1
|
Sun X, Duan K, Shen X, Dong C, Zhou Y, Chen T, Li W, Li P, Wang P, Li D, Zhou J. Construction and validation of a nomogram model for predicting peritoneal metastasis in gastric cancer based on ferroptosis-relate genes and clinicopathological features. J Gastrointest Oncol 2025; 16:264-280. [PMID: 40115916 PMCID: PMC11921409 DOI: 10.21037/jgo-24-670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 03/23/2025] Open
Abstract
Background Gastric cancer peritoneal metastasis (GCPM) is a lethal condition. Current diagnostic methods for GCPM, such as imaging and serum tumor markers, lack specificity and sensitivity. Research suggests that utilizing gene signatures to predict GCPM shows significant predictive ability. Nonetheless, the predictability of GCPM using ferroptosis-related genes (FRGs) remains unknown. We aim to construct a nomogram based on FRGs for early diagnosis of GCPM. Methods RNA sequencing and clinical data of patients with gastric cancer (GC) were downloaded from Gene Expression Omnibus (GEO) databases. GCPM was diagnosed through imaging, biopsy and cytology. A GCPM prediction model was developed based on six distinctively expressed FRGs, and the efficiency of the model was assessed through receiver operating characteristic (ROC) curves in both experimental and validation cohorts. Subsequently, 115 clinical samples were examined by immunohistochemistry (IHC) to validate the prediction model's accuracy. Results Our analysis included 282 patients, among whom 54 had GCPM while 228 did not. Patients were randomly distributed into experimental and validation groups at a 3:2 ratio. Least absolute shrinkage and selection operator (LASSO) regression identified the coefficients of six FRGs, with a risk score calculated for every patient. Univariate and multivariate logistic analyses revealed that both risk score and pathological stage were significantly associated with GCPM. The area under the curve (AUC) values for the training and validating sets implied good predictability for GCPM (0.827 and 0.767, respectively). Combining the risk score with the tumor node metastasis (TNM) stage substantially improved predictability (AUCs were 0.916 and 0.848 respectively). Lastly, a nomogram incorporating the risk score and TNM stage was constructed, which shows good clinical utility through decision curve analysis (DCA). The IHC results from 115 clinical samples were consistent with these findings. Conclusions A nomogram model based on FRGs and clinicopathological features was constructed, demonstrating impressive predictive value for GCPM. This enables timely and personalized therapeutic interventions, thereby benefiting gastric cancer patients.
Collapse
Affiliation(s)
- Xiaotong Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kaipeng Duan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaochun Shen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yajing Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weikang Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengbo Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongbao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Lenoci D, Serafini MS, Lucchetta M, Cavalieri S, Brakenhoff RH, Hoebers F, Scheckenbach K, Poli T, Licitra L, De Cecco L. Ferroptosis-Related Gene Signatures: Prognostic Role in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2025; 17:530. [PMID: 39941896 PMCID: PMC11817470 DOI: 10.3390/cancers17030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Despite advances in the management of head and neck squamous cell carcinoma (HNSCC), prognostic models and treatment strategies remain inadequate, particularly for HPV-positive oropharyngeal squamous cell carcinoma (OPSCC). The rising incidence of HPV-positive OPSCC highlights an urgent need for innovative therapeutic approaches. Ferroptosis, a regulated form of non-apoptotic cell death, has gained attention for its role in cancer progression, but its potential as a prognostic and therapeutic target in HPV-positive OPSCC remains largely unexplored. This study investigates the role of ferroptosis in HPV-positive OPSCC, aiming to identify prognostic markers and provide insights into potential therapeutic strategies that could improve patient outcomes. METHODS Thirteen ferroptosis gene expression signatures were retrieved from the literature, and their performance and association to the immune microenvironment were validated on a meta-analysis of 267 HPV-positive cases (Metanalysis-HPV267) and 286 samples from the BD2Decide project (BD2-HPV286). RESULTS Our analysis revealed that specific ferroptosis-related gene expression signatures, particularly FER3, FER4, FER6, and FER12, are significantly associated (p-value < 0.05) with high-risk patient groups and adverse tumor microenvironment features, including suppressed immune activity and enhanced stromal involvement. Elevated expression of CAV1, a ferroptosis suppressor, further delineates high-risk profiles. CONCLUSIONS These findings highlight the prognostic significance of ferroptosis in stratifying patients and identifying those with poorer clinical outcomes. Targeting ferroptosis pathways represents a novel and promising approach to addressing the unmet need for effective prognostic and therapeutic strategies in HPV-positive OPSCC. Future research should focus on translating these findings into clinical applications to advance precision oncology and improve outcomes for this growing patient population.
