1
|
Li K, Yi Y, Ling R, Zhang C, Zhang Z, Wang Y, Wang G, Chen J, Cheng M, Chen S. PCIF1 drives oesophageal squamous cell carcinoma progression via m6Am-mediated suppression of MTF2 translation. Clin Transl Med 2025; 15:e70286. [PMID: 40156159 PMCID: PMC11953057 DOI: 10.1002/ctm2.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
Oesophageal squamous cell carcinoma (OSCC) represents a highly aggressive malignancy with limited therapeutic options and poor prognosis. This study uncovers PCIF1 as a critical driver of OSCC progression via m6Am RNA modification, leading to translational repression of the tumour suppressor MTF2. Our results demonstrate that PCIF1 selectively suppresses MTF2 translation, activating oncogenic pathways that promote OSCC growth. In vitro and in vivo models confirm that PCIF1 knockdown reduces OSCC progression, whereas MTF2 knockdown counteracts this effect, highlighting the importance of the PCIF1-MTF2 axis. Clinical analyses further reveal that high PCIF1 expression and low MTF2 expression correlate with advanced tumour stage, poor treatment response and decreased overall survival. Furthermore, in a preclinical mouse model, PCIF1 knockout enhanced the efficacy of anti-PD1 immunotherapy, reducing tumour burden and improving histological outcomes. Notably, flow cytometry analysis indicated that PCIF1 primarily exerts its effects through tumour-intrinsic mechanisms rather than direct modulation of the immune microenvironment, distinguishing its mode of action from PD1 blockade. These findings establish PCIF1 and MTF2 as promising prognostic markers and therapeutic targets for OSCC, offering new avenues for treatment strategies and patient stratification. KEY POINTS: PCIF1 promotes OSCC progression via m6Am methylation at the MTF2 mRNA 5' cap. m6Am methylation suppresses MTF2 translation, enhancing tumour cell proliferation and invasion. Targeting PCIF1 holds therapeutic potential for OSCC treatment.
Collapse
Affiliation(s)
- Kang Li
- Otorhinolaryngology Hospital, Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuxuan Yi
- Otorhinolaryngology Hospital, Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rongsong Ling
- Otorhinolaryngology Hospital, Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Caihua Zhang
- Otorhinolaryngology Hospital, Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhihui Zhang
- Department of Radiation OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Yue Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of StomatologySun Yat‐Sen UniversityGuangzhouChina
| | - Ganping Wang
- Department of Urology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of StomatologySun Yat‐Sen UniversityGuangzhouChina
| | - Maosheng Cheng
- Otorhinolaryngology Hospital, Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shuang Chen
- Otorhinolaryngology Hospital, Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Goleij P, Heidari MM, Tabari MAK, Hadipour M, Rezaee A, Javan A, Sanaye PM, Larsen DS, Daglia M, Khan H. Polycomb repressive complex 2 (PRC2) pathway's role in cancer cell plasticity and drug resistance. Funct Integr Genomics 2025; 25:53. [PMID: 40048009 DOI: 10.1007/s10142-025-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a central regulator of gene expression via the trimethylation of histone H3 on lysine 27. This epigenetic modification plays a crucial role in maintaining cell identity and controlling differentiation, while its dysregulation is closely linked to cancer progression. PRC2 silences tumor suppressor genes, promoting cell proliferation, metastasis, epithelial-mesenchymal transition, and cancer stem cell plasticity. Enhancement of zeste homolog 2 (EZH2) overexpression or gain-of-function mutations have been observed in several cancers, including lymphoma, breast, and prostate cancers, driving aggressive tumor behavior and drug resistance. In addition to EZH2, other PRC2 components, such as embryonic ectoderm development (EED) and suppressor of zeste 12, are essential for complex stability and function. EED, in particular, enhances EZH2 activity and has emerged as a therapeutic target. Inhibitors like MAK683 and EED226 disrupt EED's ability to maintain PRC2 activity, thereby reducing H3K27me3 levels and reactivating tumor suppressor genes. Valemetostat, a dual inhibitor of both EZH2 and EED, has shown promising results in aggressive cancers like diffuse large B-cell lymphoma and small-cell lung cancer, underlining the therapeutic potential of targeting multiple PRC2 components. PRC2's role extends beyond gene repression, as it contributes to metabolic reprogramming in tumors, regulating glycolysis and lipid synthesis to fuel cancer growth. Furthermore, PRC2 is implicated in chemoresistance, particularly by modulating DNA damage response and immune evasion. Tazemetostat, a selective EZH2 inhibitor, has demonstrated significant clinical efficacy in EZH2-mutant cancers, such as non-Hodgkin lymphomas and epithelioid sarcoma. However, the compensatory function of enhancer of zeste homolog 1 (EZH1) in some cancers requires dual inhibition strategies, as seen with agents like UNC1999 and Tulmimetostat, which target both EZH1 and EZH2. Given PRC2's multifaceted role in cancer biology, its inhibition represents a promising avenue for therapeutic intervention. The continued development of PRC2 inhibitors and exploration of their use in combination with standard chemotherapy or immunotherapy has great potential for improving patient outcomes in cancers driven by PRC2 dysregulation.