1
|
Zhang Y, Lu Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Ascending E2F7a/b ratio facilitates KLF13 transcription in hepatocellular carcinoma and correlates with the abundance of binuclear hepatocytes (ABH) modulation for short-term recurrence. FASEB J 2025; 39:e70485. [PMID: 40116212 PMCID: PMC11926945 DOI: 10.1096/fj.202402520r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Short-term recurrence after surgery severely threatens patients' lives and leads to dismal outcomes in hepatocellular carcinoma (HCC). Our previous research proposed the abundance of binuclear hepatocytes (ABH) as an independent indicator related to the cytokinesis regulator Anillin and significantly associated with HCC recurrence. The exact mechanism of ABH modulation has not been clearly illustrated. In this study, we intensively investigated the probable regulation mechanism and noticed a contradiction between E2F7 upregulation and ABH attenuation. As we discovered, E2F7 has two isoforms, E2F7a and E2F7b, and we innovatively define a value of the E2F7a/b ratio using a cutoff value of 6.5. E2F7 upregulation in the paracancerous tissues was predominantly presented by the E2F7a isoform, leading to an increase in the E2F7a/b ratio, instead of E2F7b as a main component in non-cancerous tissues, and is associated with short-term recurrence. We further found that KLF13 transcriptionally promotes Anillin expression in HCC and was suppressively impacted by E2F7b, but not by the highly expressed E2F7a. Hence, the ascending E2F7a/b ratio induced significant upregulation of KLF13 and participated in the attenuation of ABH in the paracancerous liver tissues. In conclusion, E2F7 presents a particular expression status in HCC by predominantly upregulating E2F7a rather than E2F7b. The ascending E2F7a/b ratio weakens the suppressive effect on KLF13 transcription and sequentially participates in ABH attenuation, associated with short-term HCC recurrence post-operation.
Collapse
Affiliation(s)
- Yian Zhang
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Nan Wang
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Fengjie Hao
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
2
|
Tang W, Zhang D, Liu D, Liu Z, Xiao K, Lei C, Yang Y, Zhou Q, Wang X. E2F7 upregulates MCM4 and fatty acid metabolism to advance lung adenocarcinoma metastasis. Prostaglandins Other Lipid Mediat 2025; 178:106988. [PMID: 40158794 DOI: 10.1016/j.prostaglandins.2025.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND MCM4, a key protein in MCM, is frequently overexpressed in cancers, but its specific role in lung adenocarcinoma (LUAD) metastasis is unclear. METHODS Bioinformatics revealed the mRNA expression pattern of MCM4 in LUAD, which we confirmed in both normal lung epithelial and adenocarcinoma cell lines using qRT-PCR and western blot (WB). Cellular proliferation was gauged by cell counting kit-8 and colony formation assays, and the expression of epithelial-mesenchymal transition markers along with fatty acid synthase (FASN) was probed via WB. We employed Transwell to assess cellular migration and invasion, and utilized kits for quantifying intracellular triglycerides and phospholipids. Bioinformatics identified E2F7 as a potential transcriptional regulator of MCM4, prompting us to explore its relationship with MCM4, including predicted binding sites and E2F7 mRNA expression in LUAD. Chromatin immunoprecipitation and dual-luciferase reporter assays were conducted to validate the regulatory effects of E2F7 on MCM4. RESULTS MCM4 was found to be overexpressed in LUAD, and its knockdown inhibited cancer cell proliferation, migration, invasion, and metastasis, along with decreased FASN expression and declined levels of triglycerides and phospholipids within cells. Mechanistically, E2F7 transcriptionally activated MCM4, regulating fatty acid metabolism and promoting LUAD progression and metastasis. CONCLUSION Our study elucidates the mechanism by which E2F7 transcriptionally controls MCM4 to activate fatty acid metabolism, fueling LUAD metastasis. These discoveries emphasize the pivotal function of lipid metabolism in LUAD development and suggests new therapeutic targets for LUAD treatment.
