1
|
Tai L, Zhu D, Tang P, Li J, Li J, Li P, Tao Z, Lei H, Miao K, Wang HX, Lin S, Zhang L, Dou M, Han Y, Shen HM, Deng C, Wang L, Di LJ. Reciprocal stabilization of CtBP and TRIM28 represses autophagy to promote metastasis. Nat Struct Mol Biol 2025:10.1038/s41594-025-01554-0. [PMID: 40374929 DOI: 10.1038/s41594-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2025] [Indexed: 05/18/2025]
Abstract
Deciphering the processes through which cancer cells overcome stress, escape a repressive microenvironment and metastasize remains a challenge. Autophagy has been demonstrated to regulate cancer metastasis and C-terminal binding protein (CtBP) has been previously implicated in promoting metastasis in breast cancer. Here we identify the formation of a complex between CtBP and tripartite-motif-containing protein 28 (TRIM28) in the nucleus. Interestingly, this complex regulates the stability of both proteins, as the removal of either partner leads to degradation of the other. Furthermore, the stability of this complex in the nucleus inhibits autophagy through two independent mechanisms. Firstly, the formation of the complex sequesters TRIM28 in the nucleus, preventing its involvement in and its degradation through autophagy. Secondly, this complex participates in the suppression of PTEN expression and leads to inhibition of Unc-51-like kinase 1-mediated autophagy through activation of the protein kinase B-mammalian target of rapamycin pathway. Using mammary gland-specific CtBP-knockout mice, we demonstrate that repression of autophagy by the CtBP-TRIM28 complex modulates luminal duct formation. In breast cancer models, CtBP-TRIM28-dependent inhibition of cellular autophagy also promotes malignant metastasis. Therefore, our study reveals similarities between the mechanisms driving tumor progression and those involved in normal mammary gland development, potentially helping to pave the way toward targeted intervention in breast cancer metastasis.
Collapse
Affiliation(s)
- Lixin Tai
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Dongliang Zhu
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Ping Tang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Jiajia Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Junyi Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Peipei Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haipeng Lei
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Kai Miao
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Hong-Xia Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuhai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, China
| | - Man Dou
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Metabolomics core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yu Han
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Han-Ming Shen
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Chuxia Deng
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Li Wang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
- Metabolomics core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China.
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Majumder S, Mishra S, Shinde N, Cuitino MC, Bauer M, Ahirwar D, Basree MM, Bharti V, Ormiston K, Mawalkar R, Alsammerai S, Sarathy G, Vilgelm AE, Zhang X, Ganju RK, Ramaswamy B. Divergent paths of mammary gland involution: unveiling the cellular dynamics in abruptly and gradually involuted mouse models. Breast Cancer Res 2025; 27:1. [PMID: 39754221 PMCID: PMC11697808 DOI: 10.1186/s13058-024-01933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast. Our previous study utilizing a murine model demonstrated precancerous changes, specifically hyperplasia, a non-obligate precursor of breast cancer in the mammary glands of AI mice. Here we investigated mechanisms during early events of AI that prompts precancerous changes in mouse mammary glands. METHODS Uniparous FVB/N mice were randomized to AI and GI on postpartum day 7 when all pups were removed from AI dams. GI dams were allowed to nurse the pups till day 31. Cell death kinetics and gene expression were assessed by TUNEL assay and qPCR respectively. Immune cell changes were investigated by flow cytometry, cytokine array and multiplex immunofluorescence. 3D-organoid cultures were used for in vitro assay of luminal progenitor cells. RESULTS AI results in rapid cell death, DNA repair response, and immunosuppressive myeloid cells infiltration, leading to a chronically inflamed microenvironment. GI elicits a more controlled immune response and extended cell death. At the peak of cell death, AI glands harbored more immunosuppressive myeloid-derived suppressor cells (MDSCs) and CD206 + M2-like macrophages, known to promote oncogenic events, compared to GI glands. AI glands exhibit an enrichment of CCL9-producing MDSCs and CD206 + M2-like macrophages that promote expansion of ELF5 + /ERα- luminal cells, both in vitro and in vivo. Multiplex imaging of AI glands demonstrated an increase in ELF5 + /WNT5a + luminal cells alongside a reduction in the ELF5 + /ERα + population when involution appeared histologically complete. A significantly higher number of CD206 + cells in post involution AI gland attests to a chronically inflamed state induced by AI. CONCLUSIONS Our findings reveal significant disparities between AI and GI gland dynamics at the early phase of involution. CCL9, secreted by immune cells at the peak of cell death promotes expansion of Elf5 + /ERα- luminal progenitor cells, the putative precursors of TNBC connecting early events of AI with increased breast cancer risk.
