1
|
Magagnoli J, Cummings T, Hardin JW, Sutton SS, Ambati J. NLRP3 Activation With Bisphosphonate Use and the Risk of Incident Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2025; 66:32. [PMID: 40094655 PMCID: PMC11925225 DOI: 10.1167/iovs.66.3.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose To determine whether bisphosphonate use increases the risk of age-related macular degeneration (AMD), thereby providing evidence for the involvement of the NLRP3 inflammasome in AMD pathogenesis. Methods Retrospective cohort study among US veterans who had undergone dual-energy x-ray absorptiometry (DEXA) scans. Time-dependent Cox models were used to assess the association between cumulative bisphosphonate exposure and AMD incidence. Propensity score matching was applied to balance characteristics between bisphosphonate users and nonusers. A secondary analysis examined the impact of NLRP3 inhibitors (fluoxetine and fluvoxamine) on AMD risk among bisphosphonate users. Results After propensity score matching, each additional year of bisphosphonate use was associated with a 4.7% increased hazard of AMD (hazard ratio [HR], 1.047; 95% confidence interval [CI], 1.020-1.074). In the secondary analysis, fluoxetine or fluvoxamine use among bisphosphonate users was linked to a reduced hazard of incident AMD (HR, 0.814; 95% CI, 0.676-0.98) in the matched sample. Conclusions Bisphosphonate use increases AMD risk, while NLRP3 inhibitors mitigate this effect. These findings support the hypothesis that the NLRP3 inflammasome is involved in AMD pathogenesis and represents a potential therapeutic target.
Collapse
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina, United States
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Tammy Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina, United States
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina, United States
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, South Carolina, United States
| | - S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina, United States
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
2
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
3
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, Lee J, Wu LJ, McCullough L, Liu F. Escape of Kdm6a from X Chromosome Is Detrimental to Ischemic Brains via IRF5 Signaling. Transl Stroke Res 2025:10.1007/s12975-024-01321-1. [PMID: 39752046 DOI: 10.1007/s12975-024-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia, respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c was analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile, Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6afl/fl and Kdm5cfl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia and elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a, whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Afzal Misrani
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Kanaka Valli Manyam
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Long-Jun Wu
- IMM-Center for Neuroimmunology and Glial Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Xz Q, Zq S, L L, Hs O. Zoledronic Acid Accelerates ER Stress-Mediated Inflammation by Increasing PDE4B Expression in Bisphosphonate-Related Osteonecrosis of the Jaw. Appl Biochem Biotechnol 2024; 196:7362-7374. [PMID: 38523176 DOI: 10.1007/s12010-024-04859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/26/2024]
Abstract
Long-term administration of bisphosphonates can lead to a significant side effect known as bisphosphonate-related osteonecrosis of the jaw (BRONJ). Although macrophage-mediated inflammation has been established as an important factor in BRONJ, the underlying mechanism remains elusive. In the current study, the roles of endoplasmic reticulum (ER) stress in zoledronic acid (ZOL)-induced inflammation were analyzed in macrophages, and the regulatory mechanism of ER stress activation was next investigated. An in vitro model of BRONJ was established by treating RAW264.7 cells with ZOL. The activation of ER stress was analyzed by western blotting and transmission electron microscopy, and inflammation was assessed by quantitative real-time PCR and enzyme-linked immunosorbent assay. ER stress was significantly activated in ZOL-treated macrophages, and inhibition of ER stress by TUDCA, an ER stress inhibitor, suppressed ZOL-induced inflammation in macrophages. Mechanistically, phosphodiesterase 4B (PDE4B) was significantly increased in ZOL-treated macrophages. Forced expression of PDE4B promoted ER stress and inflammation, whereas PDE4B knockdown decreased ZOL-induced ER stress and inflammation in macrophages. More importantly, PDE4B inhibitor could improve ZOL-induced BRONJ in vivo. These data suggest that ZOL accelerates ER stress-mediated inflammation in BRONJ by increasing PDE4B expression. PDE4B inhibition may represent a potential therapeutic strategy for BRONJ. Subsequent research should concentrate on formulating medications that selectively target PDE4B, thereby mitigating the risk of BRONJ in patients undergoing bisphosphonate treatment.
