1
|
Huang S, Zhu J, Yu L, Huang Y, Hu Y. Cancer-nervous system crosstalk: from biological mechanism to therapeutic opportunities. Mol Cancer 2025; 24:133. [PMID: 40320550 PMCID: PMC12051345 DOI: 10.1186/s12943-025-02336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
A growing body of research suggests a bidirectional interaction between cancer and the nervous system. Neural cells exert their effects on tumors by secreting neurotransmitters and cell adhesion molecules, which interact with specific receptors on tumor cells to modulate their behavior. Conversely, tumor-secreted factors, particularly including inflammatory factors, can alter neural activity and increase neuronal excitability, potentially contributing to neurological manifestations such as epilepsy. The immune system also serves as a crucial intermediary in the indirect communication between cancer and the nervous system. These insights have opened promising avenues for novel therapeutic strategies targeting both tumors and their associated neurological complications. In this review, we have synthesized the key biological mechanisms underlying cancer-nervous system interactions that have emerged over the past decade. We outline the molecular and cellular pathways mediating this cross-talk and explore the clinical implications of targeting the nervous system to suppress tumor growth and metastasis, mitigate neurological complications arising from cancer progression, and modulate the immune response through neural regulation in the context of cancer therapy.
Collapse
Affiliation(s)
- Sirui Huang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jing Zhu
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Linglu Yu
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China.
| | - Yue Hu
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Department of Neurology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210001, China.
- Shen Chun-Ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance, Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, 213003, Changzhou, China.
| |
Collapse
|
2
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Hong X, Cao H, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Hu R, Gao R, Yu M, Zhou J, Wu X, Liu Y, Yin S, Gao W, Li L. Trends of genetic contributions on epigenetic clocks and related methylation sites with aging: A population-based adult twin study. Aging Cell 2025; 24:e14403. [PMID: 39543924 PMCID: PMC11896513 DOI: 10.1111/acel.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Several crucial acceleration periods exist during aging process. Epigenetic clocks, serving as indicators of aging, are influenced by genetic factors. Investigating how the genetic contributions on these clocks change with age may provide novel insights into the aging process. In this study, based on 1084 adult twins from the Chinese National Twin Registry (CNTR), we established structural equation models (SEMs) to evaluate the trends in genetic influence with aging for epigenetic clocks, which include PC-Horvath, PC-Hannum, PC-PhenoAge, PC-GrimAge, and DunedinPACE. A decline in overall heritability was observed for all five clocks from ages 31 to 70, with a relatively stable trend at first. Subsequently, apart from PC-GrimAge, the other four clocks displayed a more evident drop in heritability: DunedinPACE and PC-PhenoAge experienced a clear decline between 55 and 65 years, while PC-Horvath and PC-Hannum showed a similar decrease between 60 and 70 years. In contrast, the heritability of PC-GrimAge remained stable throughout. An analysis of methylation sites (CpGs) from these clocks identified 41, 26, 4, and 36 CpG sites potentially underlying heritability changes in DunedinPACE, PC-Horvath, PC-Hannum, and PC-PhenoAge, respectively. Data from the CNTR were collected through two surveys in 2013 and 2018. Based on 308 twins with longitudinal data, declines in genetic components were observed at follow-up compared to baseline, with significant decreases in the four PC-clocks. DunedinPACE peaked in 5-year longitudinal genetic contribution changes at age 55-60, while PC-clocks consistently peaked at age 50-55. These findings may offer novel insights into the role of genetic variations in aging.