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immunotact), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Mahdi Heidari
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Alireza Javan
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
3
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 subcomplex opposes G1 progression through regulation of CCND1 and CCND2. eLife 2025; 13:RP97577. [PMID: 39903505 PMCID: PMC11793871 DOI: 10.7554/elife.97577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Kyle Wang
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | | | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Ian R Jones
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Frances V Hundley
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Charles Boone
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Yin Shen
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - David P Toczyski
- University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Wang MS, Sussman J, Xu JA, Patel R, Elghawy O, Rawla P. Pharmacological Advancements of PRC2 in Cancer Therapy: A Narrative Review. Life (Basel) 2024; 14:1645. [PMID: 39768352 PMCID: PMC11678550 DOI: 10.3390/life14121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is known to regulate gene expression and chromatin structure as it methylates H3K27, resulting in gene silencing. Studies have shown that PRC2 has dual functions in oncogenesis that allow it to function as both an oncogene and a tumor suppressor. Because of this, nuanced strategies are necessary to promote or inhibit PRC2 activity therapeutically. Given the therapeutic vulnerabilities and associated risks in oncological applications, a structured literature review on PRC2 was conducted to showcase similar cofactor competitor inhibitors of PRC2. Key inhibitors such as Tazemetostat, GSK126, Valemetostat, and UNC1999 have shown promise for clinical use within various studies. Tazemetostat and GSK126 are both highly selective for wild-type and lymphoma-associated EZH2 mutants. Valemetostat and UNC1999 have shown promise as orally bioavailable and SAM-competitive inhibitors of both EZH1 and EZH2, giving them greater efficacy against potential drug resistance. The development of other PRC2 inhibitors, particularly inhibitors targeting the EED or SUZ12 subunit, is also being explored with the development of drugs like EED 226. This review aims to bridge gaps in the current literature and provide a unified perspective on promising PRC2 inhibitors as therapeutic agents in the treatment of lymphomas and solid tumors.
Collapse
Affiliation(s)
- Michael S. Wang
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jonathan Sussman
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jessica A. Xu
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Reema Patel
- University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Omar Elghawy
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Prashanth Rawla
- Parrish Healthcare, 951 North Washington Ave., Titusville, FL 32796, USA
| |
Collapse
|
5
|
Mozafari M, Md Hashim SN, Ahmad Amin Noordin KB, Zainal SA, Azlina A. Nuclear Factor of Activated T Cells (NFAT) Proteins as Targeted Molecules in Diseases: A Narrative Review. Cureus 2024; 16:e75844. [PMID: 39822413 PMCID: PMC11736229 DOI: 10.7759/cureus.75844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
The nuclear factor of activated T cells (NFAT) is a key player in the NFAT pathway, regulating various cellular processes physiologically and pathologically. NFAT signaling is implicated in developing multiple diseases, such as cancer progression, that are associated with angiogenesis. Despite numerous studies on NFAT, there is still a dearth of information on the proteins and signaling pathway compared to other established pathways. With five NFAT proteins in the spotlight, this review aims to update the understanding of their roles and signaling by analyzing the most recent studies on the NFAT pathway. The recent insights into NFAT proteins and their association with diseases enhance our understanding of these proteins and open the possibility of developing therapeutic strategies for such diseases.