Collapse
Affiliation(s)
- Qu Xz
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sun Zq
- Department of Stomatology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Liu L
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ong Hs
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, McCullough L, Liu F. Escape of Kdm6a from X chromosome is detrimental to ischemic brains via IRF5 signaling. RESEARCH SQUARE 2024:rs.3.rs-4986866. [PMID: 39399684 PMCID: PMC11469404 DOI: 10.21203/rs.3.rs-4986866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our prior research has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c were analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6a fl/fl and Kdm5c fl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia, elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a; whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Afzal Misrani
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Kanaka Valli Manyam
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Yan Xu
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Shaohua Qi
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Romana Sharmeen
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Louise McCullough
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Fudong Liu
- The University of Texas Health Science Center at Houston, McGovern Medical School
| |
Collapse
|
6
|
Nitzsche A, Hennig CL, von Brandenstein K, Döding A, Schulze-Späte U, Symmank J, Jacobs C. GDF15 Modulates the Zoledronic-Acid-Induced Hyperinflammatory Mechanoresponse of Periodontal Ligament Fibroblasts. Cells 2024; 13:147. [PMID: 38247838 PMCID: PMC10814077 DOI: 10.3390/cells13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Orthodontic tooth movement (OTM) is thought to be impeded by bisphosphonate (BP) therapy, mainly due to increased osteoclast apoptosis and changes in the periodontal ligament (PdL), a connecting tissue between the alveolar bone and teeth. PdL cells, mainly fibroblasts (PdLFs), are crucial regulators in OTM by modulating force-induced local inflammatory processes. Recently, we identified the TGF-β/BMP superfamily member GDF15 as an important modulator in OTM, promoting the pro-inflammatory mechanoresponses of PdLFs. The precise impact of the highly potent BP zoledronate (ZOL) on the mechanofunctionality of PdLFs is still under-investigated. Therefore, the aim of this study was to further characterize the ZOL-induced changes in the initial inflammatory mechanoresponse of human PdLFs (hPdLFs) and to further clarify a potential interrelationship with GDF15 signaling. Thus, two-day in vitro treatment with 0.5 µM, 5 µM and 50 µM of ZOL altered the cellular properties of hPdLFs partially in a concentration-dependent manner. In particular, exposure to ZOL decreased their metabolic activity, the proliferation rate, detected using Ki-67 immunofluorescent staining, and survival, analyzed using trypan blue. An increasing occurrence of DNA strand breaks was observed using TUNEL and an activated DNA damage response was demonstrated using H2A.X (phosphoS139) staining. While the osteogenic differentiation of hPdLFs was unaffected by ZOL, increased cellular senescence was observed using enhanced p21Waf1/Cip1/Sdi1 and β-galactosidase staining. In addition, cytokine-encoding genes such as IL6, IL8, COX2 and GDF15, which are associated with a senescence-associated secretory phenotype, were up-regulated by ZOL. Subsequently, this change in the hPdLF phenotype promoted a hyperinflammatory response to applied compressive forces with an increased expression of the pro-inflammatory markers IL1β, IL6 and GDF15, as well as the activation of monocytic THP1 cells. GDF15 appeared to be particularly relevant to these changes, as siRNA-mediated down-regulation balanced these hyperinflammatory responses by reducing IL-1β and IL-6 expression (IL1B p-value < 0.0001; IL6 p-value < 0.001) and secretion (IL-1β p-value < 0.05; IL-6 p-value < 0.001), as well as immune cell activation (p-value < 0.0001). In addition, ZOL-related reduced RANKL/OPG values and inhibited osteoclast activation were enhanced in GDF15-deficient hPdLFs (both p-values < 0.0001; all statistical tests: one-way ANOVA, Tukey's post hoc test). Thus, GDF15 may become a promising new target in the personalized orthodontic treatment of bisphosphonatepatients.
