1
|
Cauwelier C, de Ridder I, Bultynck G. Recent advances in canonical versus non-canonical Ca 2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119713. [PMID: 38521468 DOI: 10.1016/j.bbamcr.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca2+ homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3). On the other hand, Bcl-2 suppress pro-apoptotic Ca2+ signals by binding and inhibiting IP3 receptors via its BH4 domain, which is structurally exiled from the hydrophobic cleft by a flexible loop region (FLR). As such, Bcl-2 prevents excessive Ca2+ transfer from ER to mitochondria. Whereas regulation of both pathways requires different functional regions of Bcl-2, both seem to be connected in cancers that overexpress Bcl-2 in a life-promoting dependent manner. Here we discuss the anti-apoptotic canonical and non-canonical role, via calcium signaling, of Bcl-2 in health and cancer and evolving from this the proposed anti-cancer therapies with their shortcomings. We also argue how some cancers, with the major focus on diffuse large B-cell lymphoma (DLBCL) are difficult to treat, although theoretically prime marked for Bcl-2-targeting therapeutics. Further work is needed to understand the non-canonical functions of Bcl-2 also at organelles beyond the mitochondria, the interaction partners outside the Bcl-2 family as well as their ability to target or exploit these functions as therapeutic strategies in diseases.
Collapse
Affiliation(s)
- Claire Cauwelier
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
2
|
Ramos C, Bonasera D, Saggau J, Kabiljo J, Lin P, Tishina S, Rincón MG. 12th Tuscany Retreat on Cancer Research and Apoptosis: Genetic profiling, resistance mechanisms and novel treatment concepts in cancer and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119677. [PMID: 38266659 DOI: 10.1016/j.bbamcr.2024.119677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The 12th Tuscany Retreat on Cancer Research and Apoptosis was held on August 19-26, 2023. The biennial retreat aims to bring together scientists who advance research in cancer, cell death, and neurodegenerative diseases. Topics covered ranged from drug resistance in cancer to insights into novel molecular cell signaling mechanisms and targets, all related to the pathways and molecules that regulate programmed cell death and the diseases that result from the dysregulation of programmed cell death. In this meeting review, we summarize the content of the most recent retreat.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Debora Bonasera
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany; Genetic instability, cell death and inflammation laboratory, Institute of Biochemistry I, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Julia Saggau
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany; Genetic instability, cell death and inflammation laboratory, Institute of Biochemistry I, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Julijan Kabiljo
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Peter Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sofya Tishina
- Department of Translational Genomics, Medical Faculty, University of Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging- Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph- Stelzmann-Straße 26, 50931 Cologne, Germany
| | - María G Rincón
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Liu P, Sun D, Zhang S, Chen S, Wang X, Li H, Wei F. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies. Cell Biosci 2024; 14:21. [PMID: 38341583 DOI: 10.1186/s13578-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.
Collapse
Affiliation(s)
- Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
4
|
Sneyers F, Speelman-Rooms F, Verhelst SHL, Bootman MD, Bultynck G. Cellular effects of BAPTA: Are they only about Ca 2+ chelation? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119589. [PMID: 37739271 DOI: 10.1016/j.bbamcr.2023.119589] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Intracellular Ca2+ signals play a vital role in a broad range of cell biological and physiological processes in all eukaryotic cell types. Dysregulation of Ca2+ signaling has been implicated in numerous human diseases. Over the past four decades, the understanding of how cells use Ca2+ as a messenger has flourished, largely because of the development of reporters that enable visualization of Ca2+ signals in different cellular compartments, and tools that can modulate cellular Ca2+ signaling. One such tool that is frequently used is BAPTA; a fast, high-affinity Ca2+-chelating molecule. By making use of a cell-permeable acetoxymethyl ester (AM) variant, BAPTA can be readily loaded into the cytosol of cells (referred to as BAPTAi), where it is trapped and able to buffer changes in cytosolic Ca2+. Due to the ease of loading of the AM version of BAPTA, this reagent has been used in hundreds of studies to probe the role of Ca2+ signaling in specific processes. As such, for decades, researchers have almost universally attributed changes in biological processes caused by BAPTAi to the involvement of Ca2+ signaling. However, BAPTAi has often been used without any form of control, and in many cases has neither been shown to be retained in cells for the duration of experiments nor to buffer any Ca2+ signals. Moreover, increasing evidence points to off-target cellular effects of BAPTA that are clearly not related to Ca2+ chelation. Here, we briefly introduce Ca2+ signaling and the history of Ca2+ chelators and fluorescent Ca2+ indicators. We highlight Ca2+-independent effects of BAPTAi on a broad range of molecular targets and describe some of BAPTAi's impacts on cell functions that occur independently of its Ca2+-chelating properties. Finally, we propose strategies for determining whether Ca2+ chelation, the binding of other metal ions, or off-target interactions with cell components are responsible for BAPTAi's effect on a particular process and suggest some future research directions.
Collapse
Affiliation(s)
- Flore Sneyers
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, B-3000 Leuven, Belgium
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, B-3000 Leuven, Belgium
| | - Martin D Bootman
- The Open University, Cancer Research Group, School of Life, Health and Chemical Sciences, Milton Keynes, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|