Collapse
Affiliation(s)
- Mohadese Mozafari
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | - Siti Nurnasihah Md Hashim
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | | | - Siti Aishah Zainal
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | - Ahmad Azlina
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| |
Collapse
|
6
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 Subcomplex Opposes G1 Progression through Regulation of CCND1 and CCND2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585604. [PMID: 38562687 PMCID: PMC10983909 DOI: 10.1101/2024.03.18.585604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including CML, breast cancer and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kyle Wang
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Harsha Garadi Suresh
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities Minneapolis MN USA
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Frances V Hundley
- University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115, USA
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities Minneapolis MN USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities Minneapolis MN USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - David P Toczyski
- University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W, Wang J. Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med 2024; 53:48. [PMID: 38577935 PMCID: PMC10999228 DOI: 10.3892/ijmm.2024.5372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Xiyang Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Nan Tang
- Department of Clinical Laboratory, Wangcheng District People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Wei Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
8
|
Prokakis E, Jansari S, Boshnakovska A, Wiese M, Kusch K, Kramm C, Dullin C, Rehling P, Glatzel M, Pantel K, Wikman H, Johnsen SA, Gallwas J, Wegwitz F. RNF40 epigenetically modulates glycolysis to support the aggressiveness of basal-like breast cancer. Cell Death Dis 2023; 14:641. [PMID: 37770435 PMCID: PMC10539310 DOI: 10.1038/s41419-023-06157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.
Collapse
Affiliation(s)
- Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Shaishavi Jansari
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Wiese
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience, Functional Auditory Genomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Kramm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- The Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Ngubo M, Moradi F, Ito CY, Stanford WL. Tissue-Specific Tumour Suppressor and Oncogenic Activities of the Polycomb-like Protein MTF2. Genes (Basel) 2023; 14:1879. [PMID: 37895228 PMCID: PMC10606531 DOI: 10.3390/genes14101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Fereshteh Moradi
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caryn Y. Ito
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
10
|
Liu L, Xiao B, Hirukawa A, Smith HW, Zuo D, Sanguin-Gendreau V, McCaffrey L, Nam AJ, Muller WJ. Ezh2 promotes mammary tumor initiation through epigenetic regulation of the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci U S A 2023; 120:e2303010120. [PMID: 37549258 PMCID: PMC10438390 DOI: 10.1073/pnas.2303010120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.
Collapse
Affiliation(s)
- Linshan Liu
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Bin Xiao
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alison Hirukawa
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Harvey W. Smith
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Luke McCaffrey
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Oncology, McGill University, Montreal, QCH3A0G4, Canada
| | - Alice Jisoo Nam
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
11
|
Pantelaiou-Prokaki G, Reinhardt O, Georges NS, Agorku DJ, Hardt O, Prokakis E, Mieczkowska IK, Deppert W, Wegwitz F, Alves F. Basal-like mammary carcinomas stimulate cancer stem cell properties through AXL-signaling to induce chemotherapy resistance. Int J Cancer 2023; 152:1916-1932. [PMID: 36637144 DOI: 10.1002/ijc.34429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive and heterogeneous breast cancer (BC) subtype. Conventional chemotherapies represent next to surgery the most frequently employed treatment options. Unfortunately, resistant tumor phenotypes often develop, resulting in therapeutic failure. To identify the early events occurring upon the first drug application and initiating chemotherapy resistance in BLBC, we leveraged the WAP-T syngeneic mammary carcinoma mouse model and we developed a strategy combining magnetic-activated cell sorting (MACS)-based tumor cell enrichment with high-throughput transcriptome analyses. We discovered that chemotherapy induced a massive gene expression reprogramming toward stemness acquisition to tolerate and survive the cytotoxic treatment in vitro and in vivo. Retransplantation experiments revealed that one single cycle of cytotoxic drug combination therapy (Cyclophosphamide, Adriamycin and 5-Fluorouracil) suffices to induce resistant tumor cell phenotypes in vivo. We identified Axl and its ligand Pros1 as highly induced genes driving cancer stem cell (CSC) properties upon chemotherapy in vivo and in vitro. Furthermore, from our analysis of BLBC patient datasets, we found that AXL expression is also strongly correlated with CSC-gene signatures, a poor response to conventional therapies and worse survival outcomes in those patients. Finally, we demonstrate that AXL inhibition sensitized BLBC-cells to cytotoxic treatment in vitro. Together, our data support AXL as a promising therapeutic target to optimize the efficiency of conventional cytotoxic therapies in BLBC.
