196a alleviates heat-stress-induced proliferation arrest in BMECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (W.S.); (Y.L.); (M.L.); (X.J.); (J.W.)
| |
Collapse
|
7
|
Wang J, Wang F, Wang N, Zhang MY, Wang HY, Huang GL. Diagnostic and Prognostic Value of Protein Post-translational Modifications in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1192-1200. [PMID: 37577238 PMCID: PMC10412711 DOI: 10.14218/jcth.2022.00006s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and cancer mortality worldwide. Post-translational modifications (PTMs) of proteins have a great impact on protein function. Almost all proteins can undergo PTMs, including phosphorylation, acetylation, methylation, glycosylation, ubiquitination, and so on. Many studies have shown that PTMs are related to the occurrence and development of cancers. The findings provide novel therapeutic targets for cancers, such as glypican-3 and mucin-1. Other clinical implications are also found in the studies of PTMs. Diagnostic or prognostic value, and response to therapy have been identified. In HCC, it has been shown that glycosylated alpha-fetoprotein (AFP) has a higher detection rate for early liver cancer than conventional AFP. In this review, we mainly focused on the diagnostic and prognostic value of PTM, in order to provide new insights into the clinical implication of PTM in HCC.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Fangfang Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ning Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guo-Liang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Wang Y, Zheng X, Huang W, Lu J, Hou N, Qi J, Ma J, Xue W, Zheng J, Zhai W. Loss of MIR503HG facilitates papillary renal cell carcinoma associated lymphatic metastasis by triggering NOTCH1/VEGFC signaling. Int J Biol Sci 2023; 19:3266-3284. [PMID: 37416763 PMCID: PMC10321273 DOI: 10.7150/ijbs.83302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Clinical lymphatic metastasis indicates an extremely poor prognosis. Patients with papillary renal cell carcinoma (pRCC) have a high probability of progressing to lymphatic metastasis. However, the molecular mechanism of pRCC-associated lymphatic metastasis has not been elucidated. In this study, we found a downregulated long non-coding RNA (lncRNA) MIR503HG in pRCC primary tumor tissues due to hypermethylation at the CpG islands within its transcriptional start site. Decreased MIR503HG expression could stimulate tube formation and migration of human lymphatic endothelial cell (HLEC) and play a central role to promote lymphatic metastasis in vivo by enhancing tumor lymphangiogenesis. MIR503HG, located in the nucleus, bound with histone variant H2A.Z and affected the recruitment of histone variant H2A.Z to chromatin. Subsequently, increasing the H3K27 trimethylation caused by MIR503HG-overexpression epigenetically downregulated the NOTCH1 expression, which ultimately resulted in decreasing VEGFC secretion and lymphangiogenesis. Additionally, downregulated MIR503HG facilitated the HNRNPC expression, which ultimately promoted the maturation of NOTCH1 mRNA. Notably, upregulating MIR503HG expression might decrease pRCC resistance to the mTOR inhibitor. Together, these findings highlighted a VEGFC-independent mechanism of MIR503HG-mediated lymphatic metastasis. MIR503HG, identified as a novel pRCC-suppressor, would serve as the potentially biomarker for lymphatic metastasis.
Collapse
Affiliation(s)
- Yiqiu Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Wenjie Huang
- Department of Urology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Jiayi Lu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiabao Qi
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junjie Ma
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
9
|
Hong H, Chen X, Wang H, Gu X, Yuan Y, Zhang Z. Global profiling of protein lysine lactylation and potential target modified protein analysis in hepatocellular carcinoma. Proteomics 2023; 23:e2200432. [PMID: 36625413 DOI: 10.1002/pmic.202200432] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, often metastasizes to the lungs. The implications of lysine lactylation (Kla), a recently identified histone post-translational modification (PTM), in the pathology of HCC remain unclear. Here, we report the first proteomic survey of this specific modification in HCC (with no metastasis during 3 years of follow-up), normal liver tissues, and lung metastasis samples of HCC. Of the 2045 modification sites detected on 960 proteins, 1438 sites on 772 proteins contained quantitative information. Subsequently, we analyzed the differentially modified proteins among the different groups. Differentially lactylated proteins were found to be involved in several biological processes, including-but not limited to-amino acid metabolism, ribosomal protein synthesis, and fatty acid metabolism. In addition, we identified numerous highly valuable lactate-modified proteins from the literature. Among them, we verified the lactate modification levels of the following two tumor-related proteins and obtained similar results: USP14 and ABCF1. These two modified proteins will be further investigated in our future studies. This paper is the first report on the lactylome of HCC and it provides a reliable foundation for further research on Kla in HCC.