Collapse
Affiliation(s)
- Ann Nitzsche
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.N.); (C.-L.H.); (K.v.B.); (C.J.)
| | - Christoph-Ludwig Hennig
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.N.); (C.-L.H.); (K.v.B.); (C.J.)
| | - Katrin von Brandenstein
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.N.); (C.-L.H.); (K.v.B.); (C.J.)
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.D.); (U.S.-S.)
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.D.); (U.S.-S.)
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.N.); (C.-L.H.); (K.v.B.); (C.J.)
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (A.N.); (C.-L.H.); (K.v.B.); (C.J.)
| |
Collapse
|
7
|
Lin R, Wang X, Ni C, Fu C, Yang C, Dong D, Wu X, Chen X, Wang L, Hou J. Echinococcus granulosus cyst fluid inhibits KDM6B-mediated demethylation of trimethylated histone H3 lysine 27 and interleukin-1β production in macrophages. Parasit Vectors 2023; 16:422. [PMID: 37974225 PMCID: PMC10652454 DOI: 10.1186/s13071-023-06041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Echinococcus granulosus can manipulate its host's immune response to ensure its own survival. However, the effect of histone modifications on the regulation of the NOD-like receptor protein 3 (NLRP3) inflammasome and downstream interleukin-1β (IL-1β) production in response to the parasite is not fully understood. METHODS We evaluated IL-1β secretion through enzyme-linked immunosorbent assay and assessed reactive oxygen species levels using the dichlorodihydrofluorescein diacetate probe. Western blotting and quantitative real-time polymerase chain reaction were performed to examine the expression of NLRP3 and IL-1β in mouse peritoneal macrophages and Tohoku Hospital Pediatrics-1 cells, a human macrophage cell line. The presence of trimethylated histone H3 lysine 27 (H3K27me3) modification on NLRP3 and IL-1β promoters was studied by chromatin immunoprecipitation. RESULTS Treatment with E. granulosus cyst fluid (EgCF) considerably reduced IL-1β secretion in mouse and human macrophages, although reactive oxygen species production increased. EgCF also suppressed the expression of NLRP3 and IL-1β. Mechanistically, EgCF prompted the enrichment of repressive H3K27me3 modification on the promoters of both NLRP3 and IL-1β in macrophages. Notably, the presence of EgCF led to a significant reduction in the expression of the H3K27me3 demethylase KDM6B. CONCLUSIONS Our study revealed that EgCF inhibits KDM6B expression and H3K27me3 demethylation, resulting in the transcriptional inhibition of NLRP3 and IL-1β. These results provide new insights into the immune evasion mechanisms of E. granulosus.
Collapse
Affiliation(s)
- Ruolin Lin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaopeng Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Caiya Ni
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chunxue Fu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | | | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
8
|
Roato I, Mauceri R, Notaro V, Genova T, Fusco V, Mussano F. Immune Dysfunction in Medication-Related Osteonecrosis of the Jaw. Int J Mol Sci 2023; 24:ijms24097948. [PMID: 37175652 PMCID: PMC10177780 DOI: 10.3390/ijms24097948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) is multifactorial and there is a substantial consensus on the role of antiresorptive drugs (ARDs), including bisphosphonates (BPs) and denosumab (Dmab), as one of the main determinants. The time exposure, cumulative dose and administration intensity of these drugs are critical parameters to be considered in the treatment of patients, as cancer patients show the highest incidence of MRONJ. BPs and Dmab have distinct mechanisms of action on bone, but they also exert different effects on immune subsets which interact with bone cells, thus contributing to the onset of MRONJ. Here, we summarized the main effects of ARDs on the different immune cell subsets, which consequently affect bone cells, particularly osteoclasts and osteoblasts. Data from animal models and MRONJ patients showed a deep interference of ARDs in modulating immune cells, even though a large part of the literature concerns the effects of BPs and there is a lack of data on Dmab, demonstrating the need to further studies.
