1
|
Yin S, Brobbey C, Ball LE, Fu T, Sprague DJ, Gan W. BRD9 functions as a methylarginine reader to regulate AKT-EZH2 signaling. SCIENCE ADVANCES 2025; 11:eads6385. [PMID: 40279411 PMCID: PMC12024519 DOI: 10.1126/sciadv.ads6385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Recognition of methylarginine marks by effector proteins ("readers") is a critical link between arginine methylation and various cellular processes. Recently, we identified methylation of AKT1 at arginine-391 (R391), but the reader for this methylation has yet to be characterized. Here, we show that bromodomain-containing protein 9 (BRD9), a reader of acetylated lysine, unexpectedly recognizes methylated R391 of AKT1 through an aromatic cage in its bromodomain. Disrupting the methylarginine reader function of BRD9 suppresses AKT activation and tumorigenesis. RNA sequencing data show that BRD9 and AKT coregulate a hallmark transcriptional program in part through enhancer of zeste homolog 2 (EZH2)-mediated methylation of histone-3 lysine-27. We also find that inhibitors of BRD9 and EZH2 display synergistic effects on suppression of cell proliferation and tumor growth. Collectively, our study reveals a previously unknown function of BRD9 and a potential therapeutic strategy for cancer treatment by combining BRD9 and EZH2 inhibitors.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tianmin Fu
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J. Sprague
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Hao F, Zhang Y, Hou J, Zhao B. Chromatin remodeling and cancer: the critical influence of the SWI/SNF complex. Epigenetics Chromatin 2025; 18:22. [PMID: 40269969 PMCID: PMC12016160 DOI: 10.1186/s13072-025-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The SWI/SNF complex was first identified in yeast and named after studies of mutants critical for the mating-type switch (SWI) and sucrose non-fermenting (SNF) pathways.The SWI/SNF complex plays a pivotal role in regulating gene expression by altering chromatin structure to promote or suppress the expression of specific genes, maintain stem cell pluripotency, and participate in various biological processes. Mutations in the SWI/SNF complex are highly prevalent in various human cancers, significantly impacting tumor suppressive or oncogenic functions and influencing tumor initiation and progression. This review focuses on the mechanisms by which ARID1A/ARID1B, PBRM1, SMARCB1, and SMARCA2/SMARCA4 contribute to cancer, the immunoregulatory roles of the SWI/SNF complex, its involvement in DNA repair pathways, synthetic lethality, and applications in precision oncology.
Collapse
Affiliation(s)
- Fengxiang Hao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Ying Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Bin Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
3
|
Yang Q, Falahati A, Khosh A, Vafaei S, Al-Hendy A. Targeting Bromodomain-Containing Protein 9 in Human Uterine Fibroid Cells. Reprod Sci 2025; 32:103-115. [PMID: 38858328 DOI: 10.1007/s43032-024-01608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Bromodomain (BRD)-containing proteins are evolutionarily conserved protein-protein interaction modules involved in many biological processes. BRDs selectively recognize and bind to acetylated lysine residues, particularly in histones, and thereby have a crucial role in the regulation of gene expression. BRD protein dysfunction has been linked to many diseases, including tumorigenesis. Previously, we reported the critical role of BRD-containing protein 9 (BRD9) in the pathogenesis of UFs. The present study aimed to extend our previous finding and further understand the role of the BRD9 in UFs. Our studies demonstrated that targeted inhibition of BRD9 with its potent inhibitor TP-472 inhibited the pathogenesis of UF through increased apoptosis and proliferation arrest and decreased extracellular matrix deposition in UF cells. High-throughput transcriptomic analysis further and extensively demonstrated that targeted inhibition of BRD9 by TP-472 impacted the biological pathways, including cell cycle progression, inflammatory response, E2F targets, ECM deposition, and m6A reprogramming. Compared with the previous study, we identified common enriched pathways induced by two BRD9 inhibitors, I-BRD9 and TP-472. Taken together, our studies further revealed the critical role of BRD9 in UF cells. We characterized the link between BRD9 and other vital pathways, as well as the connection between epigenetic and epitranscriptome involved in UF progression. Targeted inhibition of BRD proteins might provide a non-hormonal treatment strategy for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai, 505262, UAE
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Wang X, Song C, Ye Y, Gu Y, Li X, Chen P, Leng D, Xiao J, Wu H, Xie S, Liu W, Zhao Q, Chen D, Chen X, Wu Q, Chen G, Zhang W. BRD9-mediated control of the TGF-β/Activin/Nodal pathway regulates self-renewal and differentiation of human embryonic stem cells and progression of cancer cells. Nucleic Acids Res 2023; 51:11634-11651. [PMID: 37870468 PMCID: PMC10681724 DOI: 10.1093/nar/gkad907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-β, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, β-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-β/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-β/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.
