1
|
Tang XS, Xu CL, Li N, Zhang JQ, Tang Y. Landscape of four different stages of human gastric cancer revealed by single-cell sequencing. World J Gastrointest Oncol 2025; 17:97125. [PMID: 39958562 PMCID: PMC11756019 DOI: 10.4251/wjgo.v17.i2.97125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) poses a substantial risk to human health due to its high prevalence and mortality rates. Nevertheless, current therapeutic strategies remain insufficient. Single-cell RNA sequencing (scRNA-seq) offers the potential to provide comprehensive insights into GC pathogenesis. AIM To explore the distribution and dynamic changes of cell populations in the GC tumor microenvironment using scRNA-seq techniques. METHODS Cancerous tissues and paracancerous tissues were obtained from patients diagnosed with GC at various stages (I, II, III, and IV). Single-cell suspensions were prepared and analyzed using scRNA-seq to examine transcriptome profiles and cell-cell interactions. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry were applied for measuring the expression of cluster of differentiation (CD) 2, CD3D, CD3E, cytokeratin 19, cytokeratin 8, and epithelial cell adhesion molecules. RESULTS Transcriptome data from 73645 single cells across eight tissues of four patients were categorized into 25 distinct cell clusters, representing 10 different cell types. Variations were observed in these cell type distribution. The adjacent epithelial cells in stages II and III exhibited a degenerative trend. Additionally, the quantity of CD4 T cells and CD8 T cells were evidently elevated in cancerous tissues. Interaction analysis displayed a remarkable increase in interaction between B cells and other mast cells in stages II, III, and IV of GC. These findings were further validated through qRT-PCR and flow cytometry, demonstrating elevated T cells and declined epithelial cells within the cancerous tissues. CONCLUSION This study provides a comprehensive analysis of cell dynamics across GC stages, highlighting key interactions within the tumor microenvironment. These findings offer valuable insights for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu-Shan Tang
- Department of Gastroenterology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang Uighur Autonomous Region, China
| | - Chun-Lei Xu
- Department of Gastroenterology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang Uighur Autonomous Region, China
| | - Na Li
- Department of Gastroenterology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang Uighur Autonomous Region, China
| | - Jian-Qing Zhang
- Department of Outpatient, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uighur Autonomous Region, China
| | - Yong Tang
- Department of Gastroenterology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang Uighur Autonomous Region, China
| |
Collapse
|
2
|
Ding P, Wu J, Wu H, Ma W, Li T, Yang P, Guo H, Tian Y, Yang J, Er L, Gu R, Zhang L, Meng N, Li X, Guo Z, Meng L, Zhao Q. Preoperative liquid biopsy transcriptomic panel for risk assessment of lymph node metastasis in T1 gastric cancer. J Exp Clin Cancer Res 2025; 44:43. [PMID: 39915770 PMCID: PMC11804050 DOI: 10.1186/s13046-025-03305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The increasing incidence of early-stage T1 gastric cancer (GC) underscores the need for accurate preoperative risk stratification of lymph node metastasis (LNM). Current pathological assessments often misclassify patients, leading to unnecessary radical surgeries. METHODS Through analysis of transcriptomic data from public databases and T1 GC tissues, we identified a 4-mRNA panel (SDS, TESMIN, NEB, and GRB14). We developed and validated a Risk Stratification Assessment (RSA) model combining this panel with clinical features using surgical specimens (training cohort: n = 218; validation cohort: n = 186), gastroscopic biopsies (n = 122), and liquid biopsies (training cohort: n = 147; validation cohort: n = 168). RESULTS The RSA model demonstrated excellent predictive accuracy for LNM in surgical specimens (training AUC = 0.890, validation AUC = 0.878), gastroscopic biopsies (AUC = 0.928), and liquid biopsies (training AUC = 0.873, validation AUC = 0.852). This model significantly reduced overtreatment rates from 83.9 to 44.1% in tissue specimens and from 84.4 to 56.0% in liquid biopsies. The 4-mRNA panel showed specificity for T1 GC compared to other gastrointestinal cancers (P < 0.001). CONCLUSIONS We developed and validated a novel liquid biopsy-based RSA model that accurately predicts LNM in T1 GC patients. This non-invasive approach could significantly reduce unnecessary surgical interventions and optimize treatment strategies for high-risk T1 GC patients.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Haotian Wu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Wenqian Ma
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Tongkun Li
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Peigang Yang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Honghai Guo
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Yuan Tian
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Jiaxuan Yang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Limian Er
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Renjun Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430065, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, 050050, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, 071030, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, 053099, China
| | - Lingjiao Meng
- Research Center, Tumor Research Institute of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China.