Collapse
Affiliation(s)
- WuAsen Tang
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Deming Zhang
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China.
| | - Di Liu
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Zikang Liu
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Kuang Xiao
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Chenggang Lei
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Yalun Yang
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Qian Zhou
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China
| | - Xianghui Wang
- Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei province 434020, China.
| |
Collapse
|
3
|
Liu Y, Li B, Ke L, Luo T, Wu H, Lin J, Deng Y, Huang X, Xu L, Liu Y, Qi J. Comprehensive Bioinformatics Analyses and Experimental Validation of the Cell Cycle Related Protein SAPCD2 as a New Biomarker and Potential Therapeutic Target in Pancreatic Cancer. J Inflamm Res 2025; 18:2855-2877. [PMID: 40034688 PMCID: PMC11873019 DOI: 10.2147/jir.s501850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Pancreatic adenocarcinoma (PAAD) is a highly aggressive cancer with a poor prognosis, reliable markers are urgently needed for early detection and prognosis evaluation. SAPCD2, a cell cycle related gene, has been implicated in tumorigenesis and proposed as a potential therapeutic target in cancer. However, no comprehensive study has explored its expression and regulation, discussed its role in tumor prognosis and immune modulation, along with therapy response in pan-cancer until now. Methods SAPCD2 expression was analyzed using data from The Cancer Genome Atlas database (TCGA) and Human Protein Atlas (HPA) database. Genetic and epigenetic alterations of SAPCD2 and the immune microenvironment were explored via NCBI, TIMER2 and cBioPortal platforms. Western blot analysis and immunohistochemistry (IHC) were performed to check SAPCD2 protein expression in PAAD cells and tissues. Cell counting kit 8 (CCK8), flow cytometry, and transwell experiments were used to evaluate the role of SAPCD2 in PAAD cell lines. Results Our study found that SAPCD2 is notably upregulated in various cancers, especially early-stage digestive cancers, and is linked to poor survival in most cancers like PAAD and LIHC. Gene amplification and promoter DNA hypomethylation appear to drive this upregulation. Additionally, SAPCD2 expression correlates with tumor mutation burden, microsatellite instability, and immune scores across several cancers. In PAAD, elevated SAPCD2 levels correlated with reduced immune activity, whereas in stomach cancer (STAD), its prognostic impact appeared immune-independent. In PDAC cell lines, SAPCD2 knockdown reduced proliferation and invasion, and caused reduction of G0/G1 phase. PAAD cells with high SAPCD2 expression showed increased sensitivity to DNA-PK, p38α MAPK, and Bcl-2 inhibitors. Conclusion SAPCD2 serves as both a prognostic marker and a potential therapeutic target in PAAD, where its low expression may enhance responsiveness to specific drugs. These findings underscore SAPCD2's dual role in cancer progression and therapy.
Collapse
Affiliation(s)
- Yuting Liu
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
- Scientific Research Center, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Bo Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
- Scientific Research Center, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Lingling Ke
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Tingting Luo
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Huixian Wu
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Jiahui Lin
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Yu Deng
- Laboratory Animal Center, Sun Yat-sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Xiuji Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Liangliang Xu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, People’s Republic of China
| | - Yuchen Liu
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
- Scientific Research Center, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| | - Jian Qi
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People’s Republic of China
| |
Collapse
|
4
|
Wu T, Jiang F, Wu F, Zheng G, Li Y, Wu L. E2F1 and E2F7 regulate gastric cancer cell proliferation, respectively, through transcriptional activation and transcriptional repression of MYBL2. J Biol Chem 2025; 301:108027. [PMID: 39613162 PMCID: PMC11731210 DOI: 10.1016/j.jbc.2024.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Gastric cancer (GC) is the most common malignant tumor of the digestive tract. However, the molecular pathogenesis is not well understood. Through bioinformatic analysis and analyzing clinical tissue samples, we found that E2F1 and E2F7 as well as their potential downstream target MYBL2 were all upregulated in GC tissues and that their expressions correlated with patient prognosis. While knockdown of E2F1 or MYBL2 inhibited cell proliferation and promoted apoptosis, knockdown of E2F7 promoted cell proliferation but had no effects on apoptosis. Chromatin immunoprecipitation and dual luciferase reporter assays demonstrated that MYBL2 was transcriptionally activated and repressed by E2F1 and E2F7, respectively. Importantly, in vitro and ex vivo experiments demonstrated that the effects of E2F1 and E2F7 on GC cell proliferation were significantly attenuated by reversely modulating MYBL2 expression, indicating that MYBL2 is a direct and functionally relevant target of E2F1 and E2F7 in GC cells. Furthermore, the effects of E2F1 and E2F7 on GC cell proliferation through transcriptional regulation of MYBL2 can be mediated by the PI3K/AKT signaling pathway. Interestingly, we found differential nucleocytoplasmic distribution of E2F7 in GC cells with functional relevance. Taken together, our data suggest that targeted therapies of GC may be achieved from three different angles, E2F1, E2F7, and MYBL2 themselves, E2F1/E2F7 expression balance, and E2F7 nuclear localization.