Collapse
Affiliation(s)
- Sarmila Majumder
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Neelam Shinde
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maria C Cuitino
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Morgan Bauer
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dinesh Ahirwar
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Mustafa M Basree
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vijaya Bharti
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Kate Ormiston
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Resham Mawalkar
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sara Alsammerai
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gautam Sarathy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Shahsavarnajand Bonab H, Tolouei Azar J, Soraya H, Nouri Habashi A. Aerobic interval training preconditioning protocols inhibit isoproterenol-induced pathological cardiac remodeling in rats: Implications on oxidative balance, autophagy, and apoptosis. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:344-357. [PMID: 39309465 PMCID: PMC11411311 DOI: 10.1016/j.smhs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to investigate the potential cardioprotective effects of moderate and high-intensity aerobic interval training (MIIT and HIIT) preconditioning. The focus was on histological changes, pro-oxidant-antioxidant balance, autophagy initiation, and apoptosis in myocardial tissue incited by isoproterenol-induced pathological cardiac remodeling (ISO-induced PCR). Male Wistar rats were randomly divided into control (n = 6), ISO (n = 8), MIIT (n = 4), HIIT (n = 4), MIIT + ISO (n = 8), and HIIT + ISO (n = 8) groups. The MIIT and HIIT protocols were administered for 10 weeks, followed by the induction of cardiac remodeling using subcutaneous injection of ISO (100 mg/kg for two consecutive days). Alterations in heart rate (HR), mean arterial pressure (MAP), rate pressure product (RPP), myocardial oxygen consumption (MV ˙ O2), cardiac hypertrophy, histopathological changes, pro-oxidant-antioxidant balance, autophagy biomarkers (Beclin-1, Atg7, p62, LC3 I/II), and apoptotic cell distribution were measured. The findings revealed that the MIIT + ISO and HIIT + ISO groups demonstrated diminished myocardial damage, hemorrhage, immune cell infiltration, edema, necrosis, and apoptosis compared to ISO-induced rats. MIIT and HIIT preconditioning mitigated HR, enhanced MAP, and preserved MV ˙ O2 and RPP. The pro-oxidant-antioxidant balance was sustained in both MIIT + ISO and HIIT + ISO groups, with MIIT primarily inhibiting pro-apoptotic autophagy progression through maintaining pro-oxidant-antioxidant balance, and HIIT promoting pro-survival autophagy. The results demonstrated the beneficial effects of both MIIT and HIIT as AITs preconditioning in ameliorating ISO-induced PCR by improving exercise capacity, hemodynamic parameters, and histopathological changes. Some of these protective effects can be attributed to the modulation of cardiac apoptosis, autophagy, and oxidative stress.
Collapse
Affiliation(s)
- Hakimeh Shahsavarnajand Bonab
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Akbar Nouri Habashi
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Salvarredi L, Oglio RA, Rodriguez C, Navarro D, Perona M, Dagrosa MA, Juvenal GJ, Thomasz L. 2-iodohexadecanal induces autophagy during goiter involution. Prostaglandins Other Lipid Mediat 2024; 172:106819. [PMID: 38346574 DOI: 10.1016/j.prostaglandins.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Iodine plays an important role in thyroid physiology and biochemistry. The thyroid is capable of producing different iodolipids such as 2-iodohexadecanal (2-IHDA). Data from different laboratories have shown that 2-IHDA inhibits several thyroid parameters and it has been postulated as intermediary on the action of iodide function. OBJECTIVE To explore different mechanisms involved during the involution of the hyperplastic thyroid gland of Wistar rats towards normality induced by 2-IHDA. METHODS Goiter was induced by the administration of MMI for 10 days, then the treatment was discontinued and Wistar rats were injected with 2-IHDA or KI. RESULTS During involution, 2-IHDA treatment reduced PCNA expression compared to spontaneous involution. KI treatment caused an increase of Caspase-3 activity and TUNEL-positive cells. In contrast, 2-IHDA failed to alter this value but induced an increase of LC3B expression. KI but not 2-IHDA led to an increase in peroxides levels, catalase and glutathione peroxidase activity. CONCLUSIONS We demonstrated that 2-IHDA, in contrast to iodide, did not lead to an increase in oxidative stress or apoptosis induction, indicating that the involution triggered by 2-IHDA in Wistar rats, is primarily due to the inhibition of cell proliferation and the induction of autophagy.
Collapse
Affiliation(s)
- Leonardo Salvarredi
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina; Instituto Balseiro, National Comission of Atomic Energy & National University of Cuyo, Mendoza, Argentina
| | - Romina A Oglio
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina
| | - Carla Rodriguez
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - María A Dagrosa
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - Guillermo J Juvenal
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - Lisa Thomasz
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina.
| |
Collapse
|
5
|
Kern J, Schilling D, Schneeweis C, Schmid RM, Schneider G, Combs SE, Dobiasch S. Identification of the unfolded protein response pathway as target for radiosensitization in pancreatic cancer. Radiother Oncol 2024; 191:110059. [PMID: 38135186 DOI: 10.1016/j.radonc.2023.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND PURPOSE Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.