Collapse
Affiliation(s)
- Garyfallia Pantelaiou-Prokaki
- Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, Göttingen, Germany.,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Reinhardt
- Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, Göttingen, Germany
| | - Nadine S Georges
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - David J Agorku
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, Germany
| | - Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Iga K Mieczkowska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Deppert
- University Medical Center Hamburg Eppendorf, Institute for Tumor Biology, University of Hamburg, Hamburg, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, Göttingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Fischer S, Liefke R. Polycomb-like Proteins in Gene Regulation and Cancer. Genes (Basel) 2023; 14:genes14040938. [PMID: 37107696 PMCID: PMC10137883 DOI: 10.3390/genes14040938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Polycomb-like proteins (PCLs) are a crucial group of proteins associated with the Polycomb repressive complex 2 (PRC2) and are responsible for setting up the PRC2.1 subcomplex. In the vertebrate system, three homologous PCLs exist: PHF1 (PCL1), MTF2 (PCL2), and PHF19 (PCL3). Although the PCLs share a similar domain composition, they differ significantly in their primary sequence. PCLs play a critical role in targeting PRC2.1 to its genomic targets and regulating the functionality of PRC2. However, they also have PRC2-independent functions. In addition to their physiological roles, their dysregulation has been associated with various human cancers. In this review, we summarize the current understanding of the molecular mechanisms of the PCLs and how alterations in their functionality contribute to cancer development. We particularly highlight the nonoverlapping and partially opposing roles of the three PCLs in human cancer. Our review provides important insights into the biological significance of the PCLs and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| |
Collapse
|
13
|
Ren L, Ren Q, Wang J, He Y, Deng H, Wang X, Liu C. miR-199a-3p promotes gastric cancer progression by promoting its stemness potential via DDR2 mediation. Cell Signal 2023; 106:110636. [PMID: 36813149 DOI: 10.1016/j.cellsig.2023.110636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Peritoneal metastasis (PM) is an independent prognostic factor in gastric cancer (GC), however, the underlying mechanisms of PM occurrence remain unclear. METHOD The roles of DDR2 were investigated in GC and its potential relationship to PM, and orthotopic implants into nude mice were performed to assess the biological effects of DDR2 on PM. RESULTS Herein, DDR2 level is more significantly observed to elevate in PM lesion than the primary lesion. GC with DDR2-high expression evokes a worse overall survival (OS) in TCGA, similar results of the gloomy OS with high DDR2 levels are clarified via the stratifying stage of TNM. The conspicuously increased expression of DDR2 was found in GC cell lines, luciferase reporter assays verified that miR-199a-3p directly targeted DDR2 gene, which was correlated to tumor progression. We ulteriorly observed DDR2 participated in GC stemness maintenance via mediating pluripotency factor SOX2 expression and implicated in autophagy and DNA damage of cancer stem cells (CSCs). In particular, DDR2 dominated EMT programming through recruiting NFATc1-SOX2 complex to Snai1 in governing cell progression, controlling by DDR2-mTOR-SOX2 axis in SGC-7901 CSCs. Furthermore, DDR2 promoted the tumor peritoneal dissemination in gastric xenograft mouse model. CONCLUSION Phenotype screens and disseminated verifications incriminating in GC exposit the miR-199a-3p-DDR2-mTOR-SOX2 axis as a clinically actionable target for tumor PM progression. The herein-reported DDR2-based underlying axis in GC represents novel and potent tools for studying the mechanisms of PM.
Collapse
Affiliation(s)
- Lei Ren
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiang Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghong He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xing Wang
- Inflammation and Allergic Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chunfeng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Inflammation and Allergic Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Str. 36, Munich 80336, Germany.