Collapse
Affiliation(s)
- Ilaria Roato
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Vincenzo Notaro
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Vittorio Fusco
- Medical Oncology Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
- Department of Integrated Research Activity and Innovation (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Federico Mussano
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
9
|
Ma X, Chen X, Duan Z, Wu Y, Shu J, Wu P, Zhao Y, Wang X, Wang Y. Circadian rhythm disruption exacerbates the progression of macrophage dysfunction and alveolar bone loss in periodontitis. Int Immunopharmacol 2023; 116:109796. [PMID: 36731157 DOI: 10.1016/j.intimp.2023.109796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Macrophages are highly implicated in the progression of periodontitis, while circadian rhythm disruption (CRD) promotes the inflammatory response of macrophages in many diseases. However, the effects of CRD on periodontitis and the role of macrophages in this process remain unclear. Histone lysinedemethylase6a (Kdm6a), a histone demethylase, has recently been identified as a key regulator of macrophage-induced inflammation. Here, we established an experimental periodontitis model by injecting lipopolysaccharide (LPS) derived from Porphyromonas gingivalis with or without periodontal ligation in mice exposed to an 8-h time shift jet-lag schedule every 3 days. By histomorphometry, tartrate acid phosphatase (TRAP) staining, RT-qPCR, ELISA, immunohistochemistry and immunofluorescence analysis, we found that CRD promoted the inflammatory response, alveolar bone resorption, macrophage infiltration and Kdm6a expression in macrophages. Macrophage-specific Kdm6a knockout mice were further used to elucidate the effects of Kdm6a deficiency on periodontitis. Kdm6a deletion in macrophages rescued periodontal tissue inflammation, osteoclastogenesis, and alveolar bone loss in a mouse model of periodontitis. These findings suggest that CRD may intensify periodontitis by increasing the infiltration and activation of macrophages. Kdm6a promotes the inflammatory response in macrophages, which may participate in aggravated periodontitis via CRD.
Collapse
Affiliation(s)
- Xueying Ma
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Xin Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Duan
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Yuqiong Wu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Jiaen Shu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Pei Wu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuhua Wang
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China.
| |
Collapse
|
10
|
Jaboury S, Wang K, O’Sullivan KM, Ooi JD, Ho GY. NETosis as an oncologic therapeutic target: a mini review. Front Immunol 2023; 14:1170603. [PMID: 37143649 PMCID: PMC10151565 DOI: 10.3389/fimmu.2023.1170603] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Neutrophil Extracellular Traps (NETs) are a key form of pro-inflammatory cell death of neutrophils characterized by the extrusion of extracellular webs of DNA containing bactericidal killing enzymes. NETosis is heavily implicated as a key driver of host damage in autoimmune diseases where injurious release of proinflammatory enzymes damage surrounding tissue and releases 70 known autoantigens. Recent evidence shows that both neutrophils and NETosis have a role to play in carcinogenesis, both indirectly through triggering DNA damage through inflammation, and directly contributing to a pro-tumorigenic tumor microenvironment. In this mini-review, we summarize the current knowledge of the various mechanisms of interaction and influence between neutrophils, with particular attention to NETosis, and cancer cells. We will also highlight the potential avenues thus far explored where we can intercept these processes, with the aim of identifying promising prospective targets in cancer treatment to be explored in further studies.