| |
Collapse
|
3
|
Yuan J, Lu J, Zhu J, Chen F, Zeng Z, Yan J, Li Q, Zhou R, Tong Q. LncRNA FIRRE drives gastric cancer progression via ZFP64-mediated TUBB3 promoter activation. Cancer Lett 2024; 611:217398. [PMID: 39706253 DOI: 10.1016/j.canlet.2024.217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Gastric cancer is a common global malignancy that requires detailed study of its development mechanisms. Although LncRNA FIRRE is known to play a crucial role in the progression and treatment resistance of several cancers, its effect on gastric cancer is not well understood. This study confirms the impact of FIRRE on the malignant behavior of gastric cancer. Using RNA-sequencing, dual luciferase reporter assay, RIP and CHIP, we identified transcription factors and target genes linked to FIRRE. Elevated FIRRE expression in gastric cancer correlates with worse patient prognosis and promotes gastric cancer proliferation, migration, and invasion both in vitro and in vivo. FIRRE regulates the TUBB3 gene, facilitating gastric cancer progression by activating the TUBB3 promoter in vitro. ZFP64 is the transcription factor for TUBB3, activating its promoter and binding specifically with FIRRE. Reducing ZFP64 disrupts FIRRE's positive regulation of TUBB3 in vitro and in vivo. This study shows FIRRE promotes gastric cancer progression by binding to ZFP64 and activating the TUBB3 promoter.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Li
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Estaji F, Zibaee S, Torabi M, Moghim S. Epstein-Barr Virus and gastric carcinoma pathogenesis with emphasis on underlying epigenetic mechanisms. Discov Oncol 2024; 15:719. [PMID: 39601901 PMCID: PMC11602878 DOI: 10.1007/s12672-024-01619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC) remains one of the top causes of cancer-related mortality around the world. The pathogenesis of GC is attributed to lifestyle, family history, genetic mutations, epigenetic alterations, as well as infectious agents such as Epstein-Barr Virus (EBV). EBV, a ubiquitous human gamma herpes virus, with latent asymptomatic infection in more than 95% of the world's population, is able to infect through the oral epithelium. EBV is described as the first virus found in human neoplastic, when it was detected in Burkitt lymphoma tumor biopsy. Nowadays this virus is considered to be involved in various human malignancies such as GC. Despite comprehensive efforts and immense studies, the main underlying mechanism is not well described as there are crucial contradictions regarding the presence of this virus and the prognosis of the disease. Immunological alterations, genetic mutations, and epigenetic modifications are among the most important criteria presented in EBV- associated gastric cancer (EBVaGC), leading to its consideration as a separate subtype with unique clinical, histological, biochemical, and genetic characteristics. The current study aimed to review the association between EBV and GC with an emphasis on the role of epigenetic modifications in the suppression or progression of carcinogenesis. To put all findings in a nutshell, several genes and chromatin mutations, promoter hypermethylation and subsequent silencing of related genes, and histone modifications and aberrant micro RNAs (miRNAs) expression were considered as the major altered mechanisms in the pathogenesis of EBVaGC, most of which able to be suggested as therapeutic targets. However, the current knowledge appeared to be imperfect, hence further studies are encouraged.