Collapse
Affiliation(s)
- Xuanming Hong
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Hui Cao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Runhua Hu
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Ruqin Gao
- Qingdao Center for Disease Control and PreventionQingdaoChina
| | - Min Yu
- Zhejiang Center for Disease Control and PreventionHangzhouChina
| | - Jinyi Zhou
- Jiangsu Center for Disease Control and PreventionNanjingChina
| | - Xianping Wu
- Sichuan Center for Disease Control and PreventionChengduChina
| | - Yu Liu
- Heilongjiang Center for Disease Control and PreventionHarbinChina
| | - Shengli Yin
- Dezhou Center for Disease Control and PreventionDezhouChina
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases, Ministry of EducationPeking UniversityBeijingChina
| |
Collapse
|
4
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Xu X, Wang X, Zheng Z, Guo Y, He G, Wang Y, Fu S, Zheng C, Deng X. Neutrophil Extracellular Traps in Breast Cancer: Roles in Metastasis and Beyond. J Cancer 2024; 15:3272-3283. [PMID: 38817858 PMCID: PMC11134451 DOI: 10.7150/jca.94669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
7
|
Amato R, Lucchesi M, Marracci S, Filippi L, Dal Monte M. β-Adrenoceptors in Cancer: Old Players and New Perspectives. Handb Exp Pharmacol 2024; 285:665-688. [PMID: 37982890 DOI: 10.1007/164_2023_701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Distress, or negative stress, is known to considerably increase the incidence of several diseases, including cancer. There is indeed evidence from pre-clinical models that distress causes a catecholaminergic overdrive that, mainly through the activation of β-adrenoceptors (β-ARs), results in cancer cell growth and cancer progression. In addition, clinical studies have evidenced a role of negative stress in cancer progression. Moreover, plenty of data demonstrates that β-blockers have positive effects in reducing the pro-tumorigenic activity of catecholamines, correlating with better outcomes in some type of cancers as evidenced by several clinical trials. Among β-ARs, β2-AR seems to be the main β-AR subtype involved in tumor development and progression. However, there are data indicating that also β1-AR and β3-AR may be involved in certain tumors. In this chapter, we will review current knowledge on the role of the three β-AR isoforms in carcinogenesis as well as in cancer growth and progression, with particular emphasis on recent studies that are opening new avenues in the use of β-ARs as therapeutic targets in treating tumors.
Collapse
MESH Headings
- Humans
- Neoplasms/metabolism
- Neoplasms/drug therapy
- Neoplasms/pathology
- Animals
- Receptors, Adrenergic, beta-3/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adrenergic beta-Antagonists/pharmacology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Receptors, Adrenergic, beta-1/metabolism
- Signal Transduction
- Disease Progression
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
8
|
Wu LH, Huang YT, Lin CY, Lee CH. Salmonella-induced inhibition of β3-adrenoceptor expression in tumors and reduces tumor metastasis. J Cancer 2024; 15:1203-1212. [PMID: 38356700 PMCID: PMC10861817 DOI: 10.7150/jca.92024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024] Open
Abstract
The β3-adrenoceptor is a protein responsible for regulating the body's response to the neurotransmitter adrenaline and the hormone norepinephrine. It is critical in various physiological processes, including metabolism, thermogenesis, and cardiovascular function. Recently, researchers have discovered that the β3-adrenoceptor is also implicated in tumor progression and metastasis. Infections caused by Salmonella can lead to gastroenteritis; however, intriguingly, Salmonella is associated with tumor inhibition. In this study, Salmonella treatment resulted in the downregulation of β3-adrenoceptor expression and a decrease in the phosphorylation of the Protein Kinase-B (AKT)/Mammalian Target of Rapamycin (mTOR) pathway, as observed through immunoblotting in a dose-dependent manner. Notably, Salmonella treatment significantly reduced tumor cell migration, as demonstrated by wound healing and Transwell assays. Moreover, tumor-bearing mice that received Salmonella-pre-treated tumor cells exhibited improved survival rates compared to those injected with tumor cells without prior Salmonella treatment. The observed anti-metastatic effect in this study suggests that Salmonella treatment could hold promise as a potential therapeutic approach to combat tumor metastasis. Further research is warranted to explore its full therapeutic potential.