Collapse
Affiliation(s)
- Han Hong
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xi Chen
- Department of Hepatobiliary Surgery of the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastrointestinal Surgery of the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Xiangqian Gu
- Department of Hepatobiliary Surgery of the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yin Yuan
- Department of Hepatobiliary Surgery of the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Zixiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Xia JK, Qin XQ, Zhang L, Liu SJ, Shi XL, Ren HZ. Roles and regulation of histone acetylation in hepatocellular carcinoma. Front Genet 2022; 13:982222. [PMID: 36092874 PMCID: PMC9452893 DOI: 10.3389/fgene.2022.982222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the liver, but its prognosis is poor. Histone acetylation is an important epigenetic regulatory mode that modulates chromatin structure and transcriptional status to control gene expression in eukaryotic cells. Generally, histone acetylation and deacetylation processes are controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of histone modification is reported to drive aberrant transcriptional programmes that facilitate liver cancer onset and progression. Emerging studies have demonstrated that several HDAC inhibitors exert tumor-suppressive properties via activation of various cell death molecular pathways in HCC. However, the complexity involved in the epigenetic transcription modifications and non-epigenetic cellular signaling processes limit their potential clinical applications. This review brings an in-depth view of the oncogenic mechanisms reported to be related to aberrant HCC-associated histone acetylation, which might provide new insights into the effective therapeutic strategies to prevent and treat HCC.
Collapse
Affiliation(s)
- Jin-kun Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Xue-qian Qin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu-jun Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Abrine Elicits Liver Carcinoma Immunity and Enhances Antitumor Efficacy of Immune Checkpoint Blockade by Modulating PD-L1 Signaling. JOURNAL OF ONCOLOGY 2022; 2022:7609676. [PMID: 35602291 PMCID: PMC9119764 DOI: 10.1155/2022/7609676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Background Liver cancer is the most malignant type of human malignancies. In recent years, immune therapy that targets the immune check points such as programmed cell death ligand 1 (PD-L1) has achieve great success. Abrine is the dominant alkaloid in Abrus cantoniensis and Abrus precatorius Linn. that exhibited anticancer effect. This work is aimed at studying the effects of abrine in immunity of liver cancer. Methods Cell viability, proliferation, and migration were assessed by CCK-8, Edu, and Transwell assay. Cell apoptosis was checked by flow cytometry. Tumor growth was determined by an in vivo xenograft model. Quantitative real-time PCR assay was conducted to evaluate the levels of KAT5 and PD-L1. T cells and liver cancer cells were cocultured in a Transwell system, and the levels of PD-L1 and PD-1 was checked by flow cytometry. The interaction between KAT5 and PD-L1 was determined by ChIP assay. Results Abrine treatment suppressed liver tumor growth both in vitro and in vivo and simultaneously decreased the level of PD-L1 and KAT5. In the coculture system, treatment with abrine inhibited proliferation and activity of cocultured T cell. KAT5 epigenetically elevated recruitment of H3k27ac and RNA polymerase II to PD-L1 promoter region. Ectopic expression of KAT5 and PD-L1 reversed the function of abrine on tumor growth and T cell function. Conclusion Abrine modulated growth and apoptosis of liver cancer cells and regulated proliferation and activation of T cells through the KAT5/PD-L1 axis.
Collapse
|
12
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
13
|
Shi Z, Li X, Zhang L, Luo Y, Shrestha B, Hu X. Potential Novel Modules and Hub Genes as Prognostic Candidates of Thyroid Cancer by Weighted Gene Co-Expression Network Analysis. Int J Gen Med 2021; 14:9433-9444. [PMID: 34908870 PMCID: PMC8665846 DOI: 10.2147/ijgm.s329128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Although thyroid cancer (THCA) is one of the most common type of endocrine malignancy, its highly complex molecular mechanisms of carcinogenesis are not completely known. Materials and Methods In this study, weighted gene co-expression network analysis (WGCNA) was utilized to construct gene co-expression networks and evaluate the relations between modules and clinical traits to identify potential prognostic biomarkers for THCA patients. RNA-seq data and clinical data were downloaded from The Cancer Genome Atlas (TCGA). Other independent datasets from the Gene Expression Omnibus (GEO) database and the Human Protein Atlas database were performed to validate findings. Results Finally, 11 co-expression modules were constructed and four hub genes, CCDC146, SLC4A4, TDRD9 and MUM1L1, were identified and validated statistically, which were considerably interrelated to worse survival of THCA patients. Conclusion This research study revealed four hub genes may be considered candidate prognostic biomarkers and potential therapeutic targets for THCA patients in the future.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Department of Stomatology, University of Chinese Academy of Sciences - Shenzhen Hospital, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Xinghui Li
- Department of Dermatology, University of Chinese Academy of Sciences - Shenzhen Hospital, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Long Zhang
- Department of Stomatology, University of Chinese Academy of Sciences - Shenzhen Hospital, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Yilang Luo
- Department of Stomatology, University of Chinese Academy of Sciences - Shenzhen Hospital, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Bikal Shrestha
- Department of Conservative and Endodontics, Nepal Police Hospital, Kathmandu, 44600, Nepal
| | - Xuegang Hu
- Department of Stomatology, University of Chinese Academy of Sciences - Shenzhen Hospital, Shenzhen, Guangdong, 518107, People's Republic of China
| |
Collapse
|