1
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Karnan S, Hanamura I, Ota A, Vu LQ, Uchino K, Horio T, Murakami S, Mizuno S, Rahman ML, Wahiduzzaman M, Hasan MN, Biswas M, Hyodo T, Ito H, Suzuki A, Konishi H, Tsuzuki S, Hosokawa Y, Takami A. ARK5 enhances cell survival associated with mitochondrial morphological dynamics from fusion to fission in human multiple myeloma cells. Cell Death Discov 2024; 10:56. [PMID: 38282096 PMCID: PMC10822851 DOI: 10.1038/s41420-024-01814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.
Collapse
Grants
- 19K08825, 22K08516[Hanamura] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K09292, 22K08985 [Karnan] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K08426 [Ota] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satsuki Murakami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Lutfur Rahman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Wahiduzzaman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY, 11501, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mrityunjoy Biswas
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Atsushi Suzuki
- Hematology Medical Franchise, Department of Medical Affairs, Novartis Japan, Tokyo, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
3
|
Wang H, Shi P, Shi X, Lv Y, Xie H, Zhao H. Surprising magic of CD24 beyond cancer. Front Immunol 2024; 14:1334922. [PMID: 38313430 PMCID: PMC10834733 DOI: 10.3389/fimmu.2023.1334922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
CD24 has emerged as a molecule of significant interest beyond the oncological arena. Recent studies have unveiled its surprising and diverse roles in various biological processes and diseases. This review encapsulates the expanding spectrum of CD24 functions, delving into its involvement in immune regulation, cancer immune microenvironment, and its potential as a therapeutic target in autoimmune diseases and beyond. The 'magic' of CD24, once solely attributed to cancer, now inspires a new paradigm in understanding its multifunctionality in human health and disease, offering exciting prospects for medical advancements.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Shi
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinyu Shi
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaqing Lv
- Department of Outpatient, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Xie
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Karnan S, Ota A, Murakami H, Rahman ML, Wahiduzzaman M, Hasan MN, Vu LQ, Hanamura I, Inoko A, Riku M, Ito H, Kaneko Y, Hyodo T, Konishi H, Tsuzuki S, Hosokawa Y. CAMK2D: a novel molecular target for BAP1-deficient malignant mesothelioma. Cell Death Discov 2023; 9:257. [PMID: 37479714 PMCID: PMC10362017 DOI: 10.1038/s41420-023-01552-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Malignant mesothelioma (MMe) is a rare but aggressive malignancy. Although the molecular genetics of MMe is known, including BRCA1-associated protein-1 (BAP1) gene alterations, the prognosis of MMe patients remains poor. Here, we generated BAP1 knockout (BAP1-KO) human mesothelial cell clones to develop molecular-targeted therapeutics based on genetic alterations in MMe. cDNA microarray and quantitative RT-PCR (qRT-PCR) analyses revealed high expression of a calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D) gene in the BAP1-KO cells. CAMK2D was highly expressed in 70% of the human MMe tissues (56/80) and correlated with the loss of BAP1 expression, making it a potential diagnostic and therapeutic target for BAP1-deficient MMe. We screened an anticancer drugs library using BAP1-KO cells and successfully identified a CaMKII inhibitor, KN-93, which displayed a more potent and selective antiproliferative effect against BAP1-deficient cells than cisplatin or pemetrexed. KN-93 significantly suppressed the tumor growth in mice xenografted with BAP1-deficient MMe cells. This study is the first to provide a potential molecular-targeted therapeutic approach for BAP1-deficient MMe.
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | - Akinobu Ota
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Hideki Murakami
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, US
- Eukaryotic Gene Expression and Function (EuGEF) Research Group, Chattogram, 4000, Bangladesh
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Eukaryotic Gene Expression and Function (EuGEF) Research Group, Chattogram, 4000, Bangladesh
| | - Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshifumi Kaneko
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, , Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| |
Collapse
|
6
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Nitzan K, Toledano R, Shapira S, Arber N, Doron R. Behavioral Characterizing of CD24 Knockout Mouse-Cognitive and Emotional Alternations. J Pers Med 2021; 11:105. [PMID: 33562144 PMCID: PMC7915412 DOI: 10.3390/jpm11020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
CD24 is a small, glycophosphatidylinositol-anchored cell surface protein, mostly investigated with respect to cancer, inflammation, and autoimmune diseases. CD24 knockdown or inhibition has been used to test various biochemical mechanisms and neurological conditions; however, the association between CD24 and behavioral phenotypes has not yet been examined. This study aims to characterize cognitive and emotional functions of CD24 knockout mice (CD24-/-) compared with CD24 wild-type mice at three time-points: adolescence, young adulthood, and adulthood. Our results show that CD24-/- mice exhibited better cognitive performance and less anxiety-like behavior compared with WT mice, with no effect on depression-like behavior. This phenotype was constant from childhood (2 months old) to adulthood (6 months old). The results from our study suggest that CD24 may influence important behavioral aspects at the whole-organism level, which should be taken into consideration when using CD24 knockout models.
Collapse
Affiliation(s)
- Keren Nitzan
- Department of Education and Psychology, The Open University Israel, Rannana 4353701, Israel; (K.N.); (R.T.)
| | - Roni Toledano
- Department of Education and Psychology, The Open University Israel, Rannana 4353701, Israel; (K.N.); (R.T.)
| | - Shiran Shapira
- The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (S.S.); (N.A.)
- Department of Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadir Arber
- The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (S.S.); (N.A.)
- Department of Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University Israel, Rannana 4353701, Israel; (K.N.); (R.T.)
| |
Collapse
|