Collapse
Affiliation(s)
- Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Ting Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chung-Yu Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- International PhD Program for Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
9
|
Tiwari RK, Rawat SG, Kumar A. The antagonist of β-adrenergic receptor propranolol inhibits T cell lymphoma growth and enhances antitumor efficacy of cisplatin in vivo: A role of modulated apoptosis, glucose metabolism, pH regulation, and antitumor immune response. Int Immunopharmacol 2023; 124:110825. [PMID: 37619412 DOI: 10.1016/j.intimp.2023.110825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Accumulating evidence has shown a vital role of stress-regulatory hormones, including epinephrine, in the progression of numerous cancers, including T cell lymphoma. Further, the antitumor and chemosensitizing potential of propranolol, an inexpensive β-adrenergic receptor antagonist has also been reported against breast, colon, ovarian, and pancreatic cancers. However, in vivo antitumor and chemopotentiating activity of propranolol have not yet been examined against malignancies of hematological origin, including T cell lymphoma. Therefore, the present study is designed to evaluate the antitumor and chemopotentiating action of propranolol in a T cell lymphoma murine model. In this study, T cell lymphoma-bearing mice were treated with vehicle alone (PBS) or containing propranolol followed by administration of with or without cisplatin. The progression of the tumor was assessed along with analysis of tumor cell apoptosis, glucose metabolism, pH regulation, and antitumor immune response. The apoptosis was estimated by cellular and nuclear morphology analysis through Wright-Giemsa, annexin-V, and DAPI staining. ELISA was used to detect the epinephrine level in serum. The glucose, lactate, and NO levels were measured in the tumor ascitic fluid by calorimetric methods. RT-PCR and Western blot were used to assess the levels of various crucial regulators at gene and protein levels, respectively. Our results showed that propranolol exerts antitumor as well as chemopotentiating ability in DL-bearing mice by altering apoptosis, glycolysis, acidification of TME, and immunosuppression.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shiv Govind Rawat
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ajay Kumar
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Das D, Chakrabarty B, Srinivasan R, Roy A. Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures. J Chem Inf Model 2023; 63:1882-1893. [PMID: 36971750 DOI: 10.1021/acs.jcim.2c01301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced gene expression profiling provides a lot of useful information covering various aspects of drug discovery and development. Most importantly, this knowledge can be used to discover drugs' mechanisms of action. Recently, deep learning-based drug design methods are in the spotlight due to their ability to explore huge chemical space and design property-optimized target-specific drug molecules. Recent advances in accessibility of open-source drug-induced transcriptomic data along with the ability of deep learning algorithms to understand hidden patterns have opened opportunities for designing drug molecules based on desired gene expression signatures. In this study, we propose a deep learning model, Gex2SGen (Gene Expression 2 SMILES Generation), to generate novel drug-like molecules based on desired gene expression profiles. The model accepts desired gene expression profiles in a cell-specific manner as input and designs drug-like molecules which can elicit the required transcriptomic profile. The model was first tested against individual gene-knocked-out transcriptomic profiles, where the newly designed molecules showed high similarity with known inhibitors of the knocked-out target genes. The model was next applied on a triple negative breast cancer signature profile, where it could generate novel molecules, highly similar to known anti-breast cancer drugs. Overall, this work provides a generalized method, where the method first learned the molecular signature of a given cell due to a specific condition, and designs new small molecules with drug-like properties.
Collapse
|
12
|
Li RQ, Zhao XH, Zhu Q, Liu T, Hondermarck H, Thorne RF, Zhang XD, Gao JN. Exploring neurotransmitters and their receptors for breast cancer prevention and treatment. Theranostics 2023; 13:1109-1129. [PMID: 36793869 PMCID: PMC9925324 DOI: 10.7150/thno.81403] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
While psychological factors have long been linked to breast cancer pathogenesis and outcomes, accumulating evidence is revealing how the nervous system contributes to breast cancer development, progression, and treatment resistance. Central to the psychological-neurological nexus are interactions between neurotransmitters and their receptors expressed on breast cancer cells and other types of cells in the tumor microenvironment, which activate various intracellular signaling pathways. Importantly, the manipulation of these interactions is emerging as a potential avenue for breast cancer prevention and treatment. However, an important caveat is that the same neurotransmitter can exert multiple and sometimes opposing effects. In addition, certain neurotransmitters can be produced and secreted by non-neuronal cells including breast cancer cells that similarly activate intracellular signaling upon binding to their receptors. In this review we dissect the evidence for the emerging paradigm linking neurotransmitters and their receptors with breast cancer. Foremost, we explore the intricacies of such neurotransmitter-receptor interactions, including those that impinge on other cellular components of the tumor microenvironment, such as endothelial cells and immune cells. Moreover, we discuss findings where clinical agents used to treat neurological and/or psychological disorders have exhibited preventive/therapeutic effects against breast cancer in either associative or pre-clinical studies. Further, we elaborate on the current progress to identify druggable components of the psychological-neurological nexus that can be exploited for the prevention and treatment of breast cancer as well as other tumor types. We also provide our perspectives regarding future challenges in this field where multidisciplinary cooperation is a paramount requirement.
Collapse
Affiliation(s)
- Ruo Qi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.,These authors contributed equally to this work
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia.,These authors contributed equally to this work
| | - Qin Zhu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, The University of New South Wales, Sydney, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia.,Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, China
| | - Jin Nan Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| |
Collapse
|