Collapse
Affiliation(s)
- Tianyi Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fengli Jiang
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China; Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fan Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guoliang Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China; Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China; Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lizhao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Liu C, Zhuo Y, Yang X, Yang C, Shu M, Hou B, Hou J, Chen X, Wang L, Wu X. Epigenetically associated IGF2BP3 upregulation promotes cell proliferation by regulating E2F1 expression in hepatocellular carcinoma. Sci Rep 2024; 14:16051. [PMID: 38992083 PMCID: PMC11239653 DOI: 10.1038/s41598-024-67021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yicheng Zhuo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaofeng Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chen Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Min Shu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Bowen Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
6
|
Lu Z, Chen X, Wang C, Luo X, Wu X, Zhao X, Xiao S. Self-Assembled Nanocomposite DOX/TPOR 4@CB[7] 4 for Enhanced Synergistic Photodynamic Therapy and Chemotherapy in Neuroblastoma. Pharmaceutics 2024; 16:822. [PMID: 38931942 PMCID: PMC11207937 DOI: 10.3390/pharmaceutics16060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
DOX/TPOR4@CB[7]4 was synthesized via self-assembly, and its physicochemical properties and ability to generate reactive oxygen species (ROS) were evaluated. The impact of photodynamic therapy on SH-SY5Y cells was assessed using the MTT assay, while flow cytometry analysis was employed to detect cell apoptosis. Confocal laser scanning microscopy was utilized to observe the intracellular distribution of DOX/TPOR4@CB[7]4 in SH-SY5Y cells. Additionally, fluorescence imaging of DOX/TPOR4@CB[7]4 in nude mice bearing SH-SY5Y tumors and examination of the combined effects of photodynamic and chemical therapies were conducted. The incorporation of CB[7] significantly enhanced the optical properties of DOX/TPOR4@CB[7]4, resulting in increased ROS production and pronounced toxicity towards SH-SY5Y cells. Moreover, both the apoptotic and mortality rates exhibited significant elevation. In vivo experiments demonstrated that tumor growth inhibition was most prominent in the DOX/TPOR4@CB[7]4 group. π-π interactions facilitated the binding between DOX and photosensitizer TPOR, with TPOR's naphthalene hydrophilic groups encapsulated within CB[7]'s cavity through host-guest interactions with CB[7]. Therefore, CB[7] can serve as a nanocarrier to enhance the combined application of chemical therapy and photodynamic therapy, thereby significantly improving treatment efficacy against neuroblastoma tumors.