Collapse
Affiliation(s)
- Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| | - Mara Serena Serafini
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| | - Marta Lucchetta
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (S.C.); (L.L.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Ruud H. Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Cancer Biology and Immunology, Cancer Center Amsterdam (CCA), 1081 HV Amsterdam, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Tito Poli
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, 43126 Parma, Italy;
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (S.C.); (L.L.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| |
Collapse
|
3
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Guo Y, Wang H, Wang X, Chen K, Feng L. Enhancing radiotherapy in triple-negative breast cancer with hesperetin-induced ferroptosis via AURKA targeting nanocomposites. J Nanobiotechnology 2024; 22:744. [PMID: 39614277 DOI: 10.1186/s12951-024-02987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer type that lacks targeted treatment options. Ferroptosis, a novel therapeutic strategy, induces cell death by disrupting the oxidative-reductive balance. Hesperetin, a potential TNBC therapeutic drug, has unidentified regulatory targets. The objective of this study was to explore the potential targets of hesperetin in TNBC and investigate whether the nanocomposites carrier hesperetin-loaded ferroptosis-inducing nanocomposites (HFPN), which activates ferroptosis, can enhance the anti-tumor efficacy of hesperetin. Bioinformatics methods were employed to screen hesperetin targets in TNBC, and a molecular docking model between hesperetin and the core target aurora kinase A (AURKA) was successfully constructed. The stability and anti-tumor activity of HFPN were validated in cell and mouse models, including tumor suppression and increased radiation sensitivity. These results suggest that HFPN can regulate the core target AURKA in TNBC, disrupt tumor oxidative-reductive balance, promote ferroptosis in tumor cells, and ultimately enhance the effectiveness of radiation therapy for TNBC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Breast Surgery, The First Hospital of China Medical University, No.155 Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Huan Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xinlei Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Keyan Chen
- Laboratory Animal Science of China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
| | - Liang Feng
- Department of Breast Surgery, The First Hospital of China Medical University, No.155 Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
5
|
Zhao J, Xing W, Ji C, Hu H, Zhang Y, Wang Z, Liu J. Nucleophosmin 1 overexpression enhances neuroprotection by attenuating cellular stress in traumatic brain injury. Exp Neurol 2024; 383:115019. [PMID: 39428041 DOI: 10.1016/j.expneurol.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a multifaceted injury that can cause a wide range of symptoms and impairments, leading to significant effects on brain function. Nucleophosmin 1 (NPM1), a versatile phosphoprotein located in the nucleolus, is being recognized as a possible controller of cellular stress reactions and could be important in reducing neuro dysfunction caused by TBI. However the critical roles of NPM1 in cellular stress in TBI remains unclear. METHODS We employed a control cortical impact mouse model and a scratch-induced primary neuronal culture model. Hematoxylin and eosin staining was used to evaluate tissue damage and cellular changes, with NPM1 expression in the cortical area assessed through immunofluorescence staining and Western blot analysis. Neuronal morphology was assessed using Nissl staining. Behavioral assessments were performed to evaluate the impact of NPM1 overexpression on neurobehavioral results in TBI mice. Mitochondrial function was assessed using an Extracellular Flux Analyzer. RESULTS Following TBI, an increase in NPM1 expression was observed, with a peak at 72 h post-injury. Increased levels of NPM1 resulted in decreased neuronal cell death, as shown by Nissl staining, and lower levels of Caspase 8, APE1, H2AX, and 8-OHDG expression, indicating a reduction in DNA damage. NPM1 overexpression also resulted in improved neurobehavioral outcomes, characterized by decreased neurological deficits and enhanced motor function post-TBI. Additionally, in vitro, scratch-induction experiments revealed that NPM1 overexpression mitigated mitochondrial damage, as evidenced by the downregulation of P53, BCL2, and Cyto C expression levels and improvements in mitochondrial respiratory function. CONCLUSION These findings suggest NPM1 as a promising target for developing interventions to alleviate TBI-related cellular stress and promote neuronal survival.