Collapse
Affiliation(s)
- Fatemeh Estaji
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeed Zibaee
- Department of Research and Development of Biological Products, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Mashhad, Iran
| | - Maryam Torabi
- Department of Biotechnology, Molecular Biology Laboratory of Khorasan Razavi Veterinary Head Office, Mashhad, Iran
| | - Sharareh Moghim
- Department of Bacteriology & Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Li F, Wang Y, Ping X, Yin JC, Wang F, Zhang X, Li X, Zhai J, Shen L. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade. J Biomed Res 2024; 38:1-16. [PMID: 39314047 DOI: 10.7555/jbr.38.20240118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Early screening is crucial for the prevention of intestinal-type gastric cancer. The objective of the current study was to ascertain molecular evolution of intestinal-type gastric cancer according to the Correa cascade for the precise gastric cancer screening. We collected sequential lesions of the Correa cascade in the formalin-fixed and paraffin-embedded endoscopic submucosal dissection-resected specimens from 14 Chinese patients by microdissection, and subsequently determined the profiles of somatic aberrations during gastric carcinogenesis using the whole exome sequencing, identifying multiple variants at different Correa stages. The results showed that TP53, PCLO, and PRKDC were the most frequently mutated genes in the early gastric cancer (EGC). A high frequency of TP53 alterations was found in low-grade intraepithelial neoplasia (LGIN), which further increased in high-grade intraepithelial neoplasia (HGIN) and EGC. Intestinal metaplasia (IM) had no significant correlation with EGC in terms of mutational spectra, whereas both LGIN and HGIN showed higher genomic similarities to EGC, compared with IM. Based on Jaccard similarity coefficients, three evolutionary models were further constructed, and most patients showed linear progression from LGIN to HGIN, ultimately resulting in EGC. The ECM-receptor interaction pathway was revealed to be involved in the linear evolution. Additionally, the retrospective validation study of 39 patients diagnosed with LGIN indicated that PRKDC mutations, in addition to TP53 mutations, may drive LGIN progression to HGIN or EGC. In conclusion, the current study unveils the genomic evolution across the Correa cascade of intestinal-type gastric cancer, elucidates the underlying molecular mechanisms of gastric carcinogenesis, and provides some evidence for potential personalized gastric cancer surveillance.
Collapse
Affiliation(s)
- Fangyuan Li
- Digestive Endoscopy Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaochun Ping
- Department of General Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiani C Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210061, China
| | - Fufeng Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210061, China
| | - Xian Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210061, China
| | - Xiang Li
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Lizong Shen
- Department of General Surgery, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Yu N, Huang S, Zhang Z, Huang M, Wang Y, Zhang W, Zhang X, Zhu X, Sheng X, Yu K, Chen Z, Guo W. A prospective phase II single-arm study and predictive factor analysis of irinotecan as third-line treatment in patients with metastatic gastric cancer. Ther Adv Med Oncol 2024; 16:17588359241229433. [PMID: 38425987 PMCID: PMC10903192 DOI: 10.1177/17588359241229433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024] Open
Abstract
Background Currently, there is no recommended standard third-line chemotherapy for metastatic gastric cancer. Objectives In this study, we aimed to evaluate irinotecan's efficacy and safety in treating metastatic gastric cancer after the failure of first- and second-line chemotherapy. Design Prospective single-arm, two-center, phase II trial. Methods Patients were aged 18-70 years, with histologically confirmed gastric adenocarcinoma and an Eastern Cooperative Oncology Group performance status of 0-1, progressed during or within 3 months following the last administration of second-line chemotherapy and had no other severe hematologic, cardiac, pulmonary, hepatic, or renal functional abnormalities or immunodeficiency diseases. Eligible patients received 28-day cycles of irinotecan (180 mg/m2 intravenously, days 1 and 15) and were assessed according to the RECIST 1.1 criteria every two cycles. Patients who discontinued treatment for any reason were followed up every 2 months until death. The primary endpoint was overall survival (OS), and the secondary endpoints were progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and toxicity. Results A total of 98 eligible patients were enrolled in this study. In the intention-to-treat population, the median OS was 7.17 months, the median PFS was 3.47 months, and the ORR and DCR were 4.08% and 47.96%, respectively. In the per-protocol population, the median OS was 7.77 months, the median PFS was 3.47 months, and the ORR and DCR were 4.82% and 50.60%, respectively. The incidence of grade 3 or 4 hematological and non-hematological toxicities was 19.4%, and none of the patients died owing to adverse events. Cox regression analysis revealed neutropenia and baseline thrombocyte levels were independently correlated with PFS and OS. Conclusion Irinotecan monotherapy is an efficient, well-tolerated, and economical third-line treatment for patients with metastatic gastric cancer as a third-line treatment. Trial registration ClinicalTrials.gov identifier: NCT02662959.