Collapse
Affiliation(s)
- Sarah Jaboury
- Department of Oncology, Monash Health, Clayton, VIC, Australia
| | - Kenny Wang
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Joshua Daniel Ooi
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Gwo Yaw Ho
- Department of Oncology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- *Correspondence: Gwo Yaw Ho,
| |
Collapse
|
11
|
Wen Y, Chen X, Feng H, Wang X, Kang X, Zhao P, Zhao C, Wei Y. Kdm6a deficiency in microglia/macrophages epigenetically silences Lcn2 expression and reduces photoreceptor dysfunction in diabetic retinopathy. Metabolism 2022; 136:155293. [PMID: 35995279 DOI: 10.1016/j.metabol.2022.155293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of severe visual impairment worldwide. However, the role of adaptive immune inflammation driven by microglia/macrophages in DR is not yet well elucidated. Kdm6a is a histone demethylase that removes the trimethyl groups of histones H3K27 and plays important biological roles in activating target genes. To elucidate the role of Kdm6a in microglia/macrophages in diabetic retinas, we established diabetic animal models with conditional knockout mice to investigate the impacts of Kdm6a deficiency. The RNA-seq analysis, mass spectrum examination, immunohistochemistry and detection of enzyme activities were used to elucidate the effect of Kdm6a deletion on gene transcription in microglia/macrophages. The expression of Kdm6a was increased in the retinas of diabetic mice compared to the control group. Loss of Kdm6a in microglia/macrophages ameliorated the diabetes-induced retinal thickness decrease, inflammation, and visual impairment. Kdm6a in microglia/macrophages regulated Lcn2 expression in a demethylase activity-dependent manner and inhibited glycolysis progression in photoreceptor cells through Lcn2. These results suggest that Kdm6a in microglia/macrophages aggravated diabetic retinopathy by promoting the expression of Lcn2 and impairing glycolysis progression in photoreceptor cells.
Collapse
Affiliation(s)
- Yanjun Wen
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200032, China
| | - Xin Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Huazhang Feng
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoli Kang
- Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chen Zhao
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200032, China
| | - Yan Wei
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200032, China.
| |
Collapse
|
12
|
Macrophage Involvement in Medication-Related Osteonecrosis of the Jaw (MRONJ): A Comprehensive, Short Review. Cancers (Basel) 2022; 14:cancers14020330. [PMID: 35053492 PMCID: PMC8773732 DOI: 10.3390/cancers14020330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Medication-related Osteonecrosis of the Jaw (MRONJ) is a significant complication mainly of antiresorptive medications used in the management of bone diseases. MRONJ development may be accompanied by pain, eating discomfort, self-consciousness, and other symptoms that overall disturb patients’ everyday life. Hence, MRONJ occurrence is of growing clinical concern and affects treatment decisions. Although MRONJ has been extensively studied since being first reported in 2003, the mechanisms of disease pathogenesis have not yet been determined and disease management is mostly empirical. Recent data investigate the effects of antiresorptive medications on immune system components including macrophages and introduce these cells as key players in MRONJ pathogenesis. Considering macrophage versatility, developmental plasticity, and its pivotal role in immune response, the current short review focused on the potential involvement of these multi-potential cells in MRONJ pathogenesis. Understanding the complex role of macrophages in MRONJ pathophysiology will add new valuable data on disease prevention and control. Abstract Antiresorptive agents such as bisphosphonates (BP) and denosumab are commonly prescribed for the management of primary bone malignancy, bone metastasis, osteoporosis, Paget disease, or other bone disorders. Medication-related osteonecrosis of the Jaws (MRONJ) is a rare but significant complication of antiresorptive medications. Duration, dose, and antiresorptive potency as well as concomitant diseases, additional medications, and local factors affect MRONJ incidence and severity. MRONJ pathophysiology is still poorly understood. Nevertheless, decreased bone resorption due to osteoclastic inhibition along with trauma, infection/inflammation, or blood supply inhibition are considered synergistic factors for disease development. In addition, previous data research examined the effects of antiresorptive medication on immune system components and introduced potential alterations on immune response as novel elements in MRONJ pathogenesis. Considering that macrophages are the first cells in the nonspecific immune response, it is not surprising that these multifaceted players attracted increased attention in MRONJ research recently. This current review attempted to elucidate the effects of antiresorptive medications on several aspects of macrophage activity in relation to the complex inflammatory microenvironment of MRONJ. Collectively, unravelling the mode of action and extent of macrophages’ potential contribution in MRONJ occurrence will provide novel insight in disease pathogenesis and potentially identify intrinsic therapeutic targets.