| |
Collapse
|
14
|
Werner M, Dyas A, Parfentev I, Schmidt GE, Mieczkowska IK, Müller-Kirschbaum LC, Müller C, Kalkhof S, Reinhardt O, Urlaub H, Alves F, Gallwas J, Prokakis E, Wegwitz F. ROBO3s: a novel ROBO3 short isoform promoting breast cancer aggressiveness. Cell Death Dis 2022; 13:762. [PMID: 36057630 PMCID: PMC9440919 DOI: 10.1038/s41419-022-05197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Basal-like breast cancer (BLBC) is a highly aggressive breast cancer subtype frequently associated with poor prognosis. Due to the scarcity of targeted treatment options, conventional cytotoxic chemotherapies frequently remain the standard of care. Unfortunately, their efficacy is limited as BLBC malignancies rapidly develop resistant phenotypes. Using transcriptomic and proteomic approaches in human and murine BLBC cells, we aimed to elucidate the molecular mechanisms underlying the acquisition of aggressive and chemotherapy-resistant phenotypes in these mammary tumors. Specifically, we identified and characterized a novel short isoform of Roundabout Guidance Receptor 3 (ROBO3s), upregulated in BLBC in response to chemotherapy and encoding for a protein variant lacking the transmembrane domain. We established an important role for the ROBO3s isoform, mediating cancer stem cell properties by stimulating the Hippo-YAP signaling pathway, and thus driving resistance of BLBC cells to cytotoxic drugs. By uncovering the conservation of ROBO3s expression across multiple cancer types, as well as its association with reduced BLBC-patient survival, we emphasize its potential as a prognostic marker and identify a novel attractive target for anti-cancer drug development.
Collapse
Affiliation(s)
- Marcel Werner
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany ,grid.4567.00000 0004 0483 2525Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Anna Dyas
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany ,grid.4372.20000 0001 2105 1091International Max-Planck Research School for Molecular Biology, Göttingen, Germany ,Early Cancer Institute, University of Cambridge, Department of Oncology, Hutchison Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, Germany
| | - Iwan Parfentev
- grid.4372.20000 0001 2105 1091Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Geske E. Schmidt
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Iga K. Mieczkowska
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas C. Müller-Kirschbaum
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Müller
- grid.418008.50000 0004 0494 3022Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stefan Kalkhof
- grid.418008.50000 0004 0494 3022Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Oliver Reinhardt
- grid.4372.20000 0001 2105 1091Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- grid.4372.20000 0001 2105 1091Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- grid.4372.20000 0001 2105 1091Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Department of Hematology and Medical Oncology, University Medicine Goettingen, Göttingen, Germany
| | - Julia Gallwas
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Pantelaiou-Prokaki G, Mieczkowska I, Schmidt GE, Fritzsche S, Prokakis E, Gallwas J, Wegwitz F. HDAC8 suppresses the epithelial phenotype and promotes EMT in chemotherapy-treated basal-like breast cancer. Clin Epigenetics 2022; 14:7. [PMID: 35016723 PMCID: PMC8753869 DOI: 10.1186/s13148-022-01228-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is one of the most aggressive malignant diseases in women with an increased metastatic behavior and poor prognosis compared to other molecular subtypes of breast cancer. Resistance to chemotherapy is the main cause of treatment failure in BLBC. Therefore, novel therapeutic strategies counteracting the gain of aggressiveness underlying therapy resistance are urgently needed. The epithelial-to-mesenchymal transition (EMT) has been established as one central process stimulating cancer cell migratory capacity but also acquisition of chemotherapy-resistant properties. In this study, we aimed to uncover epigenetic factors involved in the EMT-transcriptional program occurring in BLBC cells surviving conventional chemotherapy. RESULTS Using whole transcriptome data from a murine mammary carcinoma cell line (pG-2), we identified upregulation of Hdac4, 7 and 8 in tumor cells surviving conventional chemotherapy. Subsequent analyses of human BLBC patient datasets and cell lines established HDAC8 as the most promising factor sustaining tumor cell viability. ChIP-sequencing data analysis identified a pronounced loss of H3K27ac at regulatory regions of master transcription factors (TFs) of epithelial phenotype like Gata3, Elf5, Rora and Grhl2 upon chemotherapy. Interestingly, impairment of HDAC8 activity reverted epithelial-TFs levels. Furthermore, loss of HDAC8 activity sensitized tumor cells to chemotherapeutic treatments, even at low doses. CONCLUSION The current study reveals a previously unknown transcriptional repressive function of HDAC8 exerted on a panel of transcription factors involved in the maintenance of epithelial cell phenotype, thereby supporting BLBC cell survival to conventional chemotherapy. Our data establish HDAC8 as an attractive therapeutically targetable epigenetic factor to increase the efficiency of chemotherapeutics.
Collapse
Affiliation(s)
- Garyfallia Pantelaiou-Prokaki
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.,Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Iga Mieczkowska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Geske E Schmidt
- Department of Gastroenterology, GI-Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Sonja Fritzsche
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|