Collapse
Affiliation(s)
- Nuoya Yu
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sha Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhe Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhu Huang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yusheng Wang
- Department of Digestive, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| | - Wen Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaowei Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuedan Sheng
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kaiyue Yu
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyu Chen
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weijian Guo
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Li J, Xu S, Zhu F, Shen F, Zhang T, Wan X, Gong S, Liang G, Zhou Y. Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer. Curr Med Chem 2024; 31:6692-6712. [PMID: 38351697 DOI: 10.2174/0109298673284520240112055108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 10/19/2024]
Abstract
Gastric cancer (GC) is a highly intricate gastrointestinal malignancy. Early detection of gastric cancer forms the cornerstone of precision medicine. Several studies have been conducted to investigate early biomarkers of gastric cancer using genomics, transcriptomics, proteomics, and metabolomics, respectively. However, endogenous substances associated with various omics are concurrently altered during gastric cancer development. Furthermore, environmental exposures and family history can also induce modifications in endogenous substances. Therefore, in this study, we primarily investigated alterations in DNA mutation, DNA methylation, mRNA, lncRNA, miRNA, circRNA, and protein, as well as glucose, amino acid, nucleotide, and lipid metabolism levels in the context of GC development, employing genomics, transcriptomics, proteomics, and metabolomics. Additionally, we elucidate the impact of exposure factors, including HP, EBV, nitrosamines, smoking, alcohol consumption, and family history, on diagnostic biomarkers of gastric cancer. Lastly, we provide a summary of the application of machine learning in integrating multi-omics data. Thus, this review aims to elucidate: i) the biomarkers of gastric cancer related to genomics, transcriptomics, proteomics, and metabolomics; ii) the influence of environmental exposure and family history on multiomics data; iii) the integrated analysis of multi-omics data using machine learning techniques.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Siyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Feng Zhu
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention, 172 Jiangsu Rd, Nanjing, 210009, China
| | - Fei Shen
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention, 172 Jiangsu Rd, Nanjing, 210009, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Saisai Gong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yonglin Zhou
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention, 172 Jiangsu Rd, Nanjing, 210009, China
| |
Collapse
|
8
|
Lee JE, Kim KT, Shin SJ, Cheong JH, Choi YY. Genomic and evolutionary characteristics of metastatic gastric cancer by routes. Br J Cancer 2023; 129:672-682. [PMID: 37422528 PMCID: PMC10421927 DOI: 10.1038/s41416-023-02338-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND In gastric cancer (GC) patients, metastatic progression through the lymphatic, hematogenous, peritoneal, and ovarian routes, is the ultimate cause of death. However, the genomic and evolutionary characteristics of metastatic GC have not been widely evaluated. METHODS Whole-exome sequencing data were analyzed for 99 primary and paired metastatic gastric cancers from 15 patients who underwent gastrectomy and metastasectomy. RESULTS Hematogenous metastatic tumors were associated with increased chromosomal instability and de novo gain/amplification in cancer driver genes, whereas peritoneal/ovarian metastasis was linked to sustained chromosomal stability and de novo somatic mutations in driver genes. The genomic distance of the hematogenous and peritoneal metastatic tumors was found to be closer to the primary tumors than lymph node (LN) metastasis, while ovarian metastasis was closer to LN and peritoneal metastasis than the primary tumor. Two migration patterns for metastatic GCs were identified; branched and diaspora. Both molecular subtypes of the metastatic tumors, rather than the primary tumor, and their migration patterns were related to patient survival. CONCLUSIONS Genomic characteristics of metastatic gastric cancer is distinctive by routes and associated with patients' prognosis along with genomic evolution pattenrs, indicating that both primary and metastatic gastric cancers require genomic evaluation.