Collapse
Affiliation(s)
- Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Ye
- Medical College of Soochow University, Suzhou 215123, China
| | - Yashi Gu
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xuemei Li
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Peixin Chen
- Medical College of Soochow University, Suzhou 215123, China
| | - Dongliang Leng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jing Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hao Wu
- Medical College of Soochow University, Suzhou 215123, China
| | - Sisi Xie
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Qi Zhao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Di Chen
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- The Precision Regenerative Medicine Centre, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Wensheng Zhang
- Medical College of Soochow University, Suzhou 215123, China
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| |
Collapse
|
5
|
Wang X, Liu Y, Zhou M, Yu L, Si Z. m6A modified BACE1-AS contributes to liver metastasis and stemness-like properties in colorectal cancer through TUFT1 dependent activation of Wnt signaling. J Exp Clin Cancer Res 2023; 42:306. [PMID: 37986103 PMCID: PMC10661562 DOI: 10.1186/s13046-023-02881-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Liver metastasis is one of the most important reasons for high mortality of colorectal cancer (CRC). Growing evidence illustrates that lncRNAs play a critical role in CRC liver metastasis. Here we described a novel function and mechanisms of BACE1-AS promoting CRC liver metastasis. METHODS qRT-PCR and in situ hybridization were performed to examine the BACE1-AS level in CRC. IGF2BP2 binding to m6A motifs in BACE1-AS was determined by RIP assay and S1m-tagged immunoprecipitation. Transwell assay and liver metastasis mice model experiments were performed to examine the metastasis capabilities of BACE1-AS knockout cells. Stemness-like properties was examined by tumor sphere assay and the expression of stemness biomarkers. Microarray data were acquired to analyze the signaling pathways involved in BACE1-AS promoting CRC metastasis. RESULTS BACE1-AS is the most up-regulated in metastatic CRC associated with unfavorable prognosis. Sequence blast revealed two m6A motifs in BACE1-AS. IGF2BP2 binding to these two m6A motifs is required for BACE1-AS boost in metastatic CRC. m6A modified BACE1-AS drives CRC cells migration and invasion and liver metastasis both in vitro and in vivo. Moreover, BACE1-AS maintains the stemness-like properties of CRC cells. Mechanically, BACE1-AS promoted TUFT1 expression by ceRNA network through miR-214-3p. CRC patients with such ceRNA network suffer poorer prognosis than ceRNA-negative patients. Depletion of TUFT1 mimics BACE1-AS loss. BACE1-AS activated Wnt signaling pathway in a TUFT1 dependent manner. BACE1-AS/miR-214-3p/TUFT1/Wnt signaling regulatory axis is essential for CRC liver metastasis. Pharmacologic inhibition of Wnt signaling pathway repressed liver metastasis and stemness-like features in BACE1-AS over-expressed CRC cells. CONCLUSION Our study demonstrated BACE1-AS as a novel target of IGF2BP2 through m6A modification. m6A modified BACE1-AS promotes CRC liver metastasis through TUFT1 dependent activation of Wnt signaling pathway. Thus, targeting BACE1-AS and its downstream Wnt signaling pathways may provide a new opportunity for metastatic CRC intervention and treatment.
Collapse
Affiliation(s)
- Xidi Wang
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China.
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| | - Yu Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China
| | - Miao Zhou
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China
| | - Lei Yu
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Zizhen Si
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| |
Collapse
|
6
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
7
|
Masucci MT, Motti ML, Minopoli M, Di Carluccio G, Carriero MV. Emerging Targeted Therapeutic Strategies to Overcome Imatinib Resistance of Gastrointestinal Stromal Tumors. Int J Mol Sci 2023; 24:6026. [PMID: 37046997 PMCID: PMC10094678 DOI: 10.3390/ijms24076026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Letizia Motti
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| |
Collapse
|
8
|
Wang T, Min L, Gao Y, Zhao M, Feng S, Wang H, Wang Y, Zheng Y. SUMOylation of TUFT1 is essential for gastric cancer progression through AKT/mTOR signaling pathway activation. Cancer Sci 2022; 114:533-545. [PMID: 36380570 PMCID: PMC9899612 DOI: 10.1111/cas.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Tuftelin (TUFT1) is highly expressed in various tumor types and promotes tumor growth and metastasis by activating AKT and other core signaling pathways. However, the effects of post-translational modifications of TUFT1 on its oncogenic function remain unexplored. In this study, we found that TUFT1 was SUMOylated at K79. SUMOylation deficiency significantly impaired the ability of TUFT1 to promote the proliferation, migration, and invasion of gastric cancer (GC) cells by blocking AKT/mTOR signaling pathway activation. SUMOylation of TUFT1 is mediated by the E3 SUMO ligase tripartite motif-containing protein 27 (TRIM27), and these two proteins regulate the malignant behavior of GC cells and AKT activation in the same pathway. TUFT1 binds to TRIM27 through its N-terminus, and decreased binding affinity of TUFT1 to TRIM27 significantly impairs its oncogenic effect. In addition, data collected from GC clinical samples indicated that the combined detection of TUFT1 and TRIM27 expression reflected tumor malignancy and patient survival with higher precision. In addition, we proved that SUMOylated TUFT1 is not only an upstream signal for AKT activation but also directly activates mTOR by forming a complex with Rab GTPase activating protein 1, which further inhibits Rab GTPases and promotes the perinuclear accumulation of mTORC1. Altogether, these data indicate that SUMOylated TUFT1 is the active form that affects GC progression through the AKT/mTOR signaling pathway and might be a promising therapeutic target or biomarker for GC progression.