Collapse
Affiliation(s)
- Jana Kern
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Christian Schneeweis
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Roland M Schmid
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Günter Schneider
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Department of General Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences, Helmholtz Zentrum Munich, Neuherberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences, Helmholtz Zentrum Munich, Neuherberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
6
|
Tian L, Guo S, Zhao Z, Chen Y, Wang C, Li Q, Li Y. miR-30a-3p Regulates Autophagy in the Involution of Mice Mammary Glands. Int J Mol Sci 2023; 24:14352. [PMID: 37762652 PMCID: PMC10531886 DOI: 10.3390/ijms241814352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.
Collapse
Affiliation(s)
- Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Shancheng Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Zhiye Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Yuxu Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.T.); (S.G.); (Z.Z.); (Y.C.)
| | - Chunmei Wang
- Key Laboratory of Dairy Science of Education Ministry, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Education Ministry, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Xu X, Ma M, Shi X, Yan Y, Liu Y, Yang N, Wang Q, Zhang S, Zhang Q. The novel Nsp9-interacting host factor H2BE promotes PEDV replication by inhibiting endoplasmic reticulum stress-mediated apoptosis. Vet Res 2023; 54:27. [PMID: 36949543 PMCID: PMC10035214 DOI: 10.1186/s13567-023-01158-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Porcine epidemic diarrhoea (PED) caused by porcine epidemic diarrhoea virus (PEDV) has led to significant economic losses in the swine industry worldwide. Histone Cluster 2, H2BE (HIST2H2BE), the main protein component in chromatin, has been proposed to play a key role in apoptosis. However, the relationship between H2BE and PEDV remains unclear. In this study, H2BE was shown to bind and interact with PEDV nonstructural protein 9 (Nsp9) via immunoprecipitation-mass spectrometry (IP-MS). Next, we verified the interaction of Nsp9 with H2BE by immunoprecipitation and immunofluorescence. H2BE colocalized with Nsp9 in the cytoplasm and nuclei. PEDV Nsp9 upregulated the expression of H2BE by inhibiting the expression of IRX1. We demonstrated that overexpression of H2BE significantly promoted PEDV replication, whereas knockdown of H2BE by small interfering RNA (siRNA) inhibited PEDV replication. Overexpression of H2BE led to significantly inhibited GRP78 expression, phosphorylated PERK (p-PERK), phosphorylated eIF2 (p-eIF2), phosphorylated IRE1 (p-IRE1), and phosphorylated JNK (p-JNK); negatively regulated CHOP and Bax expression and caspase-9 and caspase-3 cleavage; and promoted Bcl-2 production. Knocking down H2BE exerted the opposite effects. Furthermore, we found that after deletion of amino acids 1-28, H2BE did not promote PEDV replication. In conclusion, these studies revealed the mechanism by which H2BE is associated with ER stress-mediated apoptosis to regulate PEDV replication. Nsp9 upregulates H2BE. H2BE plays a role in inhibiting apoptosis and thus facilitating viral replication, which depends on the N-terminal region of H2BE (amino acids 1-28). These findings provide a reference for host-PEDV interactions and offer the possibility for developing strategies for PEDV decontamination and prevention.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingrui Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Xuan R, Chao T, Zhao X, Wang A, Chu Y, Li Q, Zhao Y, Ji Z, Wang J. Transcriptome profiling of the nonlactating mammary glands of dairy goats reveals the molecular genetic mechanism of mammary cell remodeling. J Dairy Sci 2022; 105:5238-5260. [DOI: 10.3168/jds.2021-21039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
10
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Jeong J, Kadegowda AKG, Meyer TJ, Jenkins LM, Dinan JC, Wysolmerski JJ, Weigert R, Mather IH. The butyrophilin 1a1 knockout mouse revisited: Ablation of Btn1a1 leads to concurrent cell death and renewal in the mammary epithelium during lactation. FASEB Bioadv 2021; 3:971-997. [PMID: 34938960 PMCID: PMC8664049 DOI: 10.1096/fba.2021-00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/28/2023] Open
Abstract
Butyrophilin 1A1 (BTN1A1) is implicated in the secretion of lipid droplets from mammary epithelial cells as a membrane receptor, which forms a secretion complex with the redox enzyme, xanthine oxidoreductase (XDH). The first evidence that BTN1A1 functions in this process was the generation of Btn1a1 -/- mouse lines, in which lipid secretion was disrupted and large unstable droplets were released into alveolar spaces with fragmented surface membranes. We have revisited one of these mutant mouse lines using RNAseq and proteomic analysis to assess the consequences of ablating the Btn1a1 gene on the expression of other genes and proteins. Disruption of intact Btn1a1 protein expression led to a large build-up of Xdh in the cytoplasm, induction of acute phase response genes and Lif-activation of Stat3 phosphorylation. At peak lactation, approx. 10% of the cells were dying, as assessed by TUNEL-analysis of nuclear DNA. Possible cell death pathways included expression of caspase 8 and activated caspase 3, autophagy, Slc5a8-mediated inactivation of survivin (Birc5), and pStat3-mediated lysosomal lysis, the latter of which is the principal death route in involuting wild type cells. Milk secretion was prolonged by renewal of the secretory epithelium, as evidenced by the upregulation of Ki67 in approx. 10% of cell nuclei and expression of cyclins and Fos/Jun. These data highlight the plasticity of the mammary epithelium and the importance of functional BTN1A1 expression for maintenance of terminally differentiated secretory cells and optimal milk production throughout lactation.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Section of Endocrinology and MetabolismDepartment of Internal MedicineYale University School of MedicineNew HavenConnecticut06520USA