Collapse
Affiliation(s)
- Jae Eun Lee
- Portrai Inc., Seoul, Korea
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Ki Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry, Seoul National University, Seoul, South Korea
- Dental Research Institute and Dental Multi-omics Center, Seoul National University, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yoon Young Choi
- Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea.
| |
Collapse
|
9
|
Zhu Y, Hu Y, Wang P, Dai X, Fu Y, Xia Y, Sun L, Ruan S. Comprehensive bioinformatics and experimental analysis of SH3PXD2B reveals its carcinogenic effect in gastric carcinoma. Life Sci 2023; 326:121792. [PMID: 37211344 DOI: 10.1016/j.lfs.2023.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
AIMS We aim to explore the possibility and mechanism of SH3PXD2B as a reliable biomarker for gastric cancer (GC). MAIN METHODS We used public databases to analyze the molecular characteristics and disease associations of SH3PXD2B, and KM database for prognostic analysis. The TCGA gastric cancer dataset was used for single gene correlation, differential expression, functional enrichment and immunoinfiltration analysis. SH3PXD2B protein interaction network was constructed by the STRING database. And the GSCALite database was used to explore sensitive drugs and perform SH3PXD2B molecular docking. The impact of SH3PXD2B silencing and over-expression by lentivirus transduction on the proliferation and invasion of human GC HGC-27 and NUGC-3 cells was determined. KEY FINDINGS The high expression of SH3PXD2B in gastric cancer was related to the poor prognosis of patients. It may affect the progression of gastric cancer by forming a regulatory network with FBN1, ADAM15 and other molecules, and the mechanism may involve regulating the infiltration of Treg, TAM and other immunosuppressive cells. The cytofunctional experiments verified that it significantly promoted the proliferation and migration of gastric cancer cells. In addition, we found that some drugs were sensitive to the expression of SH3PXD2B such as sotrastaurin, BHG712 and sirolimus, and they had strong molecular combination of SH3PXD2B, which may provide guidance for the treatment of gastric cancer. SIGNIFICANCE Our study strongly suggests that SH3PXD2B is a carcinogenic molecule that can be used as a biomarker for GC detection, prognosis, treatment design, and follow-up.
Collapse
Affiliation(s)
- Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yunhong Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Peipei Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinyang Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
10
|
LncRNA LINC01094 Promotes Cells Proliferation and Metastasis through the PTEN/AKT Pathway by Targeting AZGP1 in Gastric Cancer. Cancers (Basel) 2023; 15:cancers15041261. [PMID: 36831602 PMCID: PMC9954187 DOI: 10.3390/cancers15041261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were recently reported to play an essential role in multiple cancer types. Herein, through next-generation sequencing, we screened metastasis-driving molecules by using tissues from early-stage gastric cancer (GC) patients with lymph node metastasis, and we identified a lncRNA LINC01094, which was associated with the metastasis of GC. According to the clinical data from the TCGA, GSE15459, and GSE62254 cohorts, the high expression of LINC01094 was associated with an unfavorable prognosis. Moreover, 106 clinical GC and paired normal samples were collected, and the qRT-PCR results showed that the high expression of LINC01094 was associated with high T and N stages and a poor prognosis. We found that LINC01094 promotes the proliferation and metastasis of GC in vitro and in vivo. AZGP1 was found as the protein-binding partner of LINC01094 by using RNA pulldown and RNA-binding protein immunoprecipitation (RIP) assays. LINC01094 antagonizes the function of AZGP1, downregulates the expression of PTEN, and further upregulates the AKT pathway. Collectively, our results suggested that LINC01094 might predict the prognosis of GC patients and become the therapy target for GC.