Collapse
|
13
|
Aguirre JI, Castillo EJ, Kimmel DB. Preclinical models of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116184. [PMID: 34520898 PMCID: PMC8743993 DOI: 10.1016/j.bone.2021.116184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). pARs, including nitrogen-containing bisphosphonates (N-BPs; e.g., zoledronic acid, alendronate) and anti-RANKL antibodies (e.g., denosumab), are used to manage bone metastases in patients with cancer or to prevent fragility fractures in patients with osteoporosis. Though significant advances have been made in understanding MRONJ, its pathophysiology is still not fully elucidated. Multiple species have been used in preclinical MRONJ research, including the rat, mouse, rice rat, rabbit, dog, sheep, and pig. Animal research has contributed immensely to advancing the MRONJ field, particularly, but not limited to, in developing models and investigating risk factors that were first observed in humans. MRONJ models have been developed using clinically relevant doses of systemic risk factors, like N-BPs, anti-RANKL antibodies, or AgIs. Specific local oral risk factors first noted in humans, including tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection, etc.), were then added. Research in rodents, particularly the rat, and, to some extent, the mouse, across multiple laboratories, has contributed to establishing multiple relevant and complementary preclinical models. Models in larger species produced accurate clinical and histopathologic outcomes suggesting a potential role for confirming specific crucial findings from rodent research. We view the current state of animal models for MRONJ as good. The rodent models are now reliable enough to produce large numbers of MRONJ cases that could be applied in experiments testing treatment modalities. The course of MRONJ, including stage 0 MRONJ, is characterized well enough that basic studies of the molecular or enzyme-level findings in different MRONJ stages are possible. This review provides a current overview of the existing models of MRONJ, their more significant features and findings, and important instances of their application in preclinical research.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
14
|
Chen X, Zhu W, Xu R, Shen X, Fu Y, Cheng J, Liu L, Jiang H. Geranylgeraniol Restores Zoledronic Acid-Induced Efferocytosis Inhibition in Bisphosphonate-Related Osteonecrosis of the Jaw. Front Cell Dev Biol 2021; 9:770899. [PMID: 34805177 PMCID: PMC8595285 DOI: 10.3389/fcell.2021.770899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe side effect of long-term administration of bisphosphonates such as zoledronic acid (ZA), but its pathogenesis remains unclear. Impairment of the clearance of apoptotic cells (termed “efferocytosis”) by ZA may be associated with the pathogenesis of BRONJ. The aim of this study was to investigate whether ZA might inhibit macrophage efferocytosis and promote osteocytic apoptosis, and the underlying mechanisms responsible for the disturbing balance between clean and generation of osteocytic apoptosis. We found that ZA significantly promoted the apoptosis of osteocyte and pre-osteoblast via BRONJ mouse models and in vitro MC3T3-E1 but also inhibited the efferocytosis of macrophage on apoptotic cells. Moreover, supplement with geranylgeraniol (GGOH), a substrate analog for geranylgeranylation of Rac1, could restore Rac1 homeostasis and rescue macrophage efferocytosis. GGOH partially inhibits MC3T3-E1 apoptosis induced by ZA via downregulation of Rac1/JNK pathway. We also examined the Rac1 distribution and activation conditions in bone marrow-derived macrophages (BMDMs) and MC3T3-E1 under ZA treatment, and we found that ZA impaired Rac1 migration to BMDM membrane, leading to round appearance with less pseudopodia and efferocytosis inhibition. Moreover, ZA simultaneously activated Rac1, causing overexpression of P-JNK and cleaved caspase 3 in MC3T3-E1. Finally, the systemic administration of GGOH decreased the osteocytic apoptosis and improved the bone healing of the extraction sockets in BRONJ mouse models. Taken together, our findings provided a new insight and experimental basis for the application of GGOH in the treatment of BRONJ.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Jiangyin People's Hospital, Wuxi, China
| | - Weiwen Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Rongyao Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Shen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Fu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Interplay between Prokineticins and Histone Demethylase KDM6A in a Murine Model of Bortezomib-Induced Neuropathy. Int J Mol Sci 2021; 22:ijms222111913. [PMID: 34769347 PMCID: PMC8584499 DOI: 10.3390/ijms222111913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1β were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1β. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1β in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.