| | - Anil K. G. Kadegowda
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of Animal SciencesUniversity of Agricultural Sciences DharwadHubliKarnataka580005India
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics ResourceNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Advanced Biomedical Computational ScienceFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Lisa M. Jenkins
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jerry C. Dinan
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - John J. Wysolmerski
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ian H. Mather
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
12
|
Turpin J, El-Safadi D, Lebeau G, Frumence E, Desprès P, Viranaïcken W, Krejbich-Trotot P. CHOP Pro-Apoptotic Transcriptional Program in Response to ER Stress Is Hacked by Zika Virus. Int J Mol Sci 2021; 22:ijms22073750. [PMID: 33916874 PMCID: PMC8038490 DOI: 10.3390/ijms22073750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus considered as a threat to human health due to large epidemics and serious clinical outcomes such as microcephaly in new-borns. Like all flaviviruses, ZIKV relies on the cellular machinery to complete its viral cycle, with the endoplasmic reticulum (ER) being the critical site of viral replication factories. The sudden high protein load in the ER induces an ER stress to which the cell responds with an appropriate unfolded protein response (UPR) in an attempt to restore its disturbed homeostasis. When the restoration fails, the cell signalling leads to a programmed cell death by apoptosis with the upregulation of the UPR-induced C/EBP homologous protein (CHOP) which acts as the main trigger for this fatal outcome. Our previous studies have shown the ability of ZIKV to manipulate various cellular responses in order to optimize virus production. ZIKV is able to delay apoptosis to its benefit and although ER stress is induced, the UPR is not complete. Here we discovered that ZIKV impairs the expression of CHOP/DDIT3, the main factor responsible of ER-stress driven apoptosis. Surprisingly, the mechanism does not take place at the transcriptional level but at the translational level.
Collapse
|
13
|
Kakehashi A, Chariyakornkul A, Suzuki S, Khuanphram N, Tatsumi K, Yamano S, Fujioka M, Gi M, Wongpoomchai R, Wanibuchi H. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers (Basel) 2021; 13:cancers13061216. [PMID: 33802238 PMCID: PMC8001421 DOI: 10.3390/cancers13061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary The aim of the present study was to discover novel early molecular biomarkers of liver neoplasms which arise in non-alcoholic steatohepatitis (NASH) Stelic Animal Model (STAM) mice. Significant increase of lipid deposits, hepatocyte ballooning, fibrosis, and incidences and multiplicities of hepatocellular adenomas and carcinomas were detected in the livers of 18-week-old STAM mice. From the results of proteome analysis of STAM mice hepatocellular carcinomas, significant elevation of a novel protein, cache domain-containing 1 (CACHD1) was found. Furthermore, we observed CACHD1-positive foci in STAM mice livers, which number, area, and cell proliferation index within the foci were significantly elevated. Results of immunohistochemical and in vitro functional analysis indicated that CACHD1 may become a useful early biomarker and potential molecular target in NASH-associated hepatocarcinogenesis, which is involved in control of cell proliferation, autophagy and apoptosis. Abstract In the present study, potential molecular biomarkers of NASH hepatocarcinogenesis were investigated using the STAM mice NASH model, characterized by impaired insulin secretion and development of insulin resistance. In this model, 2-days-old C57BL/6N mice were subjected to a single subcutaneous (s.c.) injection of 200 μg streptozotocin (STZ) to induce diabetes mellitus (DM). Four weeks later, mice were administered high-fat diet (HFD) HFD-60 for 14 weeks (STAM group), or fed control diet (STZ group). Eighteen-week-old mice were euthanized to allow macroscopic, microscopic, histopathological, immunohistochemical and proteome analyses. The administration of HFD to STZ-treated mice induced significant fat accumulation and fibrosis development in the liver, which progressed to NASH, and rise of hepatocellular adenomas (HCAs) and carcinomas (HCCs). In 18-week-old animals, a significant increase in the incidence and multiplicity of HCAs and HCCs was found. On the basis of results of proteome analysis of STAM mice HCCs, a novel highly elevated protein in HCCs, cache domain-containing 1 (CACHD1), was chosen as a potential NASH-HCC biomarker candidate. Immunohistochemical assessment demonstrated that STAM mice liver basophilic, eosinophilic and mixed-type altered foci, HCAs and HCCs were strongly positive for CACHD1. The number and area of CACHD1-positive foci, and cell proliferation index in the area of foci in mice of the STAM group were significantly increased compared to that of STZ group. In vitro siRNA knockdown of CACHD1 in human Huh7 and HepG2 liver cancer cell lines resulted in significant inhibition of cell survival and proliferation. Analysis of the proteome of knockdown cells indicated that apoptosis and autophagy processes could be activated. From these results, CACHD1 is an early NASH-associated biomarker of liver preneoplastic and neoplastic lesions, and a potential target protein in DM/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
- Correspondence: ; Tel.: +81-66-645-3737
