1
|
Plessis-Belair J, Russo T, Riessland M, Sher RB. Nuclear Import Defects Drive Cell Cycle Dysregulation in Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635269. [PMID: 39975276 PMCID: PMC11838365 DOI: 10.1101/2025.01.28.635269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases (NDDs) and other age-related disorders have been classically defined by a set of key pathological hallmarks. Two of these hallmarks, cell cycle dysregulation (CCD) and nucleocytoplasmic transport (NCT) defects, have long been debated as being either causal or consequential in the pathology of accelerated aging. Specifically, aberrant cell cycle activation in post-mitotic neurons has been shown to trigger neuronal cell death pathways and cellular senescence. Additionally, NCT has been observed to be progressively dysregulated during aging and in neurodegeneration, where the increased subcellular redistribution of nuclear proteins such as TAR DNA-Binding Protein-43 (TDP43) to the cytoplasm is a primary driver of many NDDs. However, the functional significance of NCT defects as either a primary driver or consequence of pathology, and how the redistribution of cell cycle machinery contributes to neurodegeneration, remains unclear. Here, we describe that pharmacological inhibition of importin-β nuclear import is capable of perturbing cell cycle machinery both in mitotic neuronal cell lines and post-mitotic primary neurons in vitro. Our Nemf R86S mouse model of motor neuron disease, characterized by nuclear import defects, further recapitulates the hallmarks of CCD in mitotic cell lines and in post-mitotic primary neurons in vitro, and in spinal motor neurons in vivo. The observed CCD is consistent with the transcriptional and phenotypical dysregulation observed in neuronal cell death and cellular senescence in NDDs. Together, this evidence suggests that impairment of nuclear import pathways resulting in CCD may be a common driver of pathology in neurodegeneration.
Collapse
Affiliation(s)
- Jonathan Plessis-Belair
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Taylor Russo
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Roger B Sher
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Yang Z, Luo TT, Dai YL, Duan HX, Chong CM, Tang J. Pharmacological Strategies and Surgical Management of Posthemorrhagic Hydrocephalus Following Germinal Matrix-Intraventricular Hemorrhage in Preterm Infants. Curr Neuropharmacol 2025; 23:241-255. [PMID: 39248058 PMCID: PMC11808585 DOI: 10.2174/1570159x23666240906115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 09/10/2024] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is a detrimental neurological complication that occurs in preterm infants, especially in babies born before 32 weeks of gestation and in those with a very low birth weight. GM-IVH is defined as a rupture of the immature and fragile capillaries located in the subependymal germinal matrix zone of the preterm infant brain, and it can lead to detrimental neurological sequelae such as posthemorrhagic hydrocephalus (PHH), cerebral palsy, and other cognitive impairments. PHH following GM-IVH is difficult to treat in the clinic, and no levelone strategies have been recommended to pediatric neurosurgeons. Several cellular and molecular mechanisms of PHH following GM-IVH have been studied in animal models, but no effective pharmacological strategies have been used in the clinic. Thus, a comprehensive understanding of molecular mechanisms, potential pharmacological strategies, and surgical management of PHH is urgently needed. The present review presents a synopsis of the pathogenesis, diagnosis, and cellular and molecular mechanisms of PHH following GM-IVH and explores pharmacological strategies and surgical management.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Tian Tian Luo
- Department of Neurobiology, Army Medical University (Third military medical university), Chongqing, 400038, China
| | - Ya-Lan Dai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Han-Xiao Duan
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jun Tang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| |
Collapse
|
3
|
Pence HH, Kilic E, Elibol B, Kuras S, Guzel M, Buyuk Y, Pence S. Brain microRNA profiles after exposure to heroin in rats. Exp Brain Res 2024; 243:24. [PMID: 39671092 DOI: 10.1007/s00221-024-06972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Heroin addiction is one of the neuropsychiatric burdens that affects many genetic and epigenetic systems. While it is known that heroin may change the expressions of some genes in the brain during dependence, there is no detailed study related to which gene are mostly affected. Therefore, in the current study, we aimed to determine alterations in the miRNA profiles of rats' brains for providing a detailed analysis of molecular mechanisms in heroin addiction-related toxicology. Next generation global miRNA sequencing was used to predict potential miRNAs in prefrontal cortex (PC), hippocampus, ventral tegmental area (VTA), striatum, and Nucleus accumbens (NA) of rats that exposed to heroin by intravenous injections. The total daily dose was started with 2 mg/kg and ended with 10 mg/kg on the 10th day. In the striatum, miR-18a, miR-17-5p, miR-20a-5p, miR-106a, miR-301a-3p, miR872-5p, miR-15a-5p, miR-500-3p, and