Collapse
|
16
|
Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues. Transl Res 2021; 236:72-86. [PMID: 33992825 PMCID: PMC8554709 DOI: 10.1016/j.trsl.2021.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
There is significant interest in understanding the cellular mechanisms responsible for expedited healing response in various oral tissues and how they are impacted by systemic diseases. Depending upon the types of oral tissue, wound healing may occur by predominantly re-eptihelialization, by re-epithelialization with substantial new connective tissue formation, or by a a combination of both plus new bone formation. As a result, the cells involved differ and are impacted by systemic diaseses in various ways. Diabetes mellitus is a prevalent metabolic disorder that impairs barrier function and healing responses throughout the human body. In the oral cavity, diabetes is a known risk factor for exacerbated periodontal disease and delayed wound healing, which includes both soft and hard tissue components. Here, we review the mechanisms of diabetic oral wound healing, particularly on impaired keratinocyte proliferation and migration, altered level of inflammation, and reduced formation of new connective tissue and bone. In particular, diabetes inhibits the expression of mitogenic growth factors whereas that of pro-inflammatory cytokines is elevated through epigenetic mechanisms. Moreover, hyperglycemia and oxidative stress induced by diabetes prevents the expansion of mesengenic cells that are involved in both soft and hard tissue oral wounds. A better understanding of how diabetes influences the healing processes is crucial for the prevention and treatment of diabetes-associated oral complications.
Collapse
Affiliation(s)
- Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104.
| |
Collapse
|
17
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
18
|
Giudice A, Antonelli A, Chiarella E, Baudi F, Barni T, Di Vito A. The Case of Medication-Related Osteonecrosis of the Jaw Addressed from a Pathogenic Point of View. Innovative Therapeutic Strategies: Focus on the Most Recent Discoveries on Oral Mesenchymal Stem Cell-Derived Exosomes. Pharmaceuticals (Basel) 2020; 13:ph13120423. [PMID: 33255626 PMCID: PMC7760182 DOI: 10.3390/ph13120423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Bisphosphonates-related osteonecrosis of the jaw (BRONJ) was firstly reported by Marx in 2003. Since 2014, the term medication-related osteonecrosis of the jaw (MRONJ) is recommended by the American Association of Oral and Maxillofacial Surgeons (AAOMS). Development of MRONJ has been associated to the assumption of bisphosphonates but many MRONJ-promoting factors have been identified. A strong involvement of immunity components has been suggested. Therapeutic intervention includes surgical and non-surgical treatments, as well as regenerative medicine procedures for the replacement of the lost tissues. The literature confirms that the combination of mesenchymal stem cells (MSCs), biomaterials and local biomolecules can support the regeneration/repair of different structures. In this review, we report the major open topics in the pathogenesis of MRONJ. Then, we introduce the oral tissues recognized as sources of MSCs, summing up in functional terms what is known about the exosomes release in physiological and pathological conditions.
Collapse
Affiliation(s)
- Amerigo Giudice
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.G.); (A.A.)
| | - Alessandro Antonelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.G.); (A.A.)
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
| | - Francesco Baudi
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
- Correspondence:
| |
Collapse
|