Collapse
|
11
|
Xi J, Deng Z, Liu Y, Wang Q, Shi W. Integrating multi-type aberrations from DNA and RNA through dynamic mapping gene space for subtype-specific breast cancer driver discovery. PeerJ 2023; 11:e14843. [PMID: 36755866 PMCID: PMC9901305 DOI: 10.7717/peerj.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Driver event discovery is a crucial demand for breast cancer diagnosis and therapy. In particular, discovering subtype-specificity of drivers can prompt the personalized biomarker discovery and precision treatment of cancer patients. Still, most of the existing computational driver discovery studies mainly exploit the information from DNA aberrations and gene interactions. Notably, cancer driver events would occur due to not only DNA aberrations but also RNA alternations, but integrating multi-type aberrations from both DNA and RNA is still a challenging task for breast cancer drivers. On the one hand, the data formats of different aberration types also differ from each other, known as data format incompatibility. On the other hand, different types of aberrations demonstrate distinct patterns across samples, known as aberration type heterogeneity. To promote the integrated analysis of subtype-specific breast cancer drivers, we design a "splicing-and-fusing" framework to address the issues of data format incompatibility and aberration type heterogeneity simultaneously. To overcome the data format incompatibility, the "splicing-step" employs a knowledge graph structure to connect multi-type aberrations from the DNA and RNA data into a unified formation. To tackle the aberration type heterogeneity, the "fusing-step" adopts a dynamic mapping gene space integration approach to represent the multi-type information by vectorized profiles. The experiments also demonstrate the advantages of our approach in both the integration of multi-type aberrations from DNA and RNA and the discovery of subtype-specific breast cancer drivers. In summary, our "splicing-and-fusing" framework with knowledge graph connection and dynamic mapping gene space fusion of multi-type aberrations data from DNA and RNA can successfully discover potential breast cancer drivers with subtype-specificity indication.
Collapse
Affiliation(s)
- Jianing Xi
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Zhen Deng
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Wen Shi
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Li D, Zhang X, Jiang L. Molecular mechanism and potential therapeutic targets of liver metastasis from gastric cancer. Front Oncol 2022; 12:1000807. [PMID: 36439439 PMCID: PMC9682021 DOI: 10.3389/fonc.2022.1000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 03/22/2024] Open
Abstract
Gastric cancer (GC) is characterized by high invasion and poor prognosis. The occurrence of liver metastasis seriously affects advanced GC prognosis. In recent years, great progress has been made in the field of GC liver metastasis. The abnormal expression of related genes leads to the occurrence of GC liver metastasis through metastasis cascades. The changes in the liver microenvironment provide a pre-metastasis condition for GC cells to colonize and grow. The development of several potential therapeutic targets might provide new therapeutic strategies for its treatment. Therefore, we reviewed the regulatory mechanism of abnormal genes mediating liver metastasis, the effect of liver resident cells on liver metastasis, and potential therapeutic targets, hoping to provide a novel therapeutic option to improve the quality of life and prognosis of GC patients with liver metastasis.
Collapse
Affiliation(s)
- Difeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Transcriptomic and Proteomic Profiles for Elucidating Cisplatin Resistance in Head-and-Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225511. [PMID: 36428603 PMCID: PMC9688094 DOI: 10.3390/cancers14225511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
To identify the novel genes involved in chemoresistance in head and neck squamous cell carcinoma (HNSCC), we explored the expression profiles of the following cisplatin (CDDP) resistant (R) versus parental (sensitive) cell lines by RNA-sequencing (RNA-seq): JHU029, HTB-43 and CCL-138. Using the parental condition as a control, 30 upregulated and 85 downregulated genes were identified for JHU029-R cells; 263 upregulated and 392 downregulated genes for HTB-43-R cells, and 154 upregulated and 68 downregulated genes for CCL-138-R cells. Moreover, we crossed-checked the RNA-seq results with the proteomic profiles of HTB-43-R (versus HTB-43) and CCL-138-R (versus CCL-138) cell lines. For the HTB-43-R cells, 21 upregulated and 72 downregulated targets overlapped between the proteomic and transcriptomic data; whereas in CCL-138-R cells, four upregulated and three downregulated targets matched. Following an extensive literature search, six genes from the RNA-seq (CLDN1, MAGEB2, CD24, CEACAM6, IL1B and ISG15) and six genes from the RNA-seq and proteomics crossover (AKR1C3, TNFAIP2, RAB7A, LGALS3BP, PSCA and SSRP1) were selected to be studied by qRT-PCR in 11 HNSCC patients: six resistant and five sensitive to conventional therapy. Interestingly, the high MAGEB2 expression was associated with resistant tumours and is revealed as a novel target to sensitise resistant cells to therapy in HNSCC patients.
Collapse
|