Collapse
Affiliation(s)
- Zhouxia Lu
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xu Chen
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Conghui Wang
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xuelian Luo
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xiaohan Wu
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xing Zhao
- Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang 5500025, China;
| | - Song Xiao
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
- Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang 5500025, China;
| |
Collapse
|
7
|
Zhou Z, Gao Y, Deng L, Lu X, Lai Y, Wu J, Chen S, Li C, Liang H. Integrating single-cell and bulk sequencing data to identify glycosylation-based genes in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. PeerJ 2024; 12:e17002. [PMID: 38515461 PMCID: PMC10956522 DOI: 10.7717/peerj.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background The incidence of non-alcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) has been increasing. However, the role of glycosylation, an important modification that alters cellular differentiation and immune regulation, in the progression of NAFLD to HCC is rare. Methods We used the NAFLD-HCC single-cell dataset to identify variation in the expression of glycosylation patterns between different cells and used the HCC bulk dataset to establish a link between these variations and the prognosis of HCC patients. Then, machine learning algorithms were used to identify those glycosylation-related signatures with prognostic significance and to construct a model for predicting the prognosis of HCC patients. Moreover, it was validated in high-fat diet-induced mice and clinical cohorts. Results The NAFLD-HCC Glycogene Risk Model (NHGRM) signature included the following genes: SPP1, SOCS2, SAPCD2, S100A9, RAMP3, and CSAD. The higher NHGRM scores were associated with a poorer prognosis, stronger immune-related features, immune cell infiltration and immunity scores. Animal experiments, external and clinical cohorts confirmed the expression of these genes. Conclusion The genetic signature we identified may serve as a potential indicator of survival in patients with NAFLD-HCC and provide new perspectives for elucidating the role of glycosylation-related signatures in this pathologic process.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Gao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Longxin Deng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaole Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yancheng Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jieke Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | - Chengzhong Li
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Huiqing Liang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Deng SZ, Wu X, Tang J, Dai L, Cheng B. Integrative analysis of lysine acetylation-related genes and identification of a novel prognostic model for oral squamous cell carcinoma. Front Mol Biosci 2023; 10:1185832. [PMID: 37705968 PMCID: PMC10495994 DOI: 10.3389/fmolb.2023.1185832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Oral squamous cell carcinoma (OSCC), which accounts for a high proportion of oral cancers, is characterized by high aggressiveness and rising incidence. Lysine acetylation is associated with cancer pathogenesis. Lysine acetylation-related genes (LARGs) are therapeutic targets and potential prognostic indicators in various tumors, including oral squamous cell carcinoma. However, systematic bioinformatics analysis of the Lysine acetylation-related genes in Oral squamous cell carcinoma is still unexplored. Methods: We analyzed the expression of 33 Lysine acetylation-related genes in oral squamous cell carcinoma and the effects of their somatic mutations on oral squamous cell carcinoma prognosis. Consistent clustering analysis identified two lysine acetylation patterns and the differences between the two patterns were further evaluated. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to develop a lysine acetylation-related prognostic model using TCGA oral squamous cell carcinoma datasets, which was then validated using gene expression omnibus (GEO) dataset GSE41613. Results: Patients with lower risk scores had better prognoses, in both the overall cohort and within the subgroups These patients also had "hot" immune microenvironments and were more sensitive to immunotherapy. Disscussion: Our findings offer a new model for classifying oral squamous cell carcinoma and determining its prognosis and offer novel insights into oral squamous cell carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiezhang Tang
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lin Dai
- Department of Stomatology, The First Hospital of Wuhan, Wuhan, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Fang D, Zhang Q, Mu M, Deng Q, Wang Y, Li Q. lncRNA ENST00000585827 Contributes to the Progression of Endometrial Carcinoma via Regulating miR-424/E2F6/E2F7 Axis. Appl Biochem Biotechnol 2022; 195:3096-3108. [PMID: 36525235 DOI: 10.1007/s12010-022-04267-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Endometrial cancer (EC) ranks fourth among the most common gynecologic malignancies. Despite advances in medical technology, the pathogenesis is still unclear. Numerous reports have identified the involvement of lncRNA in the malignant progression of endometrial cancer. The aim of the study was to investigate the expression level of lncRNA ENST00000585827 (lncRNA E27) in endometrial cancer and the molecular mechanism that regulates the development of endometrial cancer. Combined with the results of the previous study, PCR analysis confirmed that lncRNA E27 was significantly upregulated in endometrial cancer cell lines. The results of CCK-8, wound healing assay, and transwell experiments showed that lncRNA E27 could significantly inhibit cell proliferation, migration, and invasion. Flow cytometry results confirmed that lncRNA E27 could promote apoptosis. Furthermore, based on bioinformatics predictions, dual-luciferase assay and RT-qPCR analysis confirmed that miR-424, as its downstream molecule, competitively regulates the expression of E2F6/E2F7. Rescue experiments further supported that lncRNA E27 inhibited proliferation, migration, invasion, and promoted apoptosis of endometrial cancer through miR-424/E2F6/E2F7 signaling axis. Conclusively, our findings revealed the role of lncRNA E27 in regulating the miR-424/E2F6/E2F7 signaling axis during EC progression, opening up new strategies for the treatment of endometrial cancer.
Collapse
|