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Napaporn Khuanphram
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Kumiko Tatsumi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Shotaro Yamano
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Masaki Fujioka
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Min Gi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| |
Collapse
|
14
|
Modulating the unfolded protein response with ONC201 to impact on radiation response in prostate cancer cells. Sci Rep 2021; 11:4252. [PMID: 33608585 PMCID: PMC7896060 DOI: 10.1038/s41598-021-83215-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer in men and a notable cause of cancer mortality when it metastasises. The unfolded protein response (UPR) can be cytoprotective but when acutely activated can lead to cell death. In this study, we sought to enhance the acute activation of the UPR using radiation and ONC201, an UPR activator. Treating PCa cells with ONC201 quickly increased the expression of all the key regulators of the UPR and reduced the oxidative phosphorylation, with cell death occurring 72 h later. We exploited this time lag to sensitize prostate cancer cells to radiation through short-term treatment with ONC201. To understand how priming occurred, we performed RNA-Seq analysis and found that ONC201 suppressed the expression of cell cycle and DNA repair factors. In conclusion, we have shown that ONC201 can prime enhanced radiation response.
Collapse
|
15
|
Ciccone MF, Trousdell MC, Dos Santos CO. Characterization of Organoid Cultures to Study the Effects of Pregnancy Hormones on the Epigenome and Transcriptional Output of Mammary Epithelial Cells. J Mammary Gland Biol Neoplasia 2020; 25:351-366. [PMID: 33131024 PMCID: PMC7960614 DOI: 10.1007/s10911-020-09465-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
The use of mouse derived mammary organoids can provide a unique strategy to study mammary gland development across a normal life cycle, as well as offering insights into how malignancies form and progress. Substantial cellular and epigenomic changes are triggered in response to pregnancy hormones, a reaction that engages molecular and cellular changes that transform the mammary epithelial cells into "milk producing machines". Such epigenomic alterations remain stable in post-involution mammary epithelial cells and control the reactivation of gene transcription in response to re-exposure to pregnancy hormones. Thus, a system that tightly controls exposure to pregnancy hormones, epigenomic alterations, and activation of transcription will allow for a better understanding of such molecular switches. Here, we describe the characterization of ex vivo cultures to mimic the response of mammary organoid cultures to pregnancy hormones and to understand gene regulation and epigenomic reprogramming on consecutive hormone exposure. Our findings suggest that this system yields similar epigenetic modifications to those reported in vivo, thus representing a suitable model to closely track epigenomic rearrangement and define unknown players of pregnancy-induced development.
Collapse
|
16
|
Zhang J, Wang E, Zhang L, Zhou B. PSPH induces cell autophagy and promotes cell proliferation and invasion in the hepatocellular carcinoma cell line Huh7 via the AMPK/mTOR/ULK1 signaling pathway. Cell Biol Int 2020; 45:305-319. [PMID: 33079432 DOI: 10.1002/cbin.11489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Phosphoserine phosphatase (PSPH), a key enzyme of the l-serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Jianli Zhang
- The Second General Surgery Department, Xi'an Central Hospital, Xi'an, China
| | - Erhao Wang
- Department of Medicine, Institute for DNA and its Products, Xi'an, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bo Zhou
- Digestive System Department, The Second Affiliand Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Sharma A, Kumar Sharma S, Shi Y, Bucci E, Carafoli E, Melino G, Bhattacherjee A, Das G. BCG vaccination policy and preventive chloroquine usage: do they have an impact on COVID-19 pandemic? Cell Death Dis 2020; 11:516. [PMID: 32641762 PMCID: PMC7341995 DOI: 10.1038/s41419-020-2720-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome caused by Coronavirus 2 (SARS-CoV-2). In the light of its rapid global spreading, on 11 March 2020, the World Health Organization has declared it a pandemic. Interestingly, the global spreading of the disease is not uniform, but has so far left some countries relatively less affected. The reason(s) for this anomalous behavior are not fully understood, but distinct hypotheses have been proposed. Here we discuss the plausibility of two of them: the universal vaccination with Bacillus Calmette-Guerin (BCG) and the widespread use of the antimalarial drug chloroquine (CQ). Both have been amply discussed in the recent literature with positive and negative conclusions: we felt that a comprehensive presentation of the data available on them would be useful. The analysis of data for countries with over 1000 reported COVID-19 cases has shown that the incidence and mortality were higher in countries in which BCG vaccination is either absent or has been discontinued, as compared with the countries with universal vaccination. We have performed a similar analysis of the data available for CQ, a widely used drug in the African continent and in other countries in which malaria is endemic; we discuss it here because CQ has been used as the drug to treat COVID-19 patients. Several African countries no longer recommend it officially for the fight against malaria, due to the development of resistance to Plasmodium, but its use across the continent is still diffuse. Taken together, the data in the literature have led to the suggestion of a possible inverse correlation between BCG immunization and COVID-19 disease incidence and severity.