Collapse
Affiliation(s)
- Jiashuo Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu Province, 215000, China
| | - Weixin Xing
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Department of Neurosurgery, The 928th Hospital of People's Liberation Army Joint Logistic Support Force, Haikou, Hainan Province, 570000, China
| | - Chengyuan Ji
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Hongwei Hu
- Department of Neurosurgery, Changzhou Jintan First People's Hospital Affiliated to Jiangsu University, 500 Jintan Avenue, Jintan 210036, China
| | - Yuanqing Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Jiangang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
6
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Wang S, Zi H, Li M, Kong J, Fan C, Bai Y, Sun J, Wang T. Development and validation of a mitotic catastrophe-related genes prognostic model for breast cancer. PeerJ 2024; 12:e18075. [PMID: 39314848 PMCID: PMC11418815 DOI: 10.7717/peerj.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Breast cancer has become the most common malignant tumor in women worldwide. Mitotic catastrophe (MC) is a way of cell death that plays an important role in the development of tumors. However, the exact relationship between MC-related genes (MCRGs) and the development of breast cancer is still unclear, and further research is needed to elucidate this complexity. Methods Transcriptome data and clinical data of breast cancer were downloaded from the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We identified differential expression of MCRGs by comparing tumor tissue with normal tissue. Subsequently, we used COX regression analysis and LASSO regression analysis to construct the prognosis risk model of MCRGs. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the predictive ability of prognostic model. Moreover, the clinical relevance, gene set enrichment analysis (GSEA), immune landscape, tumor mutation burden (TMB), and immunotherapy and drug sensitivity analysis between high-risk and low-risk groups were systematically investigated. Finally, we validated the expression levels of genes involved in constructing the prognostic model through real-time quantitative polymerase chain reaction (RT-qPCR) at the cellular and tissue levels. Results We identified 12 prognostic associated MCRGs, four of which were selected to construct prognostic model. The Kaplan-Meier analysis suggested that patients in the high-risk group had a shorter overall survival (OS). The Cox regression analysis and ROC analysis indicated that risk model had independent and excellent ability in predicting prognosis of breast cancer patients. Mechanistically, a remarkable difference was observed in clinical relevance, GSEA, immune landscape, TMB, immunotherapy response, and drug sensitivity analysis. RT-qPCR results showed that genes involved in constructing the prognostic model showed significant abnormal expressions and the expression change trends were consistent with the bioinformatics results. Conclusions We established a prognosis risk model based on four MCRGs that had the ability to predict clinical prognosis and immune landscape, proposing potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Shuai Wang
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Haoyi Zi
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Mengxuan Li
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Jing Kong
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Cong Fan
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Yujie Bai
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Jianing Sun
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Ting Wang
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Kaplan Ö, Gökşen Tosun N. Molecular pathway of anticancer effect of next-generation HSP90 inhibitors XL-888 and Debio0932 in neuroblastoma cell line. Med Oncol 2024; 41:194. [PMID: 38958814 PMCID: PMC11222184 DOI: 10.1007/s12032-024-02428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Nazan Gökşen Tosun
- Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat Vocational School of Health Services, Tokat, Türkiye.
| |
Collapse
|
9
|
Jia X, Tian J, Fu Y, Wang Y, Yang Y, Zhang M, Yang C, Liu Y. Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC. Int J Mol Sci 2024; 25:4372. [PMID: 38673957 PMCID: PMC11050640 DOI: 10.3390/ijms25084372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.
Collapse
Affiliation(s)
- Xiao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
- Key Laboratory of Evidence Science, China University of Political Science and Law University, Beijing 100088, China
- Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100088, China
| | - Jiao Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yueyue Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yiqi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Mengzhou Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law University, Beijing 100088, China
- Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100088, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| |
Collapse
|
10
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|