miR-339-5p expressions were upregulated by nearly 2-to-4 times with heroin. The expressions of hippocampal miR-153-3p, miR-130a-3p, miR-204-5p, miR-15b-5p, and miR-137-3p and the expressions of miR-872, miR-183-5p, miR-20a-5p, miR-325-5p, miR-379-5p, and miR-340-5p in the VTA were 2-times higher in the heroin-addicted rats. While there was nearly 2-times increase in the miR-129-1-3p and miR-3068-3p expressions in the NA, no change was noted in the PC due to heroin. The only heroin-dependent downregulation was observed in the expressions of striatal miR-450b-3p and miR-103-1-5p of VTA. These results suggested that heroin addiction might give harm to brain by altering cytokine balance and increasing neuroinflammation and apoptosis. In addition, neurons also try to compensate these abnormalities by enhancing neurogenesis and angiogenesis through several miRNAs in the different brain regions. In conclusion, the present study may provide a more integrated view of the molecular mechanism and a potential biomarker that will aid in clinical diagnosis and treatment of heroin-dependence.
Collapse
Affiliation(s)
- Halime Hanim Pence
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Türkiye, Istanbul, Turkey.
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sibel Kuras
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Türkiye, Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yalcin Buyuk
- Department of Forensic Art, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
4
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
5
|
Sun H, Li Z, Liu N, Xu T, Hu K, Shao Y, Chen X. Long Non-coding RNA SNHG7 Suppresses Inflammation and Apoptosis of Chondrocytes Through Inactivating of p38 MAPK Signaling Pathway in Osteoarthritis. Mol Biotechnol 2024; 66:2287-2296. [PMID: 37632672 DOI: 10.1007/s12033-023-00856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
This study aims to explore the molecular mechanism of LncRNA SNHG7 in Osteoarthritis (OA). Cartilage tissues of OA patients or patients with trauma or amputation were collected. Compared to normal cartilage tissues, SNHG7 was downregulated while miR-324-3p was upregulated in cartilage tissues of OA patients. IL-1β was used to induce damage to chondrocytes and treatment with IL-1β reduced SNHG7 expression in OA chondrocytes. In IL-1β-treated OA chondrocytes, SNHG7 overexpression reduced the levels of TNF-α and IL-6, inhibited cell apoptosis, and increased cell viability. Additionally, the luciferase reporter assay proved that SNHG7 upregulated dual-specificity phosphatase 1 (DUSP1) by sponging miR-324-3p, thereby inactivating the p38 MAPK signaling pathway by regulating the miR-324-3p/DUSP1 axis. Anisomycin (a p38 MAPK activator) enhanced OA chondrocytes inflammation, promoted cell apoptosis, and reduced cell viability; however, this was reversed by SNHG7 overexpression. This study demonstrates that the SNHG7/miR-324-3p/DUSP1 axis suppresses OA chondrocytes inflammation and apoptosis by inhibiting the p38 MAPK signaling pathway. Thus, this study indicates that SNHG7 is a novel target for OA treatment.
Collapse
Affiliation(s)
- Heyan Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui, 230022, China
| | - Zhenwei Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui, 230022, China
| | - Nannan Liu
- Department of Histology and Embrology, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China
| | - Kongzu Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yubao Shao
- Department of Histology and Embrology, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China
| | - Xiaoyu Chen
- Department of Histology and Embrology, Anhui Medical University, No.81 meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
6
|
Giovannetti A, Lazzari S, Mangoni M, Traversa A, Mazza T, Parisi C, Caputo V. Exploring non-coding genetic variability in ACE2: Functional annotation and in vitro validation of regulatory variants. Gene 2024; 915:148422. [PMID: 38570058 DOI: 10.1016/j.gene.2024.148422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
The surge in human whole-genome sequencing data has facilitated the study of non-coding region variations, yet understanding their biological significance remains a challenge. We used a computational workflow to assess the regulatory potential of non-coding variants, with a particular focus on the Angiotensin Converting Enzyme 2 (ACE2) gene. This gene is crucial in physiological processes and serves as the entry point for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 19 (COVID-19). In our analysis, using data from the gnomAD population database and functional annotation, we identified 17 significant Single Nucleotide Variants (SNVs) in ACE2, particularly in its enhancers, promoters, and 3' untranslated regions (UTRs). We found preliminary evidence supporting the regulatory impact of some of these variants on ACE2 expression. Our detailed examination of two SNVs, rs147718775 and rs140394675, in the ACE2 promoter revealed that these co-occurring SNVs, when mutated, significantly enhance promoter activity, suggesting a possible increase in specific ACE2 isoform expression. This method proves effective in identifying and interpreting impactful non-coding variants, aiding in further studies and enhancing understanding of molecular bases of monogenic and complex traits.