Collapse
Affiliation(s)
- Abhibhav Sharma
- School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saurabh Kumar Sharma
- School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China
| | - Enrico Bucci
- Resis Srl, Samone, 10010, TO, Italy
- Sbarro Health Research Organization, Temple University, Philadelphia, PA, 19122, USA
| | - Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
18
|
Li X, Wang Y, Agostinis P, Rabson A, Melino G, Carafoli E, Shi Y, Sun E. Is hydroxychloroquine beneficial for COVID-19 patients? Cell Death Dis 2020; 11:512. [PMID: 32641681 PMCID: PMC7341710 DOI: 10.1038/s41419-020-2721-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019. As similar cases rapidly emerged around the world1-3, the World Health Organization (WHO) declared a public health emergency of international concern on January 30, 2020 and pronounced the rapidly spreading coronavirus outbreak as a pandemic on March 11, 20204. The virus has reached almost all countries of the globe. As of June 3, 2020, the accumulated confirmed cases reached 6,479,405 with more than 383,013 deaths worldwide. The urgent and emergency care of COVID-19 patients calls for effective drugs, in addition to the beneficial effects of remdesivir5, to control the disease and halt the pandemic.
Collapse
Affiliation(s)
- Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | - Arnold Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Gerry Melino
- TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Rome, Italy
| | - Yufang Shi
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China.
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, Guangdong, China.
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde, Foshan), 528000, Guangdong, China.
| |
Collapse
|
19
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
20
|
Rivera OC, Geddes DT, Barber-Zucker S, Zarivach R, Gagnon A, Soybel DI, Kelleher SL. A common genetic variant in zinc transporter ZnT2 (Thr288Ser) is present in women with low milk volume and alters lysosome function and cell energetics. Am J Physiol Cell Physiol 2020; 318:C1166-C1177. [PMID: 32320289 DOI: 10.1152/ajpcell.00383.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Suboptimal lactation is a common, yet underappreciated cause for early cessation of breastfeeding. Molecular regulation of mammary gland function is critical to the process lactation; however, physiological factors underlying insufficient milk production are poorly understood. The zinc (Zn) transporter ZnT2 is critical for regulation of mammary gland development and maturation during puberty, lactation, and postlactation gland remodeling. Numerous genetic variants in the gene encoding ZnT2 (SLC30A2) are associated with low milk Zn concentration and result in severe Zn deficiency in exclusively breastfed infants. However, the functional impacts of genetic variation in ZnT2 on key mammary epithelial cell functions have not yet been systematically explored at the cellular level. Here we determined a common mutation in SLC30A2/ZnT2 substituting serine for threonine at amino acid 288 (Thr288Ser) was found in 20% of women producing low milk volume (n = 2/10) but was not identified in women producing normal volume. Exploration of cellular consequences in vitro using phosphomimetics showed the serine substitution promoted preferential phosphorylation of ZnT2, driving localization to the lysosome and increasing lysosome biogenesis and acidification. While the substitution did not initiate lysosome-mediated cell death, cellular ATP levels were significantly reduced. Our findings demonstrate the Thr288Ser mutation in SLC30A2/ZnT2 impairs critical functions of mammary epithelial cells and suggest a role for genetic variation in the regulation of milk production and lactation performance.
