1
|
Shankar V, Pappa AZ, van Blitterswijk C, Vrij E, Giselbrecht S. Morphometric-Assisted Prediction of Developmental Toxicity Using Stem Cell-Based Embryo Models in Microwells. Adv Healthc Mater 2025:e2404847. [PMID: 40347068 DOI: 10.1002/adhm.202404847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/18/2025] [Indexed: 05/12/2025]
Abstract
Congenital abnormalities cause ≈3% of fetal defects and premature deaths in Europe, often due to maternal exposure to toxicants. To mitigate the ethical and logistical challenges of animal studies, stem cell-based models are being exploredthat offer scalable readouts at various stages of embryogenesis. However, most current in vitro models are limited in complexity, throughput, automation compatibility or real-time spatio-temporal read-outs. In this study, a scalable, automated platform capable of imaging and quantifying morphological features such as shape, size, texture, and marker intensity is presented. Using a microwell screening platform, XEn/EpiCs, a peri-implantation stage embryo model that mimics eXtraembryonic Endoderm and Epiblast co-development, is robustly generated and used to screen a library of 38 reported compounds. Unlike conventional cytotoxicity assays, this approach also evaluates development-disrupting morphological changes, termed "morphotoxicity", thereby offering complementary insights that may improve the prediction of developmental toxicity across cell types. This pilot study shows thathigh doses of compoundslike retinoic acid, caffeine, ampyrone, and dexamethasone, significantly disrupt XEn/EpiC development, causing morphotoxic effects with or without affecting cell viability. Together, thisstudy highlights the importance of complementing cytotoxicity assessments with morphotoxicity read-outs, emphasizing its potential to enhance the evaluation of teratogenic risks in toxicity tests.
Collapse
Affiliation(s)
- Vinidhra Shankar
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, 6229ET, The Netherlands
| | - Athanasia Zoi Pappa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, 6229ET, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, 6229ET, The Netherlands
| | - Erik Vrij
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, 6229ET, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, 6229ET, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, 6229ET, The Netherlands
| |
Collapse
|
2
|
Garg V, Yang Y, Nowotschin S, Setty M, Salataj E, Kuo YY, Murphy D, Sharma R, Jang A, Polyzos A, Pe'er D, Apostolou E, Hadjantonakis AK. Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice. Dev Cell 2025; 60:901-917.e12. [PMID: 39729987 PMCID: PMC11998022 DOI: 10.1016/j.devcel.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024]
Abstract
Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4-, KLF4-, and SOX2-induced XEN-to-induced pluripotent stem (iPS) reprogramming progressed with diminished efficiency and kinetics. A dominant PrE transcriptional program, safeguarded by GATA4, alongside elevated chromatin accessibility and reduced DNA methylation of the EPI underscored the differential plasticities of the two states. Mapping in vitro to embryo trajectories tracked reprogramming cells in either direction along EPI and PrE in vivo states, without transitioning through the ICM.
Collapse
Affiliation(s)
- Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eralda Salataj
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amy Jang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Polyzos
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Effie Apostolou
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
3
|
Čović M, Zjalić M, Mihajlović L, Pap M, Wagner J, Mandić D, Debeljak Ž, Heffer M. Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line. Metabolites 2023; 13:817. [PMID: 37512524 PMCID: PMC10385368 DOI: 10.3390/metabo13070817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Sucralose is widely used as a non-nutritive sweetener (NNS). However, in order to justify its use as a non-nutritive food additive, sucralose would have to be metabolically neutral. The aim of this study was to examine whether sucralose altered the insulin signaling pathway in an in vitro cell model of Parkinson's disease (PD)-the dopaminergic differentiated cell line SH-SY5Y. Cells were exposed to sucralose alone and in combination with either insulin or levodopa. Activation of the insulin signaling pathway was assessed by quantifying protein kinase B (AKT) and glycogen synthase kinase 3 (GSK3), as well as the phosphorylated forms of insulin-like growth factor 1 receptor (IGF1-R). Metabolic effects were assayed using MALDI-TOF MS analysis. In the cell viability test, 2 mM sucralose had a negative effect, and levodopa in all combinations had a positive effect. Sucralose treatment alone suppressed GSK3 and IGF1-R phosphorylation in a dose-dependent manner. This treatment also altered the metabolism of fatty acids and amino acids, especially when combined with insulin and levodopa. Suppression of the insulin signaling pathway and sucralose-induced changes in the metabolic profile could underlie a diet-acquired insulin resistance, previously associated with neurodegeneration, or may be an altered response to insulin or levodopa medical therapy.