Collapse
Affiliation(s)
- Tianning Wang
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Lingyuan Min
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yan Gao
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mengmeng Zhao
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Shaojie Feng
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Huiyun Wang
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunshan Wang
- Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Yan Zheng
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| |
Collapse
|
9
|
Kapoor S, Damiani E, Wang S, Dharmanand R, Tripathi C, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. BRD9 Inhibition by Natural Polyphenols Targets DNA Damage/Repair and Apoptosis in Human Colon Cancer Cells. Nutrients 2022; 14:nu14204317. [PMID: 36297001 PMCID: PMC9610492 DOI: 10.3390/nu14204317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.
Collapse
Affiliation(s)
- Sabeeta Kapoor
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ravirajan Dharmanand
- Center for Infectious & Inflammatory Diseases, Texas A&M Health, Houston, TX 77030, USA
| | - Chakrapani Tripathi
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | | | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| | - Roderick Hugh Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| |
Collapse
|
10
|
Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, Singh S, Manukyan A, Gore L, Burbulis IE, Wang YH, McConnell MJ. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Sci Rep 2022; 12:12156. [PMID: 35840793 PMCID: PMC9287420 DOI: 10.1038/s41598-022-16516-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons are overproduced during cerebral cortical development. Neural progenitor cells (NPCs) divide rapidly and incur frequent DNA double-strand breaks (DSBs) throughout cortical neurogenesis. Although half of the neurons born during neurodevelopment die, many neurons with inaccurate DNA repair survive leading to brain somatic mosaicism. Recurrent DNA DSBs during neurodevelopment are associated with both gene expression level and gene length. We used imaging flow cytometry and a genome-wide DNA DSB capture approach to quantify and map DNA DSBs during human induced pluripotent stem cell (hiPSC)-based neurogenesis. Reduced p53 signaling was brought about by knockdown (p53KD); p53KD led to elevated DNA DSB burden in neurons that was associated with gene expression level but not gene length in neural progenitor cells (NPCs). Furthermore, DNA DSBs incurred from transcriptional, but not replicative, stress lead to p53 activation in neurotypical NPCs. In p53KD NPCs, DNA DSBs accumulate at transcription start sites of genes that are associated with neurological and psychiatric disorders. These findings add to a growing understanding of how neuronal genome dynamics are engaged by high transcriptional or replicative burden during neurodevelopment.
Collapse
Affiliation(s)
- Nadine Michel
- Neuroscience Graduate Program, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Umar Arshad
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Reem Al-Humadi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Lana Gore
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Sede de la Patagonia, Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt, Chile
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Dreier MR, de la Serna IL. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. EPIGENOMES 2022; 6:epigenomes6010010. [PMID: 35323214 PMCID: PMC8947417 DOI: 10.3390/epigenomes6010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive malignancy that arises from the transformation of melanocytes on the skin, mucosal membranes, and uvea of the eye. SWI/SNF chromatin remodeling enzymes are multi-subunit complexes that play important roles in the development of the melanocyte lineage and in the response to ultraviolet radiation, a key environmental risk factor for developing cutaneous melanoma. Exome sequencing has revealed frequent loss of function mutations in genes encoding SWI/SNF subunits in melanoma. However, some SWI/SNF subunits have also been demonstrated to have pro-tumorigenic roles in melanoma and to affect sensitivity to therapeutics. This review summarizes studies that have implicated SWI/SNF components in melanomagenesis and have evaluated how SWI/SNF subunits modulate the response to current therapeutics.
Collapse
|