Collapse
Affiliation(s)
- Olivia C Rivera
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania.,Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Shiran Barber-Zucker
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Annie Gagnon
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - David I Soybel
- Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
21
|
Capuco AV, Choudhary RK. Symposium review: Determinants of milk production: Understanding population dynamics in the bovine mammary epithelium. J Dairy Sci 2020; 103:2928-2940. [PMID: 31704023 DOI: 10.3168/jds.2019-17241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2025]
Abstract
The mammary gland undergoes distinct periods of growth, development, and secretory activity. During bovine lactation, a gradual decrease in the number of mammary epithelial cells largely accounts for the decline in milk production with advancing lactation. The net decline in cell number (approx. 50%) is due to cell death but is simultaneously accompanied by cell renewal. Although the rate of cell proliferation is slow, by the end of lactation most cells in the gland were formed after calving. Typically milking is terminated when cows are in the final 2 mo of pregnancy. This causes regenerative involution, wherein extensive cell replacement and mammary growth occurs. We hypothesized that replacement of senescent secretory cells and progenitor cells during the dry period increases milk yield in the next lactation. Analysis of global gene expression revealed networks and canonical pathways during regenerative involution that support cell turnover and mammary growth, and reflect oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Immune responses consistent with influx of neutrophils, macrophages, and lymphocytes, and processes that support mammary differentiation and lactogenesis were also evident. Data also suggest that replication of stem and progenitor cells occurs during the dry period. Relying on long-term retention of bromodeoxyuridine-labeled DNA, we identified putative bovine mammary stem cells. These label-retaining epithelial cells (LREC) are in low abundance within mammary epithelium (<1%), predominantly estrogen receptor-negative, and localized in a basal or suprabasal layer of the epithelium. Analyses of gene expression in laser-microdissected LREC are consistent with the concept that LREC represent stem cells and progenitor cells, which differ in properties and location within the epithelial layer. We identified potential markers for these cells and have increased their number by infusing xanthosine through the teat canal of prepubertal heifers. Altering population dynamics of mammary stem and progenitor cells during the mammary cycle may be a means to increase efficiency of milk production.
Collapse
Affiliation(s)
- Anthony V Capuco
- Animal Genomics and Improvement Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705.
| | - Ratan K Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| |
Collapse
|
22
|
Elswood J, Pearson SJ, Payne HR, Barhoumi R, Rijnkels M, W Porter W. Autophagy regulates functional differentiation of mammary epithelial cells. Autophagy 2020; 17:420-438. [PMID: 31983267 DOI: 10.1080/15548627.2020.1720427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Mitochondria operate as a central hub for many metabolic processes by sensing and responding to the cellular environment. Developmental cues from the environment have been implicated in selective autophagy, or mitophagy, of mitochondria during cell differentiation and tissue development. Mitophagy occurring in this context, termed programmed mitophagy, responds to cell state rather than mitochondrial damage and is often accompanied by a metabolic transition. However, little is known about the mechanisms that engage and execute mitophagy under physiological or developmental conditions. As the mammary gland undergoes post-natal development and lactation challenges mitochondrial homeostasis, we investigated the contribution of mitochondria to differentiation of mammary epithelial cells (MECs). Using lactogenic differentiation of the HC11 mouse MEC line, we demonstrated that HC11 cells transition to a highly energetic state during differentiation by engaging both oxidative phosphorylation and glycolysis. Interestingly, this transition was lost when autophagy was inhibited with bafilomycin A1 or knockdown of Atg7 (autophagy related 7). To evaluate the specific targeting of mitochondria, we traced mitochondrial oxidation and turnover in vitro with the fluorescent probe, pMitoTimer. Indeed, we found that differentiation engaged mitophagy. To further evaluate the requirement of mitophagy during differentiation, we knocked down the expression of Prkn/parkin in HC11 cells. We found that MEC differentiation was impaired in shPrkn cells, implying that PRKN is required for MEC differentiation. These studies suggest a novel regulation of MEC differentiation through programmed mitophagy and provide a foundation for future studies of development and disease associated with mitochondrial function in the mammary gland.Abbreviations: AA: antimycin A; ATG5: autophagy related 5; BAF: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; COX8A: cytochrome c oxidase subunit 8A; CQ: chloroquine; CSN2: casein beta; ECAR: extracellular acidification rate; FCCP: trifluoromethoxy carbonylcyanide phenylhydrazone; FUNDC1: FUN14 domain containing 1; HIF1A: hypoxia inducible factor 1 subunit alpha; L1: lactation day 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEC: mammary epithelial cell; mitoQ: mitoquinol; mROS: mitochondrial reactive oxygen species; OCR: oxygen consumption rate; P: priming; P16: pregnancy day 16; PARP1: poly(ADP-ribose) polymerase 1; PINK1: PTEN induced kinase 1; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; shNT: short hairpin non-targeting control; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TEM: transmission electron microscopy; TFAM: transcription factor A, mitochondrial; U: undifferentiated.