Collapse
Affiliation(s)
- Marina Čović
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lovro Mihajlović
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, 31000 Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, 31000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Sabini E, Arboit L, Khan MP, Lanzolla G, Schipani E. Oxidative phosphorylation in bone cells. Bone Rep 2023; 18:101688. [PMID: 37275785 PMCID: PMC10238578 DOI: 10.1016/j.bonr.2023.101688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The role of energy metabolism in bone cells is an active field of investigation. Bone cells are metabolically very active and require high levels of energy in the form of adenosine triphosphate (ATP) to support their function. ATP is generated in the cytosol via glycolysis coupled with lactic acid fermentation and in the mitochondria via oxidative phosphorylation (OXPHOS). OXPHOS is the final convergent metabolic pathway for all oxidative steps of dietary nutrients catabolism. The formation of ATP is driven by an electrochemical gradient that forms across the mitochondrial inner membrane through to the activity of the electron transport chain (ETC) complexes and requires the presence of oxygen as the final electron acceptor. The current literature supports a model in which glycolysis is the main source of energy in undifferentiated mesenchymal progenitors and terminally differentiated osteoblasts, whereas OXPHOS appears relevant in an intermediate stage of differentiation of those cells. Conversely, osteoclasts progressively increase OXPHOS during differentiation until they become multinucleated and mitochondrial-rich terminal differentiated cells. Despite the abundance of mitochondria, mature osteoclasts are considered ATP-depleted, and the availability of ATP is a critical factor that regulates the low survival capacity of these cells, which rapidly undergo death by apoptosis. In addition to ATP, bioenergetic metabolism generates reactive oxygen species (ROS) and intermediate metabolites that regulate a variety of cellular functions, including epigenetics changes of genomic DNA and histones. This review will briefly discuss the role of OXPHOS and the cross-talks OXPHOS-glycolysis in the differentiation process of bone cells.
Collapse
Affiliation(s)
- Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Lorenzo Arboit
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Giulia Lanzolla
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia 19104, PA, USA
| |
Collapse
|
5
|
Garg V, Yang Y, Nowotschin S, Setty M, Kuo YY, Sharma R, Polyzos A, Salataj E, Murphy D, Jang A, Pe’er D, Apostolou E, Hadjantonakis AK. Single-cell analysis of bidirectional reprogramming between early embryonic states reveals mechanisms of differential lineage plasticities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534648. [PMID: 37034770 PMCID: PMC10081288 DOI: 10.1101/2023.03.28.534648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Two distinct fates, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common progenitor cells, the inner cell mass (ICM), in mammalian embryos. To study how these sister identities are forged, we leveraged embryonic (ES) and eXtraembryonic ENdoderm (XEN) stem cells - in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses uncovered distinct rates, efficiencies and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4, KLF4 and SOX2-induced XEN-to-iPS reprogramming progressed with diminished efficiency and kinetics. The dominant PrE transcriptional program, safeguarded by Gata4, and globally elevated chromatin accessibility of EPI underscored the differential plasticities of the two states. Mapping in vitro trajectories to embryos revealed reprogramming in either direction tracked along, and toggled between, EPI and PrE in vivo states without transitioning through the ICM.
Collapse
Affiliation(s)
- Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Polyzos
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eralda Salataj
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan Murphy
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amy Jang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Effie Apostolou
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| |
Collapse
|
6
|
Medvedev KE, Savelyeva AV, Chen KS, Bagrodia A, Jia L, Grishin NV. Integrated Molecular Analysis Reveals 2 Distinct Subtypes of Pure Seminoma of the Testis. Cancer Inform 2022; 21:11769351221132634. [PMID: 36330202 PMCID: PMC9623390 DOI: 10.1177/11769351221132634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Testicular germ cell tumors (TGCT) are the most common solid malignancy in adolescent and young men, with a rising incidence over the past 20 years. Overall, TGCTs are second in terms of the average life years lost per person dying of cancer, and clinical therapeutics without adverse long-term side effects are lacking. Platinum-based regimens for TGCTs have heterogeneous outcomes even within the same histotype that frequently leads to under- and over-treatment. Understanding of molecular differences that lead to diverse outcomes of TGCT patients may improve current treatment approaches. Seminoma is the most common subtype of TGCTs, which can either be pure or present in combination with other histotypes. Methods Here we conducted a computational study of 64 pure seminoma samples from The Cancer Genome Atlas, applied consensus clustering approach to their transcriptomic data and revealed 2 clinically relevant seminoma subtypes: seminoma subtype 1 and 2. Results Our analysis identified significant differences in pluripotency stage, activity of double stranded DNA breaks repair mechanisms, rates of loss of heterozygosity, and expression of lncRNA responsible for cisplatin resistance between the subtypes. Seminoma subtype 1 is characterized by higher pluripotency state, while subtype 2 showed attributes of reprograming into non-seminomatous TGCT. The seminoma subtypes we identified may provide a molecular underpinning for variable responses to chemotherapy and radiation. Conclusion Translating our findings into clinical care may help improve risk stratification of seminoma, decrease overtreatment rates, and increase long-term quality of life for TGCT survivors.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of
Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna V Savelyeva
- Department of Urology, University of
Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of
Texas Southwestern Medical Center, Dallas, TX, USA
- Children’s Medical Center Research
Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of
Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Urology, University of
California San Diego Health, La Jolla, CA, USA
| | - Liwei Jia
- Department of Pathology, University of
Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of
Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University
of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Spent media analysis suggests cultivated meat media will require species and cell type optimization. NPJ Sci Food 2022; 6:46. [PMID: 36175443 PMCID: PMC9523075 DOI: 10.1038/s41538-022-00157-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Cell culture media design is perhaps the most significant hurdle currently facing the commercialization of cultivated meat as an alternative source of dietary protein. Since media optimization for a specific culture system requires a significant amount of effort and investment, a major question remaining is whether media formulations can be easily shared across multiple production schemes for cells of different species and lineages. Here, we perform spent medium analysis to compare the specific nutrient utilization of primary embryonic chicken muscle precursor cells and fibroblasts to the murine C2C12 myoblast cell line. We demonstrate that these related cell types have significantly different nutrient utilization patterns collectively and on a per-cell basis, and that many components of conventional media do not appear to be depleted by the cells. Namely, glucose was not consumed as rapidly nor as completely by the chicken muscle precursors compared to other cells overall, and there were significant differences in specific consumption rates for several other key nutrients over the first day of culture. Ultimately, our results indicate that no one medium is likely ideal and cost effective to culture multiple cell types and that novel methods to streamline media optimization efforts will be important for the industry to develop.
Collapse
|
8
|
O-GlcNAcylation and Regulation of Galectin-3 in Extraembryonic Endoderm Differentiation. Biomolecules 2022; 12:biom12050623. [PMID: 35625551 PMCID: PMC9138951 DOI: 10.3390/biom12050623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The regulation of proteins through the addition and removal of O-linked β-N-acetylglucosamine (O-GlcNAc) plays a role in many signaling events, specifically in stem cell pluripotency and the regulation of differentiation. However, these post-translational modifications have not been explored in extraembryonic endoderm (XEN) differentiation. Of the plethora of proteins regulated through O-GlcNAc, we explored galectin-3 as a candidate protein known to have various intracellular and extracellular functions. Based on other studies, we predicted a reduction in global O-GlcNAcylation levels and a distinct galectin expression profile in XEN cells relative to embryonic stem (ES) cells. By conducting dot blot analysis, XEN cells had decreased levels of global O-GlcNAc than ES cells, which reflected a disbalance in the expression of genes encoding O-GlcNAc cycle enzymes. Immunoassays (Western blot and ELISA) revealed that although XEN cells (low O-GlcNAc) had lower concentrations of both intracellular and extracellular galectin-3 than ES cells (high O-GlcNAc), the relative secretion of galectin-3 was significantly increased by XEN cells. Inducing ES cells toward XEN in the presence of an O-GlcNAcase inhibitor was not sufficient to inhibit XEN differentiation. However, global O-GlcNAcylation was found to decrease in differentiated cells and the extracellular localization of galectin-3 accompanies these changes. Inhibiting global O-GlcNAcylation status does not, however, impact pluripotency and the ability of ES cells to differentiate to the XEN lineage.
Collapse
|
9
|
|
10
|
Hu X, Ono M, Chimge NO, Chosa K, Nguyen C, Melendez E, Lou CH, Lim P, Termini J, Lai KKY, Fueger PT, Teo JL, Higuchi Y, Kahn M. Differential Kat3 Usage Orchestrates the Integration of Cellular Metabolism with Differentiation. Cancers (Basel) 2021; 13:cancers13235884. [PMID: 34884992 PMCID: PMC8656857 DOI: 10.3390/cancers13235884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The coupling of metabolism with cellular status is critically important and highly evolutionarily conserved. However, how cells coordinate metabolism with transcription as they change their status is not clear. Utilizing multiomic and functional studies, we now demonstrate the dichotomous roles of the Kat3 coactivators CBP and p300 and, in particular, their extreme N-termini, in coordinating cellular metabolism with cell differentiation. Using multiple in vitro and in vivo systems, our study sheds new light on metabolic regulation in homeostasis and disease, including cancer. Abstract The integration of cellular status with metabolism is critically important and the coupling of energy production and cellular function is highly evolutionarily conserved. This has been demonstrated in stem cell biology, organismal, cellular and tissue differentiation and in immune cell biology. However, a molecular mechanism delineating how cells coordinate and couple metabolism with transcription as they navigate quiescence, growth, proliferation, differentiation and migration remains in its infancy. The extreme N-termini of the Kat3 coactivator family members, CBP and p300, by far the least homologous regions with only 66% identity, interact with members of the nuclear receptor family, interferon activated Stat1 and transcriptionally competent β-catenin, a critical component of the Wnt signaling pathway. We now wish to report based on multiomic and functional investigations, utilizing p300 knockdown, N-terminal p300 edited and p300 S89A edited cell lines and p300 S89A knockin mice, that the N-termini of the Kat3 coactivators provide a highly evolutionarily conserved hub to integrate multiple signaling cascades to coordinate cellular metabolism with the regulation of cellular status and function.