Collapse
Affiliation(s)
- Agnese Giovannetti
- Clinical Genomics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Sara Lazzari
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| | - Manuel Mangoni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Alice Traversa
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi "Link Campus University", Via del Casale di San Pio V 44, 00165 Roma, Italy.
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, snc, 71013 S. Giovanni Rotondo (FG), Italy.
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo (RM), Italy.
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| |
Collapse
|
7
|
Wang H, Shi Y, Zhou X, Zhang L, Yang A, Zhou D, Ma T. HNRNPA2B1 stabilizes NFATC3 levels to potentiate its combined actions with FOSL1 to mediate vasculogenic mimicry in GBM cells. Cell Biol Toxicol 2024; 40:44. [PMID: 38862832 PMCID: PMC11166796 DOI: 10.1007/s10565-024-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.
Collapse
Affiliation(s)
- Hanting Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yiwen Shi
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Aodan Yang
- The First Clinical College of China Medical University, Shenyang, 110002, China
| | - Dabo Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China.
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
8
|
Ding Y, Lin M, Wang J, Shang X. RBM3 enhances the stability of MEF2C mRNA and modulates blood-brain barrier permeability in AD microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119738. [PMID: 38670534 DOI: 10.1016/j.bbamcr.2024.119738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Blood-brain barrier (BBB) changes are acknowledged as early indicators of Alzheimer's disease (AD). The permeability and integrity of the BBB rely significantly on the essential role played by the tight junction proteins (TJPs) connecting endothelial cells. This study found the reduced RNA binding motif protein 3 (RBM3) expression in brain microvascular endothelial cells (BMECs) incubated with Aβ1-42. This downregulation of RBM3 caused a decrease in the levels of ZO-1 and occludin and increased the permeability of BBB cell model in AD microenvironment. Myocyte enhancer factor 2C (MEF2C) expression was also inhibited in BMECs incubated with Aβ1-42. A decrease in MEF2C expression led to increased permeability of BBB cell model in AD microenvironment and reductions in the levels of ZO-1 and occludin. Further analysis of the underlying mechanism revealed that RBM3 binds to and stabilizes MEF2C mRNA. MEF2C binds to the promoters of ZO-1 and occludin, enhancing their transcriptional activities and modulating BBB permeability. RBM3 increases the stability of MEF2C mRNA and subsequently modulates BBB permeability through the paracellular pathway of TJPs. This may provide new insights for AD research.