Collapse
Affiliation(s)
- Jessica Elswood
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Scott J Pearson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - H Ross Payne
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
23
|
Direito I, Fardilha M, Helguero LA. Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 2019; 40:203-215. [PMID: 30596981 DOI: 10.1093/carcin/bgy182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022] Open
Abstract
Resistant breast and prostate cancers remain a major clinical problem, new therapeutic approaches and better predictors of therapeutic response are clearly needed. Because of the involvement of the unfolded protein response (UPR) in cell proliferation and apoptosis evasion, an increasing number of publications support the hypothesis that impairments in this network trigger and/or exacerbate cancer. Moreover, UPR activation could contribute to the development of drug resistance phenotypes in both breast and prostate cancers. Therefore, targeting this pathway has recently emerged as a promising strategy in anticancer therapy. This review addresses the contribution of UPR to breast and prostate tissues homeostasis and its significance to cancer endocrine response with focus on the current progress on UPR research related to cancer biology, detection, prognosis and treatment.
Collapse
Affiliation(s)
| | - Margarida Fardilha
- Signal Transduction Laboratory, Department of Medical Sciences, Institute for Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | | |
Collapse
|
24
|
Liu Y, Wang X, Zhen Z, Yu Y, Qiu Y, Xiang W. GRP78 regulates milk biosynthesis and the proliferation of bovinemammaryepithelial cells through the mTOR signaling pathway. Cell Mol Biol Lett 2019; 24:57. [PMID: 31660059 PMCID: PMC6805561 DOI: 10.1186/s11658-019-0181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucose-regulated protein 78 (GRP78) is a member of the HSP70 protein family and a key endoplasmic reticulum chaperone. It has been revealed to play important roles both in the maturation, folding and transport of proteins and in cellproliferation. However, its involvement in milk biosynthesis or the proliferation of bovine primary mammary epithelial cells (BMECs) has yet to be established. METHODS The expressions of GRP78 in BMECs stimulated with methionine, leucine, estrogen and prolactin were determined using western blotting and immunofluorescence assays. To explore the function of GRP78 in BMECs, the protein was overexpressed or knocked down, respectively using an overexpression vector or an siRNA mixture transfected into cells cultured in vitro. Flow cytometry was used to analyze cell proliferation and cell activity. The contents of lactose and triglyceride (TG) secreted from the treated BMECs were measured using lactose and TG assay kits, respectively. Western blotting analysis was used to measure the β-casein content and the protein levels of the signaling molecules known to be involved in milk biosynthesis and cell proliferation. RESULTS GRP78overexpression significantly stimulated milk protein and milk fat synthesis, enhanced cell proliferation, positively regulated the phosphorylation of mammalian target of rapamycin (mTOR), and increased the amount of protein of cyclinD1andsterol regulatory element-binding protein 1c (SREBP-1c). GRP78 knockdown after siRNA transfection had the opposite effects. We further found that GRP78 was located in the cytoplasm of BMECs, and that stimulating methionine, leucine, estrogen and prolactin expression led to a significant increase in the protein expression of GRP78 in BMECs. CONCLUSIONS These data reveal that GRP78 is an important regulator of milk biosynthesis and the proliferation of BMECs through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | | | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Yanbo Yu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Youwen Qiu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Wensheng Xiang
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| |
Collapse
|
25
|
Hu B, Song W, Tang Y, Shi M, Li H, Yu D. Induction of Chemerin on Autophagy and Apoptosis in Dairy Cow Mammary Epithelial Cells. Animals (Basel) 2019; 9:ani9100848. [PMID: 31640289 PMCID: PMC6826480 DOI: 10.3390/ani9100848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Involution of the mammary gland is a complex process controlled by various endocrine hormones and cytokine. As a novel adipocytokine, Chemerin not only plays a pivotal role in physiological and pathological processes such as immune response and lipid metabolism, but is also involved in the regulation of programmed cell death, including autophagy and apoptosis. The purpose of the present study was to elucidate whether autophagy and apoptosis of bovine mammary epithelial cells (BMECs) was triggered by Chemerin. BMECs were cultured and treated with Chemerin in vitro. The expression of autophagosome-forming marker, microtubule-associated protein 1 light chain 3 II (LC3-II) and sequestosome-1 (SQSTM 1, best known as p62), a substrate of autophagosome degradation were detected. The result showed that Chemerin significantly decreased the expression of p62 and markedly induced the conversion of LC3-I to LC3-II. The ratio of Bcl2-associated X and B-cell lymphoma-2 (Bax/Bcl-2) and the activity of caspase-3 were up-regulated after being treated by Chemerin, and the apoptotic rate was also significantly increased. These results suggested that Chemerin promoted the occurrence of autophagy and apoptosis in BMECs. Chloroquine (CQ), which is an inhibitor of autophagy. To explore effects of Chemerin on apoptosis, we prevented Chemerin-induced autophagy by pre-adding CQ in BMECs. Interestingly, this part of the experiment helped us find that all effects of Chemerin on apoptosis of BMECs could be enhanced with the inhibition of autophagy. Our study demonstrates that Chemerin-induced autophagy and apoptosis are mutually regulated in BMECs, but the specific mechanism remains to be further researched.
Collapse
Affiliation(s)
- Bianhong Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wenjuan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yujie Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingyan Shi
- College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|