Collapse
Affiliation(s)
- Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Punnajit Lim
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
11
|
Lung T, Di Cesare P, Risch L, Nydegger U, Risch M. Elementary Laboratory Assays as Biomarkers of Ageing: Support for Treatment of COVID-19? Gerontology 2021; 67:503-516. [PMID: 34340235 PMCID: PMC8450824 DOI: 10.1159/000517659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Youth, working age and the elderly: On a timeline, chronological age (CA) and biological age (BA) may dissociate; nosological entities manifest themselves at different BAs. In determining which disease corresponds to a given age decade, statistical registries of causes of death are unreliable and this does not change with SARS CoV-2 infection. Beyond adolescence, ageing metrics involve estimations of changes in fitness, including prediction models to estimate the number of remaining years left to live. A substantial disparity in biomarker levels and health status of ageing can be observed: the difference in CA and BA in the large cohorts under consideration is glaring. Here, we focus more closely on ageing and senescence metrics in order to make information available for risk analysis non the least with COVID-19, including the most recent risk factors of ABO blood type and 3p21.31 chromosome cluster impacting on C5a and SC5b-9 plasma levels. From the multitude of routine medical laboratory assays, a potentially meaningful set of assays aimed to best reflect the stage of individual senescence; hence risk factors the observational prospective SENIORLABOR study of 1,467 healthy elderly performed since 2009 and similar approaches since 1958 can be instantiated as a network to combine a set of elementary laboratory assays quantifying senescence.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
| | | |
Collapse
|
12
|
Han U, Kim W, Cha H, Park JH, Hong J. Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body. iScience 2021; 24:102297. [PMID: 33851104 PMCID: PMC8022842 DOI: 10.1016/j.isci.2021.102297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Individual cell environment stimulating single cell is a suitable strategy for the generation of sophisticated multicellular aggregates with localized biochemical signaling. However, such strategy for induced pluripotent stem cell (iPSC)-derived embryoid bodies (EBs) is limited because the presence of external stimulation can inhibit spontaneous cellular communication, resulting in misdirection in the maturation and differentiation of EBs. In this study, a facile method of engineering the iPSC membrane to stimulate the inner cell of EBs while maintaining cellular activities is reported. We coated the iPSC surface with nanoscale extracellular matrix fabricated by self-assembly between vitronectin and heparin. This nano-coating allowed iPSC to retain its in vitro properties including adhesion capability, proliferation, and pluripotency during its aggregation. More importantly, the nano-coating did not induce lineage-specific differentiation but increased E-cadherin expression, resulting in promotion of development of EB. This study provides a foundation for future production of sophisticated patient-specific multicellular aggregates by modification of living cell membranes. VTN/HEP nano-coating acts as a flexible individual cellular environment VTN/HEP nano-coating stimulates embryoid body to promote its development VTN/HEP nano-coating preserves spontaneous cell aggregation
Collapse
Affiliation(s)
- Uiyoung Han
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyeonjin Cha
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Kim NH, Kim BW, Moon H, Yoo H, Kang RH, Hur JK, Oh Y, Kim BM, Kim D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal Chim Acta 2021; 1152:338269. [PMID: 33648642 DOI: 10.1016/j.aca.2021.338269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A turn-on fluorescent nanoprobe (named AAP-1), based on an aggregation-induced emission luminogen (AIEgen), is disclosed for the detection of adenosine triphosphate (ATP), which is an essential element in the biological system. Organic fluorophore (named TPE-TA) consists of tetraphenylethylene (TPE, sensing and signaling moiety) and mono-triamine (TA, sensing moiety), and it forms an aggregated form in aqueous media as a nanoprobe AAP-1. The nanoprobe AAP-1 has multiple electrostatic interactions as well as hydrophobic interactions with ATP, and it displays superior selectivity toward ATP, reliable sensitivity, with a detection limit around 0.275 ppb, and fast responsive (signal within 10 s). Such a fluorescent probe to monitor ATP has been actively pursued throughout fundamental and translational research areas. In vitro assay and a successful cellular ATP imaging application was demonstrated in cancer cells and embryonic stem cells. We expect that our work warrants further ATP-related studies throughout a variety of fields.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junho K Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
14
|