Collapse
Affiliation(s)
- Ye Ding
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meiqing Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jirui Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Zhang L, Zhu B, Zhou X, Ning H, Zhang F, Yan B, Chen J, Ma T. ZNF787 and HDAC1 Mediate Blood-Brain Barrier Permeability in an In Vitro Model of Alzheimer's Disease Microenvironment. Neurotox Res 2024; 42:12. [PMID: 38329647 DOI: 10.1007/s12640-024-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in β-amyloid (Aβ)1-42-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Baicheng Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Fengying Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, China
| | - Bingju Yan
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Pan Q, Wang Y, Liu J, Jin X, Xiang Z, Li S, Shi Y, Chen Y, Zhong W, Ma X. MiR-17-5p Mediates the Effects of ACE2-Enriched Endothelial Progenitor Cell-Derived Exosomes on Ameliorating Cerebral Ischemic Injury in Aged Mice. Mol Neurobiol 2023; 60:3534-3552. [PMID: 36892728 DOI: 10.1007/s12035-023-03280-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Aging is one of the key mechanisms of vascular dysfunction and contributes to the initiation and progression of ischemic stroke (IS). Our previous study demonstrated that ACE2 priming enhanced the protective effects of exosomes derived from endothelial progenitor cells (EPC-EXs) on hypoxia-induced injury in aging endothelial cells (ECs). Here, we aimed to investigate whether ACE2-enriched EPC-EXs (ACE2-EPC-EXs) could attenuate brain ischemic injury by inhibiting cerebral EC damage through their carried miR-17-5p and the underlying molecular mechanisms. The enriched miRs in ACE2-EPC-EXs were screened using the miR sequencing method. EPC-EXs, ACE2-EPC-EXs, and ACE2-EPC-EXs with miR-17-5p deficiency (ACE2-EPC-EXsantagomiR-17-5p) were administered to transient middle cerebral artery occlusion (tMCAO)-operated aged mice or coincubated with hypoxia/reoxygenation (H/R)-treated aging ECs. The results showed that (1) the level of brain EPC-EXs and their carried ACE2 were significantly decreased in aged mice compared to in young mice, and (2) after tMCAO, aged mice displayed increases in brain cell senescence, infarct volume, and neurological deficit score (NDS) and a decrease in cerebral blood flow (CBF). (3) Compared with EPC-EXs, ACE2-EPC-EXs were enriched with miR-17-5p and more effective in increasing ACE2 and miR-17-5p expression in cerebral microvessels, accompanied by obvious increases in cerebral microvascular density (cMVD) and cerebral blood flow (CBF) and decreases in brain cell senescence, infarct volume, neurological deficit score (NDS), cerebral EC ROS production, and apoptosis in tMCAO-operated aged mice. Moreover, silencing of miR-17-5p partially abolished the beneficial effects of ACE2-EPC-EXs. (4) In H/R-treated aging ECs, ACE2-EPC-EXs were more effective than EPC-EXs in decreasing cell senescence, ROS production, and apoptosis and increasing cell viability and tube formation. In a mechanistic study, ACE2-EPC-EXs more effectively inhibited PTEN protein expression and increased the phosphorylation of PI3K and Akt, which were partially abolished by miR-17-5p knockdown. Altogether, our data suggest that ACE-EPC-EXs have better protective effects on ameliorating aged IS mouse brain neurovascular injury by inhibiting cell senescence, EC oxidative stress, apoptosis, and dysfunction by activating the miR-17-5p/PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jinhua Liu
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaojuan Jin
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhi Xiang
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Suqing Li
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yumeng Shi
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Wangtao Zhong
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
11
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
12
|
Zhu B, Zhang L, Zhou X, Ning H, Ma T. Transcription factor ZNF22 regulates blood-tumor barrier permeability by interacting with HDAC3 protein. Front Mol Neurosci 2022; 15:1027942. [PMID: 36518188 PMCID: PMC9742255 DOI: 10.3389/fnmol.2022.1027942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/11/2022] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE The primary goals of this study were to investigate the potential roles of ZNF22 and HDAC3 as a histone deacetylase in regulating an increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect. METHODS The expression of ZNF22 and HDAC3 in glioma-exposed endothelial cells (GECs) of BTB were detected transcription real-time PCR or western blot. The interaction of ZNF22 and HDAC3 in GECs associated with transcript effect was analyzed by means of Co-Immunoprecipitation and luciferase reporter assay. RESULTS In the present investigation, GECs expressed higher levels of ZNF22 as a zinc finger transcription factor and HDAC3 than endothelial cells. We then affirmed that silencing HDAC3 or ZNF22 led to a reduction in BTB permeability. By bioinformatics analysis, chromatin immunoprecipitation (ChIP) assays and luciferase assay, we found that ZNF22 had a target binding relationship with the promoter regions of ZO-1, Occludin, and Claudin-5 and negatively regulated the expression of ZO-1, Occludin, and Claudin-5. Furthermore, we revealed that HDAC3, as a co-transcript repressor with histone deacetylase activity, could interact with ZNF22 to hinder the expression of TJ-associated proteins, thereby further facilitating the permeability of BTB. CONCLUSION ZNF22 acted as a transcription factor in conjunction with HDAC3 to modulate the expression of TJ-associated proteins, which was correlated with an increase in BTB permeability. These results may provide new strategies and targets for the chemotherapy of gliomas as well as intracranial infections.
Collapse
Affiliation(s)
- Baicheng Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xinxin Zhou
- Liaoning TCM Academy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|