Martorelli Di Genova B, Knoll LJ. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front Cell Infect Microbiol 2020; 10:604897. [PMID: 33381466 PMCID: PMC7768002 DOI: 10.3389/fcimb.2020.604897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that undergo sexual reproduction during their life cycle. T. gondii can infect any warm-blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines. Eimeria spp. are usually restricted to one host species, and their whole life cycle is completed within this same host. The literature reviewed in this article comprises the recent findings regarding the unique biology of the sexual development of T. gondii and Eimeria spp. The molecular basis of sex in these pathogens has been significantly unraveled by new findings in parasite differentiation along with transcriptional analysis of T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic networks, analysis of these transcriptome datasets shows enrichment for several different metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp. merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-pathogen interaction and host restriction have significantly expanded the understating of the unique biology of these pathogens. This review aims to critically explore advances in the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the sexual cycle of Eimeria spp. and T. gondii.
Collapse
Affiliation(s)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
He X, Chi G, Li M, Xu J, Zhang L, Song Y, Wang L, Li Y. Characterisation of extraembryonic endoderm-like cells from mouse embryonic fibroblasts induced using chemicals alone. Stem Cell Res Ther 2020; 11:157. [PMID: 32299508 PMCID: PMC7164364 DOI: 10.1186/s13287-020-01664-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The development of somatic reprogramming, especially purely chemical reprogramming, has significantly advanced biological research. And chemical-induced extraembryonic endoderm-like (ciXEN) cells have been confirmed to be an indispensable intermediate stage of chemical reprogramming. They resemble extraembryonic endoderm (XEN) cells in terms of transcriptome, reprogramming potential, and developmental ability in vivo. However, the other characteristics of ciXEN cells and the effects of chemicals and bFGF on the in vitro culture of ciXEN cells have not been systematically reported. Methods Chemicals and bFGF in combination with Matrigel were used to induce the generation of ciXEN cells derived from mouse embryonic fibroblasts (MEFs). RNA sequencing was utilised to examine the transcriptome of ciXEN cells, and PCR/qPCR assays were performed to evaluate the mRNA levels of the genes involved in this study. Hepatic functions were investigated by periodic acid-Schiff staining and indocyanine green assay. Lactate production, ATP detection, and extracellular metabolic flux analysis were used to analyse the energy metabolism of ciXEN cells. Results ciXEN cells expressed XEN-related genes, exhibited high proliferative capacity, had the ability to differentiate into visceral endoderm in vitro, and possessed the plasticity allowing for their differentiation into induced hepatocytes (iHeps). Additionally, the upregulated biological processes of ciXEN cells compared to those in MEFs focused on metabolism, but their energy production was independent of glycolysis. Furthermore, without the cocktail of chemicals and bFGF, which are indispensable for the generation of ciXEN cells, induced XEN (iXEN) cells remained the expression of XEN markers, the high proliferative capacity, and the plasticity to differentiate into iHeps in vitro. Conclusions ciXEN cells had high plasticity, and energy metabolism was reconstructed during chemical reprogramming, but it did not change from aerobic oxidation to glycolysis. And the cocktail of chemicals and bFGF were non-essential for the in vitro culture of ciXEN cells.
Collapse
Affiliation(s)
- Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Lina Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.,Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
16
|
Gatie MI, Assabgui AR, Kelly GM. The Zen of XEN: insight into differentiation, metabolism and genomic integrity. Cell Death Dis 2018; 9:1075. [PMID: 30349040 PMCID: PMC6197270 DOI: 10.1038/s41419-018-1120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed I Gatie
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, Canada.,Collaborative Graduate Specialization in Developmental Biology, The University of Western Ontario, London, ON, Canada
| | - Amy R Assabgui
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Gregory M Kelly
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON, Canada. .,Collaborative Graduate Specialization in Developmental Biology, The University of Western Ontario, London, ON, Canada. .,Department of Paediatrics, The University of Western Ontario, London, ON, Canada. .,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada. .,Child Health Research Institute, London, ON, Canada. .,Ontario Institute for Regenerative Medicine, Toronto, ON, Canada.
| |
Collapse
|